Determination of the Bioactive Effect of Custard Apple By-Products by In Vitro Assays
Abstract
:1. Introduction
2. Results & Discussions
2.1. Characterization of Custard Apple Seed and Peel Extracts by HPLC-ESI-qTOF-MS
2.2. Evaluation of Total Phenol Content & Antioxidant Capacity Using TEAC, FRAP and ORAC
2.3. Evaluation of Free Radical and ROS/RNS Scavenging Potential
2.4. Evaluation of Enzymatic Inhibition Capacity
2.5. Evaluation of Platelet Antiaggregatory Activity
3. Materials and Methods
3.1. Chemical Reagents
3.2. Extraction of Custard Apple Agro-Industrial By-Products
3.3. HPLC-ESI-qTOF-MS Analysis
3.4. Quantification of Individual Phenolic Compounds by HPLC-ESI-qTOF-MS
3.5. In Vitro Assays for Bioactive Determination of Phenolic Compounds in Custard Apple By-Products
3.5.1. Evaluation of In Vitro Antioxidant Potential
3.5.2. Evaluation of Free Radical and ROS Scavenging Potential
3.5.3. Evaluation of Enzymatic Inhibition Potential
3.6. Evaluation of Platelet Antiaggregatory Potential
3.6.1. Antiplatelet Activity of Custard Apple Seed and Peel Extracts
3.6.2. Study of P-Selectin Expression and Activation of GP IIb/IIIa
3.6.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Salas, P.; Gómez-Caravaca, A.M.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Identification and quantification of phenolic and other polar compounds in the edible part of Annona cherimola and its by-products by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2015, 78, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Tundis, R.; Bonesi, M.; Menichini, F.; Mastellone, V.; Avallone, L.; Menichini, F. Radical scavenging, antioxidant and metal chelating activities of Annona cherimola Mill. (cherimoya) peel and pulp in relation to their total phenolic and total flavonoid contents. J. Food Compos. Anal. 2012, 25, 179–184. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Aguilera-Saez, L.M.; Gómez-Caravaca, A.M.; Verardo, V.; Fernández-Gutiérrez, A.; Fernández, I.; Arráez-Román, D. Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR. Anal. Bioanal. Chem. 2018, 410, 3607–3619. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.O.; Vilela, C.; Camacho, J.F.; Cordeiro, N.; Gouveia, M.; Freire, C.S.R.; Silvestre, A.J.D. Profiling of lipophilic and phenolic phytochemicals of four cultivars from cherimoya (Annona cherimola Mill.). Food Chem. 2016, 211, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Gupta-Elera, G.; Garrett, A.R.; Martinez, A.; Robison, R.A.; O’Neill, K.L. The antioxidant properties of the cherimoya (Annona cherimola) fruit. Food Res. Int. 2011, 44, 2205–2209. [Google Scholar] [CrossRef]
- Fuentes, E.; Wehinger, S.; Trostchansky, A. Regulation of key antiplatelet pathways by bioactive compounds with minimal bleeding risk. Int. J. Mol. Sci. 2021, 22, 12380. [Google Scholar] [CrossRef]
- Shi, P.; Silva, M.C.; Wang, H.Y.L.; Wu, B.; Akhmedov, N.G.; Li, M.; Beuning, P.J.; O’Doherty, G.A. Structure-Activity relationship study of the cleistriosides and cleistetrosides for antibacterial/anticancer activity. ACS Med. Chem. Lett. 2012, 3, 1086–1090. [Google Scholar] [CrossRef]
- Del Refugio Ramos, M.; Jerz, G.; Villanueva, S.; López-Dellamary, F.; Waibel, R.; Winterhalter, P. Two glucosylated abscisic acid derivates from avocado seeds (Persea americana Mill. Lauraceae cv. Hass). Phytochemistry 2004, 65, 955–962. [Google Scholar] [CrossRef]
