Transgenic Expression of Haemonchus contortus Cytochrome P450 Hco-cyp-13A11 Decreases Susceptibility to Particular but Not All Macrocyclic Lactones in the Model Organism Caenorhabditis elegans
Abstract
:1. Introduction
2. Results
2.1. Caenorhabditis elegans Motility Assays with Ivermectin, Moxidectin, Ivermectin Aglycone, Doramectin, Selamectin, and Eprinomectin
2.2. Comparison of Hco-cyp-13A11 Sequences between Susceptible and Resistant H. contortus Isolates to Identify Potential Macrocyclic Lactone Resistance-Associated Single-Nucleotide Polymorphisms (SNPs)
2.3. Homology Models of Haemonchus contortus Cyp-13A11
2.4. Molecular Modeling of Putative Macrocyclic Lactone-Binding Sites in Hco-Cyp-13A11
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plasmid Construction for Transgenesis
4.3. Transformation of Caenorhabitis elegans
4.4. Synchronization of Caenorhabditis elegans Developmental Stages
4.5. Motility Assays
4.6. Parasite Isolates
- (i)
- McM (McMaster): susceptible to all anthelmintics.
- (ii)
- ISE (Inbred-susceptible Edinburgh; MHco3): susceptible to all anthelmintics.
- (iii)
- BSI (Berlin selected isolate): highly IVM, MOX, thiabendazole (TBZ), and levamisole (LEV) resistant.
- (iv)
- WR (White River; MHco4): highly IVM and BZ resistant; moderately LEV resistant.
4.7. Sequence Comparison of Hco-cyp-13A11 from Different Haemonchus contortus Isolates
4.8. Initial Analysis of DNA and Deduced Protein Sequences
4.9. Haemonchus contortus Cyp-13A11 Homology Modeling
4.10. Molecular Docking of Macrocyclic lactones into the Hco-Cyp-13A11 Homology Models
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prichard, R.; Ménez, C.; Lespine, A. Moxidectin and the avermectins: Consanguinity but not identity. Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 134–153. [Google Scholar] [CrossRef]
- Wolstenholme, A.J.; Kaplan, R.M. Resistance to Macrocyclic Lactones. Curr. Pharm. Biotechnol. 2012, 13, 873–887. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.M. Biology, Epidemiology, Diagnosis, and Management of Anthelmintic Resistance in Gastrointestinal Nematodes of Livestock. Vet. Clin. N. Am.-Food Anim. Pract. 2020, 36, 17–30. [Google Scholar] [PubMed]
- Besier, R.; Kahn, L.; Sargison, N.; Van Wyk, J. Diagnosis, Treatment and Management of Haemonchus contortus in Small Ruminants. Adv. Parasitol. 2016, 93, 181–238. [Google Scholar] [CrossRef] [PubMed]
- Dent, J.A.; Smith, M.M.; Vassilatis, D.K.; Avery, L. The genetics of ivermectin resistance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2000, 97, 2674–2679. [Google Scholar] [CrossRef]
- Njue, A.I.; Hayashi, J.; Kinne, L.; Feng, X.P.; Prichard, R.K. Mutations in the extracellular domains of glutamate-gated chloride channel α3 and β subunits from ivermectin-resistant Cooperia oncophora affect agonist sensitivity. J. Neurochem. 2004, 89, 1137–1147. [Google Scholar] [CrossRef]
- Glendinning, S.K.; Buckingham, S.D.; Sattelle, D.B.; Wonnacott, S.; Wolstenholme, A.J. Glutamate-Gated Chloride Channels of Haemonchus contortus Restore Drug Sensitivity to Ivermectin Resistant Caenorhabditis elegans. PLoS ONE 2011, 6, e22390. [Google Scholar] [CrossRef]
- Wolstenholme, A.J. Glutamate-gated Chloride Channels. J. Biol. Chem. 2012, 287, 40232–40238. [Google Scholar] [CrossRef]
- Urdaneta-Marquez, L.; Bae, S.H.; Janukavicius, P.; Beech, R.; Dent, J.; Prichard, R. A dyf-7 haplotype causes sensory neuron defects and is associated with macrocyclic lactone resistance worldwide in the nematode parasite Haemonchus contortus. Int. J. Parasitol. 2014, 44, 1063–1071. [Google Scholar] [CrossRef]
- Jones, L.M.; Flemming, A.J.; Urwin, P.E. NHR-176 regulates cyp-35d1 to control hydroxylation-dependent metabolism of thiabendazole in Caenorhabditis elegans. Biochem. J. 2015, 466, 37–44. [Google Scholar] [CrossRef]