- Pan, J.Y.; Zhang, S.; Wu, J.; Li, Q.X.; Xiao, Z.H. Litseaglutinan A and lignans from Litsea glutinosa. Helv. Chim. Acta 2010, 93, 951–957. [Google Scholar] [CrossRef]
- Zheng, Y.; Duan, W.; Sun, J.; Zhao, C.; Cheng, Q.; Li, C.; Peng, G. Structural identification and conversion analysis of malonyl isoflavonoid glycosides in Astragali radix by HPLC coupled with ESI-Q TOF/MS. Molecules 2019, 24, 3929. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Zengin, G.; Segura-Carretero, A.; Lobine, D.; Mahomoodally, M.F. Chemical fingerprint and bioactivity evaluation of Globularia orientalis L. and Globularia trichosantha Fisch. & C. A. Mey. using non-targeted HPLC-ESI-QTOF-MS approach. Phytochem. Anal. 2019, 30, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Tin, B.-F.; Liu, K.C. Three Triterpene Esters from Zizyphus Jujuba. Phytochemistry 1996, 43, 847–851. [Google Scholar] [CrossRef]
- Akinwumi, I.A.; Sonibare, M.A.; Yeye, E.O.; Khan, M. Bioassay-guided isolation and identification of anti-ulcer ecdysteroids from the seeds of Sphenocentrum Jollyanum pierre (Menispermaceae). Steroids 2020, 159, 108636. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, F.R.; Yen, H.F.; Wu, Y.C. Amides from stems of Annona cherimola. Phytochemistry 1998, 49, 1443–1447. [Google Scholar] [CrossRef]
- Lange, B.M.; Conner, C.F. Taxanes and taxoids of the genus Taxus—A comprehensive inventory of chemical diversity. Phytochemistry 2021, 190, 112829. [Google Scholar] [CrossRef]
- Anh, H.L.T.; Hien, N.T.T.; Hang, D.T.T.; Ha, T.M.; Nhiem, N.X.; Hien, T.T.T.; Thu, V.K.; Thao, D.T.; Van Minh, C.; Van Kiem, P. Ent-Kaurane diterpenes from annona glabra and their cytotoxic activities. Nat. Prod. Commun. 2014, 9, 1681–1682. [Google Scholar] [CrossRef]
- Inada, A.C.; Silva, G.T.; da Silva, L.P.R.; Alves, F.M.; Filiú, W.F.d.O.; Asato, M.A.; Junior, W.H.K.; Corsino, J.; Figueiredo, P.d.O.; Garcez, F.R.; et al. Therapeutic Effects of Morinda citrifolia Linn. (Noni) Aqueous Fruit Extract on the Glucose and Lipid Metabolism in High-Fat/High-Fructose-Fed Swiss Mice. Nutrients 2020, 12, 3439. [Google Scholar] [CrossRef]
- De Oliveira, A.C.; Valentim, I.B.; Silva, C.A.; Bechara, E.J.H.; de Barros, M.P.; Mano, C.M.; Goulart, M.O.F. Total phenolic content and free radical scavenging activities of methanolic extract powders of tropical fruit residues. Food Chem. 2009, 115, 469–475. [Google Scholar] [CrossRef]
- Gu, L.; House, S.E.; Wu, X.; Ou, B.; Prior, R.L. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J. Agric. Food Chem. 2006, 54, 4057–4061. [Google Scholar] [CrossRef]
- Dilrukshi, M.; Abhayagunasekara, A. Selection of Superior Quality Annona Species by Means of Bioactive Compounds and Antioxidant Capacity. World J. Agric. Res. 2020, 8, 39–44. [Google Scholar] [CrossRef]
- Bravo, K.; Quintero, C.; Agudelo, C.; García, S.; Bríñez, A.; Osorio, E. CosIng database analysis and experimental studies to promote Latin American plant biodiversity for cosmetic use. Ind. Crops Prod. 2020, 144, 112007. [Google Scholar] [CrossRef]