- Maté, L.; Ballent, M.; Cantón, C.; Ceballos, L.; Lifschitz, A.; Lanusse, C.; Alvarez, L.; Liron, J. Assessment of P-glycoprotein gene expression in adult stage of Haemonchus contortus in vivo exposed to ivermectin. Vet. Parasitol. 2018, 264, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Matoušková, P.; Lecová, L.; Laing, R.; Dimunová, D.; Vogel, H.; Stuchlíková, L.; Nguyen, L.T.; Kellerová, P.; Vokřál, I.; Lamka, J.; et al. UDP-glycosyltransferase family in Haemonchus contortus: Phylogenetic analysis, constitutive expression, sex-differences and resistance-related differences. Int. J. Parasitol. Drugs Drug. Resist 2018, 8, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Matoušková, P.; Vokřál, I.; Lamka, J.; Skálová, L. The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths. Trends Parasitol. 2016, 32, 481–491. [Google Scholar] [CrossRef]
- Janssen, I.J.I.; Krücken, J.; Demeler, J.; von Samson-Himmelstjerna, G. Transgenically expressed Parascaris P-glycoprotein-11 can modulate ivermectin susceptibility in Caenorhabditis elegans. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 44–47. [Google Scholar] [CrossRef]
- Janssen, I.J.I.; Krücken, J.; Demeler, J.; von Samson-Himmelstjerna, G. Caenorhabditis elegans: Modest increase of susceptibility to ivermectin in individual P-glycoprotein loss-of-function strains. Exp. Parasitol. 2013, 134, 171–177. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Bisset, S.A.; Doyle, S.R.; Hallsworth-Pepin, K.; Martin, J.; Grant, W.N.; Mitreva, M. Genomic introgression mapping of field-derived multiple-anthelmintic resistance in Teladorsagia circumcincta. PLoS Genet. 2017, 13, e1006857. [Google Scholar] [CrossRef]
- Godoy, P.; Lian, J.; Beech, R.N.; Prichard, R.K. Haemonchus contortus P-glycoprotein-2: In situ localisation and characterisation of macrocyclic lactone transport. Int. J. Parasitol. 2015, 45, 85–93. [Google Scholar] [CrossRef]
- Cvilink, V.; Lamka, J.; Skálová, L. Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminths. Drug Metab. Rev. 2009, 41, 8–26. [Google Scholar] [CrossRef]
- Kellerová, P.; Matoušková, P.; Lamka, J.; Vokřál, I.; Szotáková, B.; Zajíčková, M.; Pasák, M.; Skálová, L. Ivermectin-induced changes in the expression of cytochromes P450 and efflux transporters in Haemonchus contortus female and male adults. Vet. Parasitol. 2019, 273, 24–31. [Google Scholar] [CrossRef]
- Ménez, C.; Alberich, M.; Kansoh, D.; Blanchard, A.; Lespine, A. Acquired Tolerance to Ivermectin and Moxidectin after Drug Selection Pressure in the Nematode Caenorhabditis elegans. Antimicrob. Agents Chemother. 2016, 60, 4809–4819. [Google Scholar] [CrossRef]
- Anzenbacher, P.; Anzenbacherová, E. Cytochromes P450 and metabolism of xenobiotics. Cell Mol. Life Sci. 2001, 58, 737–747. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome P450 research and The Journal of Biological Chemistry. J. Biol. Chem. 2019, 294, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-F. Drugs Behave as Substrates, Inhibitors and Inducers of Human Cytochrome P450 3A4. Curr. Drug Metab. 2008, 9, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Laing, R.; Bartley, D.J.; Morrison, A.A.; Rezansoff, A.; Martinelli, A.; Laing, S.T.; Gilleard, J.S. The cytochrome P450 family in the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 2015, 45, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Menzel, R.; Rödel, M.; Kulas, J.; Steinberg, C.E. CYP35: Xenobiotically induced gene expression in the nematode Caenorhabditis elegans. Arch. Biochem. Biophys. 2005, 438, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Menzel, R.; Bogaert, T.; Achazi, R. A Systematic Gene Expression Screen of Caenorhabditis elegans Cytochrome P450 Genes Reveals CYP35 as Strongly Xenobiotic Inducible. Arch. Biochem. Biophys. 2001, 395, 158–168. [Google Scholar] [CrossRef]