- Galarce-bustos, O.; Fernández-ponce, M.T.; Montes, A.; Casas, L.; Mantell, C.; Aranda, M. Usage of supercritical fluid techniques to obtain bioactive alkaloid-rich extracts from cherimoya peel and leaves: Extract profiles and their correlation with antioxidant properties and acetylcholinesterase and α-glucosidase inhibitory. Food Funct. 2020, 11, 4224–4235. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2018, 105, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Cádiz-Gurrea, M.d.L.L.; Borrás-Linares, I.; Lozano-Sánchez, J.; Joven, J.; Fernández-Arroyo, S.; Segura-Carretero, A. Cocoa and grape seed byproducts as a source of antioxidant and anti-inflammatory proanthocyanidins. Int. J. Mol. Sci. 2017, 18, 376. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, T.G.; Santos, F.; Sanches-Silva, A.; Beatriz Oliveira, M.; Bento, A.C.; Costa, H.S. Nutritional and phytochemical composition of Annona cherimola Mill. fruits and by-products: Potential health benefits. Food Chem. 2016, 193, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Jose, M.M.; Matés, J.M.; Sánchez-Jiménez, F. Antioxidant enzymes and their implications in pathophysiologic processes. Front. Biosci. 1999, 4, d339. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Silva, A.M.S.; Santos, C.M.M.; Pinto, D.C.G.A.; Cavaleiro, J.A.S.; Lima, J.L.F.C. 2-Styrylchromones: Novel strong scavengers of reactive oxygen and nitrogen species. Bioorg. Med. Chem. 2007, 15, 6027–6036. [Google Scholar] [CrossRef]
- Pullar, J.M.; Vissers, M.C.M.; Winterbourn, C.C. Living with a killer: The effects of hypochlorous acid on mammalian cells. IUBMB Life 2000, 50, 259–266. [Google Scholar] [CrossRef]
- Boutoub, O.; El-Guendouz, S.; Manhita, A.; Dias, C.B.; Estevinho, L.M.; Paula, V.B.; Carlier, J.; Costa, M.C.; Rodrigues, B.; Raposo, S.; et al. Comparative Study of the Antioxidant and Enzyme Inhibitory Activities of Two Types of Moroccan Euphorbia Entire Honey and Their Phenolic Extracts. Foods 2021, 10, 1909. [Google Scholar] [CrossRef]
- Wang, R.; Li, L.; Wang, B. Poncirin ameliorates oxygen glucose deprivation/reperfusion injury in cortical neurons via inhibiting NOX4-mediated NLRP3 inflammasome activation. Int. Immunopharmacol. 2022, 102, 107210. [Google Scholar] [CrossRef]
- Pineda-Ramírez, N.; Calzada, F.; Alquisiras-Burgos, I.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Ortiz-Plata, A.; Estrada, E.P.; Torres, I.; Aguilera, P. Antioxidant properties and protective effects of some species of the annonaceae, lamiaceae, and geraniaceae families against neuronal damage induced by excitotoxicity and cerebral ischemia. Antioxidants 2020, 9, 253. [Google Scholar] [CrossRef] [PubMed]
- Onohuean, H.; Alagbonsi, A.I.; Usman, I.M.; Iceland Kasozi, K.; Alexiou, A.; Badr, R.H.; Batiha, G.E.S.; Ezeonwumelu, J.O.C. Annona muricata Linn and Khaya grandifoliola C.DC. Reduce Oxidative Stress In Vitro and Ameliorate Plasmodium berghei-Induced Parasitemia and Cytokines in BALB/c Mice. J. Evid.-Based Integr. Med. 2021, 26, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Baskar, R.; Rajeswari, V.; Kumar, T.S. In vitro antioxidant studies in leaves of annona species. Indian J. Exp. Biol. 2007, 45, 480–485. [Google Scholar]
- Mondal, S.K.; Saha, P.; Mondal, N.; Mazumder, U. Free radical scavenging property of Annona reticulata leaves. Orient. Pharm. Exp. Med. 2008, 8, 260–265. [Google Scholar] [CrossRef]
- Larrota, H.R.; Baquero, L.C.P. Antioxidant activity of ethanolic extracts and alkaloid fractions from seeds of three species of annona. Pharmacologyonline 2018, 2, 206–218. [Google Scholar]
- Chatatikun, M.; Chiabchalard, A. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity. BMC Complement. Altern. Med. 2017, 17, 487. [Google Scholar] [CrossRef]