- Laing, R.; Kikuchi, T.; Martinelli, A.; Tsai, I.J.; Beech, R.N.; Redman, E.; Holroyd, N.; Bartley, D.J.; Beasley, H.; Britton, C.; et al. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013, 14, R88. [Google Scholar] [CrossRef]
- Yilmaz, E.; Ramünke, S.; Demeler, J.; Krücken, J. Comparison of constitutive and thiabendazole-induced expression of five cytochrome P450 genes in fourth-stage larvae of Haemonchus contortus isolates with different drug susceptibility identifies one gene with high constitutive expression in a multi-resis. Int. J. Parasitol. Drugs Drug. Resist. 2017, 7, 362–369. [Google Scholar] [CrossRef]
- Zeng, Z.; Andrew, N.W.; Woda, J.M.; Halley, B.A.; Crouch, A.L.S.; Wang, R.W. Role of Cytochrome P450 Isoforms in the Metabolism of Abamectin and Ivermectin in Rats. J. Agric. Food Chem. 1996, 44, 3374–3378. [Google Scholar] [CrossRef]
- Zeng, Z.; Andrew, N.W.; Arison, B.H.; Luffer-Atlas, D.; Wang, R.W. Identification of cytochrome P4503A4 as the major enzyme responsible for the metabolism of ivermectin by human liver microsomes. Xenobiotica 1998, 28, 313–321. [Google Scholar] [CrossRef]
- Lee Chiu, S.-H.; Taub, R.; Sestokas, E.; Lu, A.Y.H.; Jacob, T.A. Comparative in Vivo and in Vitro Metabolism of Ivermectin in Steers, Sheep, Swine, and Rat. Drug Metab. Rev. 1987, 18, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, J.; Escudero, E.; Eeckhoutte, C.; Sutra, J.; Galtier, P.; Alvinerie, M. In Vitro Metabolism of 14C-Moxidectin by Hepatic Microsomes from Various Species. Veter-Res. Commun. 2001, 25, 345–354. [Google Scholar] [CrossRef]
- Alvinerie, M.; Dupuy, J.; Eeckhoutte, C.; Sutra, J.F.; Kerboeuf, D. In vitro metabolism of moxidectin in Haemonchus contortus adult stages. Parasitol. Res. 2001, 87, 702–704. [Google Scholar] [CrossRef] [PubMed]
- Vokřál, I.; Jedličková, V.; Jirásko, R.; Stuchlíková, L.; Bártíková, H.; Skálová, L.; Lamka, J.; Holčapek, M.; Szotáková, B. The metabolic fate of ivermectin in host (Ovis aries) and parasite (Haemonchus contortus). Parasitology 2013, 140, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Kotze, A.C. Oxidase activities in macrocyclic-resistant and -susceptible Haemonchus contortus. J. Parasitol. 2000, 86, 873–876. [Google Scholar] [CrossRef]
- AlGusbi, S.; Krücken, J.; Ramünke, S.; von Samson-Himmelstjerna, G.; Demeler, J. Analysis of putative inhibitors of anthelmintic resistance mechanisms in cattle gastrointestinal nematodes. Int. J. Parasitol. 2014, 44, 647–658. [Google Scholar] [CrossRef]
- Chakrapani, B.P.S.; Kumar, S.; Subramaniam, J.R. Development and evaluation of an in vivo assay in Caenorhabditis elegans for screening of compounds for their effect on cytochrome P450 expression. J. Biosci. 2008, 33, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, B.P.; Aamodt, E.J.; Allen, F.L.; Chung, M.A.; Heschl, M.F.; McGhee, J. The Gut Esterase Gene (ges-1) from the Nematodes Caenmorhabditis elegans and Caenorhabditis briggsae. J. Mol. Biol. 1993, 229, 890–908. [Google Scholar] [CrossRef]
- Gerhard, A.; Krücken, J.; Neveu, C.; Charvet, C.; Harmache, A.; von Samson-Himmelstjerna, G. Pharyngeal Pumping and Tissue-Specific Transgenic P-Glycoprotein Expression Influence Macrocyclic Lactone Susceptibility in Caenorhabditis elegans. Pharmaceuticals 2021, 14, 153. [Google Scholar] [CrossRef]
- McGhee, J. The C. elegans Intestine; WormBook: Minneapolis, MN, USA, 2007; pp. 1–36. [Google Scholar]
- Guengerich, F.P. CYTOCHROME P-450 3A4: Regulation and Role in Drug Metabolism. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 1–17. [Google Scholar] [CrossRef]
- Doyle, S.R.; Tracey, A.; Laing, R.; Holroyd, N.; Bartley, D.; Bazant, W.; Beasley, H.; Beech, R.; Britton, C.; Brooks, K.; et al. Genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm. Commun. Biol. 2020, 3, 656. [Google Scholar] [CrossRef]
- Yano, J.K.; Wester, M.R.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. The Structure of Human Microsomal Cytochrome P450 3A4 Determined by X-ray Crystallography to 2.05-Å Resolution. J. Biol. Chem. 2004, 279, 38091–38094. [Google Scholar] [CrossRef]