- Cádiz-Gurrea, M.d.L.L.; Villegas-Aguilar, M.d.C.; Leyva-Jiménez, F.J.; Pimentel-Moral, S.; Fernández-Ochoa, Á.; Alañón, M.E.; Segura-Carretero, A. Revalorization of bioactive compounds from tropical fruit by-products and industrial applications by means of sustainable approaches. Food Res. Int. 2020, 138, 109786. [Google Scholar] [CrossRef]
- Chai, W.-M.; Lin, M.-Z.; Wang, Y.-X.; Xu, K.-L.; Huang, W.-Y.; Pan, D.-D.; Zou, Z.-R.; Peng, Y.-Y. Inhibition of tyrosinase by cherimoya pericarp proanthocyanidins: Structural characterization, inhibitory activity and mechanism. Food Res. Int. 2017, 100, 731–739. [Google Scholar] [CrossRef]
- Hille, R.; Massey, V. Studies on the oxidative half-reaction of xanthine oxidase. J. Biol. Chem. 1981, 256, 9090–9095. [Google Scholar] [CrossRef]
- Fais, A.; Era, B.; Asthana, S.; Sogos, V.; Medda, R.; Santana, L.; Uriarte, E.; Matos, M.J.; Delogu, F.; Kumar, A. Coumarin derivatives as promising xanthine oxidase inhibitors. Int. J. Biol. Macromol. 2018, 120, 1286–1293. [Google Scholar] [CrossRef]
- Pinto, D.; de la Luz Cádiz-Gurrea, M.; Garcia, J.; Saavedra, M.J.; Freitas, V.; Costa, P.; Sarmento, B.; Delerue-Matos, C.; Rodrigues, F. From soil to cosmetic industry: Validation of a new cosmetic ingredient extracted from chestnut shells. Q1 Sustain. Mater. Technol. 2021, 29, e00309. [Google Scholar] [CrossRef]
- Latos-Brozio, M.; Masek, A. Structure-Activity Relationships Analysis of Monomeric and Polymeric Polyphenols (Quercetin, Rutin and Catechin) Obtained by Various Polymerization Methods. Chem. Biodivers. 2019, 16, e1900426. [Google Scholar] [CrossRef] [PubMed]
- Mottaghipisheh, J.; Taghrir, H.; Dehsheikh, A.B.; Zomorodian, K.; Irajie, C.; Sourestani, M.M.; Iraji, A. Linarin, a glycosylated flavonoid, with potential therapeutic attributes: A comprehensive review. Pharmaceuticals 2021, 14, 1104. [Google Scholar] [CrossRef]
- Hendriani, R.; Sukandar, E.Y.; Anggadiredja, K.; Sukrasno, S. In Vitro Evaluation of Xanthine Oxidase Inhibitory Activity of Selected Medicinal Plants. Int. J. Pharm. Clin. Res. 2016, 8, 235–238. [Google Scholar] [CrossRef]
- Singh, Y.; Bhatnagar, P.; Thakur, N. A review on insight of immense nutraceutical and medicinal potential of custard apple (Annona squamosa Linn.). Int. J. Chem. Stud. 2019, 7, 1237–1245. [Google Scholar]
- Figueroa, J.G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J.A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chem. 2021, 352, 129300. [Google Scholar] [CrossRef]
- Rojas-García, A.; Fuentes, E.; Cádiz-Gurrea, M.D.L.L.; Rodriguez, L.; Villegas-Aguilar, M.D.C.; Palomo, I.; Arráez-Román, D.; Segura-Carretero, A. Biological Evaluation of Avocado Residues as a Potential Source of Bioactive Compounds. Antioxidants 2022, 11, 1049. [Google Scholar] [CrossRef] [PubMed]
- Al-Duais, M.; Müller, L.; Böhm, V.; Jetschke, G. Antioxidant capacity and total phenolics of Cyphostemma digitatum before and after processing: Use of different assays. Eur. Food Res. Technol. 2009, 228, 813–821. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Cádiz-Gurrea, M.d.L.L.; Fernández-Ochoa, Á.; Leyva-Jiménez, F.J.; Guerrero-Muñoz, N.; Villegas-Aguilar, M.d.C.; Pimentel-Moral, S.; Ramos-Escudero, F.; Segura-Carretero, A. LC-MS and Spectrophotometric Approaches for Evaluation of Bioactive Compounds from Peru Cocoa By-Products for Commercial Applications. Molecules 2020, 25, 3177. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pinto, D.; Cádiz-Gurrea, M.d.L.L.; Sut, S.; Ferreira, A.S.; Leyva-Jimenez, F.J.; Dall’Acqua, S.; Segura-Carretero, A.; Delerue-Matos, C.; Rodrigues, F. Valorisation of underexploited Castanea sativa shells bioactive compounds recovered by supercritical fluid extraction with CO2: A response surface methodology approach. J. CO2 Util. 2020, 40, 101194. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Nema, N.K.; Maity, N.; Sarkar, B.; Mukherjee, P.K. Cucumis sativus fruit-potential antioxidant, anti-hyaluronidase, and anti-elastase agent. Arch. Dermatol. Res. 2011, 303, 247–252. [Google Scholar] [CrossRef]