- Samuels, E.R.; Sevrioukova, I. Structure–Activity Relationships of Rationally Designed Ritonavir Analogues: Impact of Side-Group Stereochemistry, Headgroup Spacing, and Backbone Composition on the Interaction with CYP3A4. Biochemistry 2019, 58, 2077–2087. [Google Scholar] [CrossRef]
- Williams, P.A.; Cosme, J.; Vinković, D.M.; Ward, A.; Angove, H.C.; Day, P.J.; Vonrhein, C.; Tickle, I.J.; Jhoti, H. Crystal Structures of Human Cytochrome P450 3A4 Bound to Metyrapone and Progesterone. Science 2004, 305, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F.; Poulos, T.L. Pyridine-Substituted Desoxyritonavir Is a More Potent Inhibitor of Cytochrome P450 3A4 than Ritonavir. J. Med. Chem. 2013, 56, 3733–3741. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F.; Poulos, T.L. Anion-Dependent Stimulation of CYP3A4 Monooxygenase. Biochemistry 2015, 54, 4083–4096. [Google Scholar] [CrossRef]
- Sirim, D.; Widmann, M.; Wagner, F.; Pleiss, J. Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. BMC Struct. Biol. 2010, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Werck-Reichhart, D.; Feyereisen, R. Cytochromes P450: A success story. Genome Biol. 2000, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hasemann, C.A.; Kurumbail, R.G.; Boddupalli, S.S.; Peterson, J.A.; Deisenhofer, J. Structure and function of cytochromes P450:a comparative analysis of three crystal structures. Structure 1995, 3, 41–62. [Google Scholar] [CrossRef]
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma. 2016, 2016, 5.6.1–5.6.37. [Google Scholar]
- Laskowski, R.A.; MacArthur, M.W.; Thornton, J.M. PROCHECK: Validation of protein-structure coordinates. In International Tables for Crystallography; Springer: Berlin/Heidelberg, Germany, 2012; pp. 684–687. [Google Scholar]
- Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins. Proteins Struct. Funct. Bioinform. 1993, 17, 355–362. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35 (Suppl. S2), 407–410. [Google Scholar] [CrossRef] [PubMed]
- Benkert, P.; Künzli, M.; Schwede, T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 2009, 37, W510–W514. [Google Scholar] [CrossRef]
- Benkert, P.; Tosatto, S.; Schomburg, D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins: Struct. Funct. Bioinform. 2007, 71, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger, L.; DeLano, W. PyMOL[Internet]. 2020. Available online: http://www.pymol.org/pymol (accessed on 1 January 2021).
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef] [PubMed]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef]
- Ortiz de Montellano, P.R. Cytochrome P450: Structure, Mechanism and Biochemistry, 3rd ed.; Kluwer Academi/Plenum: New York, NY, USA, 2005. [Google Scholar]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F.; Poulos, T.L. Understanding the mechanism of cytochrome P450 3A4: Recent advances and remaining problems. Dalton Trans. 2012, 42, 3116–3126. [Google Scholar] [CrossRef]
- Jones, R.T.; Bakker, S.E.; Stone, D.; Shuttleworth, S.N.; Boundy, S.; McCart, C.; Daborn, P.J.; Ffrench-Constant, R.H.; Elsen, J.M.V.D. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance. Pest Manag. Sci. 2010, 66, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- David, J.-P.; Ismail, H.M.; Chandor-Proust, A.; Paine, M.J.I. Role of cytochrome P450s in insecticide resistance: Impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120429. [Google Scholar] [CrossRef] [PubMed]
- Kwa, M.S.; Veenstra, J.G.; Roos, M.H. Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in β-tubulin isotype 1. Mol. Biochem. Parasitol. 1994, 63, 299–303. [Google Scholar] [CrossRef]
- Kwa, M.; Kooyman, F.; Boersema, J.; Roos, M. Effect of Selection for Benzimidazole Resistance in Haemonchus contortus on β-Tubulin Isotype 1 and Isotype 2 Genes. Biochem. Biophys. Res. Commun. 1993, 191, 413–419. [Google Scholar] [CrossRef]
- Hahnel, S.R.; Zdraljevic, S.; Rodriguez, B.C.; Zhao, Y.; McGrath, P.T.; Andersen, E.C. Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles. PLoS Pathog. 2018, 14, e1007226. [Google Scholar] [CrossRef]
- Robinson, M.W.; Fairweather, I.; Lawson, J.; Trudgett, A.; Hoey, E.M. The comparative metabolism of triclabendazole sulphoxide by triclabendazole-susceptible and triclabendazole-resistant Fasciola hepatica. Parasitol. Res. 2003, 92, 205–210. [Google Scholar] [CrossRef]
- Alvarez, L.I.; Solana, H.D.; Mottier, M.L.; Virkel, G.L.; Fairweather, I.; Lanusse, C.E. Altered drug influx/efflux and enhanced metabolic activity in triclabendazole-resistant liver flukes. Parasitology 2005, 131, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Solana, H.D.; Rodriguez, J.A.; Lanusse, C.E. Comparative metabolism of albendazole and albendazole sulphoxide by different helminth parasites. Parasitol. Res. 2001, 87, 275–280. [Google Scholar] [CrossRef]
- Stuchlíková, L.R.; Matoušková, P.; Vokřál, I.; Lamka, J.; Szotáková, B.; Sečkařová, A.; Dimunová, D.; Nguyen, L.T.; Várady, M.; Skálová, L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: Sex differences, resistance-related differences and the identification of new metabolites. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Laing, S.T.; Ivens, A.; Laing, R.; Ravikumar, S.; Butler, V.; Woods, D.J.; Gilleard, J.S. Characterization of the xenobiotic response of Caenorhabditis elegans to the anthelmintic drug albendazole and the identification of novel drug glucoside metabolites. Biochem. J. 2010, 432, 505–516. [Google Scholar] [CrossRef]
- Yilmaz, E.; Gerst, B.; McKay-Demeler, J.; Krücken, J. Minimal modulation of macrocyclic lactone susceptibility in Caenorhabditis elegans following inhibition of cytochrome P450 monooxygenase activity. Exp. Parasitol. 2019, 200, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Miltsch, S.M.; Krücken, J.; Demeler, J.; Janssen, I.J.I.; Krüger, N.; Harder, A.; von Samson-Himmelstjerna, G. Decreased emodepside sensitivity in unc-49 γ-aminobutyric acid (GABA)-receptor-deficient Caenorhabditis elegans. Int. J. Parasitol. 2012, 42, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Welz, C.; Krüger, N.; Schniederjans, M.; Miltsch, S.M.; Krücken, J.; Guest, M.; Holden-Dye, L.; Harder, A.; von Samson-Himmelstjerna, G. SLO-1-Channels of Parasitic Nematodes Reconstitute Locomotor Behaviour and Emodepside Sensitivity in Caenorhabditis elegans slo-1 Loss of Function Mutants. PLoS Pathog. 2011, 7, e1001330. [Google Scholar] [CrossRef] [PubMed]
- Kwa, M.S.; Veenstra, J.G.; Van Dijk, M.; Roos, M.H. β-Tubulin Genes from the Parasitic NematodeHaemonchus contortusModulate Drug Resistance in Caenorhabditis elegans. J. Mol. Biol. 1995, 246, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.R.; Illingworth, C.J.R.; Laing, R.; Bartley, D.J.; Redman, E.; Martinelli, A.; Holroyd, N.; Morrison, A.A.; Rezansoff, A.; Tracey, A.; et al. Population genomic and evolutionary modelling analyses reveal a single major QTL for ivermectin drug resistance in the pathogenic nematode, Haemonchus contortus. BMC Genom. 2019, 20, 218. [Google Scholar] [CrossRef]
- Yang, Y.-F.; Zhang, X.; Ma, X.; Zhao, T.; Sun, Q.; Huan, Q.; Wu, S.; Du, Z.; Qian, W. Trans -splicing enhances translational efficiency in C. elegans. Genome Res. 2017, 27, 1525–1535. [Google Scholar] [CrossRef]
- Kashyap, S.S.; Verma, S.; Voronin, D.; Lustigman, S.; Kulke, D.; Robertson, A.P.; Martin, R.J. Emodepside has sex-dependent immobilizing effects on adult Brugia malayi due to a differentially spliced binding pocket in the RCK1 region of the SLO-1 K channel. PLoS Pathog. 2019, 15, e1008041. [Google Scholar] [CrossRef]
- Fauvin, A.; Charvet, C.; Issouf, M.; Cortet, J.; Cabaret, J.; Neveu, C. cDNA-AFLP analysis in levamisole-resistant Haemonchus contortus reveals alternative splicing in a nicotinic acetylcholine receptor subunit. Mol. Biochem. Parasitol. 2010, 170, 105–107. [Google Scholar] [CrossRef]
- Neveu, C.; Charvet, C.L.; Fauvin, A.; Cortet, J.; Beech, R.N.; Cabaret, J. Genetic diversity of levamisole receptor subunits in parasitic nematode species and abbreviated transcripts associated with resistance. Pharm. Genom. 2010, 20, 414–425. [Google Scholar] [CrossRef]
- Keller, J.; Ellieva, A.; Ma, D.K.; Ju, J.; Nehk, E.; Konkel, A.; Falck, J.R.; Schunck, W.-H.; Menzel, R. CYP-13A12 of the nematode Caenorhabditis elegans is a PUFA-epoxygenase involved in behavioural response to reoxygenation. Biochem. J. 2014, 464, 61–71. [Google Scholar] [CrossRef]
- Bygarski, E.E.; Prichard, R.K.; Ardelli, B.F. Resistance to the macrocyclic lactone moxidectin is mediated in part by membrane transporter P-glycoproteins: Implications for control of drug resistant parasitic nematodes. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 143–151. [Google Scholar] [CrossRef]
- Ardelli, B.F.; Stitt, L.E.; Tompkins, J.B.; Prichard, R.K. A comparison of the effects of ivermectin and moxidectin on the nematode Caenorhabditis elegans. Veter-Parasitol. 2009, 165, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Kaschny, M.; Demeler, J.; Janssen, I.J.I.; Kuzmina, T.A.; Besognet, B.; Kanellos, T.; Kerboeuf, D.; von Samson-Himmelstjerna, G.; Krücken, J. Macrocyclic Lactones Differ in Interaction with Recombinant P-Glycoprotein 9 of the Parasitic Nematode Cylicocylus elongatus and Ketoconazole in a Yeast Growth Assay. PLoS Pathog. 2015, 11, e1004781. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.G.; Prichard, R.K.; Beech, R. NRN. A glutamate-gated chloride channel subunit from Haemonchus contortus: Expression in a mammalian cell line, ligand binding, and modulation of anthelmintic binding by glutamate. Biochem. Pharmacol. 2002, 63, 1061–1068. [Google Scholar] [CrossRef]
- Ingelman-Sundberg, M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: The past, present and future. Trends Pharmacol. Sci. 2004, 25, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Hibbs, R.E.; Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 2011, 474, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Antona, C.; Ingelman-Sundberg, M. Cytochrome P450 pharmacogenetics and cancer. Oncogene 2006, 25, 1679–1691. [Google Scholar] [CrossRef]
- Blouin, M.S.; Yowell, C.A.; Courtney, C.H.; Dame, J.B. Host movement and the genetic structure of populations of parasitic nematodes. Genetics 1995, 141, 1007–1014. [Google Scholar] [CrossRef]
- Gilleard, J.; Redman, E. Genetic Diversity and Population Structure of Haemonchus contortus; Advances in Parasitology; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; Volume 93, pp. 31–68. [Google Scholar] [CrossRef]
- Gill, J.; Lacey, E. Avermectin\milbemycin resistance in trichostrongyloid nematodes. Int. J. Parasitol. 1998, 28, 863–877. [Google Scholar] [CrossRef]
- Gill, J.H.; Kerr, C.A.; Shoop, W.L.; Lacey, E. Evidence of multiple mechanisms of avermectin resistance in Haemonchus contortus—Comparison of selection protocols. Int. J. Parasitol. 1998, 28, 783–789. [Google Scholar] [CrossRef]
- Šrejber, M.; Navrátilová, V.; Paloncýová, M.; Bazgier, V.; Berka, K.; Anzenbacher, P.; Otyepka, M. Membrane-attached mammalian cytochromes P450: An overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J. Inorg. Biochem. 2018, 183, 117–136. [Google Scholar] [CrossRef]
- Oezguen, N.; Kumar, S. Analysis of Cytochrome P450 Conserved Sequence Motifs between Helices E and H: Prediction of Critical Motifs and Residues in Enzyme Functions. J. Drug Metab. Toxicol. 2011, 2, 1000110. [Google Scholar] [CrossRef] [PubMed]
- Gora, A.; Brezovsky, J.; Damborsky, J. Gates of Enzymes. Chem. Rev. 2013, 113, 5871–5923. [Google Scholar] [CrossRef] [PubMed]
- Rendic, S. Summary of information on human CYP enzymes: Human P450 metabolism data. Drug Metab. Rev. 2002, 34, 83–448. [Google Scholar] [CrossRef] [PubMed]
- Stout, S.J.; Dacunha, A.R.; Wu, S.S.; Zulalian, J.; Afzal, J. Moxidectin: Characterization of Cattle, Sheep, and Rat in vitro and in vivo Metabolites by Liquid Chromatography/Tandem Mass Spectrometry. J. Agric. Food Chem. 1994, 42, 388–392. [Google Scholar] [CrossRef]
- Afzal, J.; Burke, A.B.; Batten, P.L.; DeLay, R.L.; Miller, P. Moxidectin: Metabolic Fate and Blood Pharmacokinetics of 14C-Labeled Moxidectin in Horses. J. Agric. Food Chem. 1997, 45, 3627–3633. [Google Scholar] [CrossRef]
- Ekroos, M.; Sjögren, T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl. Acad. Sci. USA 2006, 103, 13682–13687. [Google Scholar] [CrossRef]
- Redman, E.; Sargison, N.; Whitelaw, F.; Jackson, F.; Morrison, A.; Bartley, D.J.; Gilleard, J.S. Introgression of Ivermectin Resistance Genes into a Susceptible Haemonchus contortus Strain by Multiple Backcrossing. PLoS Pathog. 2012, 8, e1002534. [Google Scholar] [CrossRef]
- Kotze, A.C.; Hunt, P.W.; Skuce, P.; von Samson-Himmelstjerna, G.; Martin, R.J.; Sager, H.; Krücken, J.; Hodgkinson, J.; Lespine, A.; Jex, A.R.; et al. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 164–184. [Google Scholar] [CrossRef]
- Gerhard, A.P.; Krücken, J.; Heitlinger, E.; Janssen, I.J.I.; Basiaga, M.; Kornaś, S.; Beier, C.; Nielsen, M.K.; Davis, R.E.; Wang, J.; et al. The P-glycoprotein repertoire of the equine parasitic nematode Parascaris univalens. Sci. Rep. 2020, 10, 13586. [Google Scholar] [CrossRef]
- Godoy, P.; Che, H.; Beech, R.N.; Prichard, R.K. Characterisation of P-glycoprotein-9.1 in Haemonchus contortus. Parasites Vectors 2016, 9, 52. [Google Scholar] [CrossRef]
- David, M.; Lebrun, C.; Duguet, T.; Talmont, F.; Beech, R.; Orlowski, S.; André, F.; Prichard, R.K.; Lespine, A. Structural model, functional modulation by ivermectin and tissue localization of Haemonchus contortus P-glycoprotein-13. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 145–157. [Google Scholar] [CrossRef] [PubMed]
- David, M.A.; Orlowski, S.; Prichard, R.K.; Hashem, S.; André, F.; Lespine, A. In silico analysis of the binding of anthelmintics to Caenorhabditis elegans P-glycoprotein 1. Int. J. Parasitol. Drugs Drug Resist. 2016, 6, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Kirn, R.B.; Wandel, C.; Leake, B.; Cvetkovic, M.; Fromm, M.F.; Dempsey, P.J.; Roden, M.M.; Belas, F.; Chaudhary, A.K.; Roden, D.M.; et al. Interrelationship Between Substrates and Inhibitors of Human CYP3A and P-Glycoprotein. Pharm. Res. 1999, 16, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Kurnik, D.; Wood, A.J.J.; Wilkinson, G.R. The erythromycin breath test reflects P-glycoprotein function independently of cytochrome P450 3A activity. Clin. Pharmacol. Ther. 2006, 80, 228–234. [Google Scholar] [CrossRef]
- Stiernagle, T. Maintenance of C. elegans; WormBook: Minneapolis, MN, USA, 2006; pp. 1–11. [Google Scholar]
- Sevrioukova, I. Interaction of Human Drug-Metabolizing CYP3A4 with Small Inhibitory Molecules. Biochemistry 2019, 58, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef]
- Pavelka, A.; Sebestova, E.; Kozlikova, B.; Brezovsky, J.; Sochor, J.; Damborsky, J. CAVER: Algorithms for Analyzing Dynamics of Tunnels in Macromolecules. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 13, 505–517. [Google Scholar] [CrossRef]
Strain | Drug | EC50 (95% CI 1) [nM] | R2 2 | p Value | Fold Change in EC50 vs N2 |
---|---|---|---|---|---|
N2 3 | Ivermectin | 1.64 (1.43–1.87) | 0.972 | <0.0001 | 4.27 |
Hco-cyp-13A11 4 | Ivermectin | 7.01 (5.53–8.89) | 0.874 | ||
N2 | Ivermectin aglycone | 163.6 (152.6–175.4) | 0.984 | <0.0001 | 1.68 |
Hco-cyp-13A11 | Ivermectin aglycone | 275.5 (259.7–292.2) | 0.980 | ||
N2 | Selamectin | 156.7 (136.8–179.5) | 0.983 | <0.0001 | 2.58 |
Hco-cyp-13A11 | Selamectin | 405.3 (386.1–425.3) | 0.950 | ||
N2 | Doramectin | 7.75 (7.30–8.24) | 0.987 | 0.0005 | 1.10 |
Hco-cyp-13A11 | Doramectin | 8.60 (8.11–9.12) | 0.986 | ||
N2 | Eprinomectin | 1.48 (1.17–1.86) | 0.994 | 0.1165 | 1.27 |
Hco-cyp-13A11 | Eprinomectin | 1.89 (1.39–2.56) | 0.972 | ||
N2 | Moxidectin | 5.95 (5.38–6.58) | 0.966 | 0.3212 | 1.07 |
Hco-cyp-13A11 | Moxidectin | 6.40 (5.81–7.05) | 0.955 |
ISE Reference a | ISE b | McM c | WR d | BSI e | C. elegans cyp-13A11 f | C. elegans cyp-13A12 g | |
---|---|---|---|---|---|---|---|
No AA h | 517 | 517 | 517 | 515 | 517 | 517 | 518 |
MW [kDa] h | 59.56 | 59.39 | 59.58 | 59.39 | 59.58 | 59.47 | 59.08 |
Theo. pI h | 8.76 | 8.97 | 8.97 | 9.09 | 8.62 | 6.36 | 6.08 |
Cyp heme motif i | 454–463 fj: FGlGPRQCIG | 454–463 j: FGlGPRQCIG | 454–463 j: FGlGPRQCIG | 452–461 j: FGlGPRQCIG | 454–463 j: FGlGPRQCIG | 454–463 j: FGlGPRQCIG | 455–464 j: FGlGPRQCIG |
Cyp-3A4 (PDB: 6MA7) | Hco-Cyp-13A11 | ||||
---|---|---|---|---|---|
ISE a | McM b | WR c | BSI d | ||
Ivermectin | |||||
Docking energy [kcal/mol] | −10.1 | −10.5 | −8.5 | −6.5 | −8.1 |
Solvent accessible surface Area [Å2] | 993 | 1084 | 1058 | 962 | 1076 |
Number of H-bonds | 3 | 2 | 4 | 8 | 2 |
Hydrophobic interactions | 22 | 11 | 12 | 13 | 12 |
Ivermectin aglycone | |||||
Docking energy [kcal/mol] | −8.6 | −11.0 | −11.3 | −10.5 | −11.2 |
Solvent accessible surface Area [Å2] | 745 | 756 | 762 | 753 | 745 |
Number of H-bonds | 1 | 3 | 2 | 1 | 3 |
Hydrophobic interactions | 7 | 9 | 2 | 7 | 10 |
Selamectin | |||||
Docking energy [kcal/mol] | −0.5 | −8.2 | −9.3 | −9.1 | −8.8 |
Solvent accessible surface Area [Å2] | 949 | 953 | 918 | 918 | 927 |
Number of H-bonds | 1 | 1 | 2 | 6 | 3 |
Hydrophobic interactions | 15 | 11 | 13 | 11 | 11 |
Doramectin | |||||
Docking energy [kcal/mol] | −4.1 | −10.6 | −8.6 | −11.1 | −9.8 |
Solvent accessible surface Area [Å2] | 1139 | 1111 | 1134 | 1148 | 1136 |
Number of H-bonds | 3 | 3 | 4 | 3 | 4 |
Hydrophobic interactions | 16 | 13 | 9 | 10 | 4 |
Eprinomectin | |||||
Docking energy [kcal/mol] | −8.4 | −8.0 | −7.7 | −8.5 | −10.8 |
Solvent accessible surface Area [Å2] | 1057 | 1143 | 1068 | 1104 | 1155 |
Number of H-bonds | 4 | 3 | 7 | 3 | 4 |
Hydrophobic interactions | 5 | 15 | 15 | 4 | 7 |
Moxidectin | |||||
Docking energy [kcal/mol] | −1.6 | −11.0 | −5.9 | −8.9 | −7.8 |
Solvent accessible surface Area [Å2] | 875 | 870 | 881 | 870 | 876 |
Number of H-bonds | 4 | 1 | 3 | 5 | 3 |
Hydrophobic interactions | 13 | 10 | 7 | 8 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakobs, N.; Yilmaz, E.; Krücken, J. Transgenic Expression of Haemonchus contortus Cytochrome P450 Hco-cyp-13A11 Decreases Susceptibility to Particular but Not All Macrocyclic Lactones in the Model Organism Caenorhabditis elegans. Int. J. Mol. Sci. 2022, 23, 9155. https://doi.org/10.3390/ijms23169155
Jakobs N, Yilmaz E, Krücken J. Transgenic Expression of Haemonchus contortus Cytochrome P450 Hco-cyp-13A11 Decreases Susceptibility to Particular but Not All Macrocyclic Lactones in the Model Organism Caenorhabditis elegans. International Journal of Molecular Sciences. 2022; 23(16):9155. https://doi.org/10.3390/ijms23169155
Chicago/Turabian StyleJakobs, Natalie, Esra Yilmaz, and Jürgen Krücken. 2022. "Transgenic Expression of Haemonchus contortus Cytochrome P450 Hco-cyp-13A11 Decreases Susceptibility to Particular but Not All Macrocyclic Lactones in the Model Organism Caenorhabditis elegans" International Journal of Molecular Sciences 23, no. 16: 9155. https://doi.org/10.3390/ijms23169155
APA StyleJakobs, N., Yilmaz, E., & Krücken, J. (2022). Transgenic Expression of Haemonchus contortus Cytochrome P450 Hco-cyp-13A11 Decreases Susceptibility to Particular but Not All Macrocyclic Lactones in the Model Organism Caenorhabditis elegans. International Journal of Molecular Sciences, 23(16), 9155. https://doi.org/10.3390/ijms23169155