- Nema, N.K.; Maity, N.; Sarkar, B.K.; Mukherjee, P.K. Matrix metalloproteinase, hyaluronidase and elastase inhibitory potential of standardized extract of Centella asiatica. Pharm. Biol. 2013, 51, 1182–1187. [Google Scholar] [CrossRef]
- Born, G.V.R.; Cross, M.J. The aggregation of blood platelets. J. Physiol. 1963, 168, 178–195. [Google Scholar] [CrossRef]
- Rodríguez, L.; Trostchansky, A.; Wood, I.; Mastrogiovanni, M.; Vogel, H.; González, B.; Junior, M.M.; Fuentes, E.; Palomo, I. Antiplatelet activity and chemical analysis of leaf and fruit extracts from Aristotelia chilensis. PLoS ONE 2021, 16, e0250852. [Google Scholar] [CrossRef]
- Muñoz-Bernal, Ó.A.; de la Rosa, L.A.; Rodrigo-García, J.; Martínez-Ruiz, N.R.; Sáyago-Ayerdi, S.; Rodriguez, L.; Fuentes, E.; Alvarez-Parrilla, E. Phytochemical Characterization and Antiplatelet Activity of Mexican Red Wines and Their By-products. S. African J. Enol. Vitic. 2021, 42, 77–90. [Google Scholar] [CrossRef]
- Kasuya, N.; Kishi, Y.; Isobe, M.; Yoshida, M.; Numano, F. P-Selectin Expression, but not GPIIb/IIIa Activation, is Enhanced in the Inflammatory Stage of Takayasu’s Arteritis. Circ. J. 2006, 70, 600–604. [Google Scholar] [CrossRef]
- Rojas-Garbanzo, C.; Rodríguez, L.; Pérez, A.M.; Mayorga-Gross, A.L.; Vásquez-Chaves, V.; Fuentes, E.; Palomo, I. Anti-platelet activity and chemical characterization by UPLC-DAD-ESI-QTOF-MS of the main polyphenols in extracts from Psidium leaves and fruits. Food Res. Int. 2021, 141, 110070. [Google Scholar] [CrossRef]
Peak | RT (min) | [M-H]− | Mol. Formula | Main Fragments | Compound | Content (mg/g DE) |
---|---|---|---|---|---|---|
Seed | ||||||
1 | 0.64 | 341 | C12H22O11 | - | Sucrose | NQ |
2 | 0.69 | 191 | C7H12O6 | 173, 131 | Quinic acid | 1.36 ± 0.05 |
3 | 8.22 | 561 | C31H46O9 | 519 | Yunnanxane | NQ |
4 | 8.60 | 529 | C29H38O9 | 487 | Taxinine H | NQ |
5 | 8.98 | 607 | C37H52O7 | 453 | Protocatechuoyl alphitolic acid | NQ |
6 | 10.86 | 298 | C17H17NO4 | 135 | Caffeoyltyramine isomer 1 | NQ |
7 | 11.09 | 819 | - | - | Unknown 1 | NQ |
8 | 11.36 | 842 | - | - | Unknown 2 | NQ |
9 | 11.52 | 605 | C28H30O15 | 283 | Methyl-kaempferol-[HMG-(1→3/4)]-hexoside | 0.53 ± 0.02 |
10 | 11.95 | 609 | C27H30O16 | 591, 373, 255 | Quercetin rutinoside | 0.42 ± 0.03 |
11 | 12.40 | 593 | C28H34O14 | 431, 269 | Poncirin | 27 ± 3 |
12 | 12.47 | 495 | C27H34O14 | 300, 285 | Dyhydroxyecdysone | NQ |
13 | 12.55 | 312 | C18H19NO4 | 148, 190, 290 | Feruloyltyramine isomer 1 | NQ |
14 | 12.62 | 591 | C29H36O13 | 445 | Osmanthuside B isomer 1 | 49 ± 3 |
15 | 12.75 | 312 | C18H19NO4 | 148, 190 | Feruloyltyramine isomer 2 | NQ |
16 | 12.79 | 625 | C29H38O15 | 301, 165 | Isomucronulatol diglucoside | 0.48 ± 0.05 |
17 | 12.96 | 595 | C28H36O14 | 591, 445 | Magnolenin C | 0.8 ± 0.1 |
18 | 13.32 | 893 | - | 609, 444 | Lignan derivative | NQ |
19 | 13.45 | 607 | C29H36O14 | 444 | Miconioside A | 32 ± 5 |
20 | 13.75 | 609 | C29H38O14 | 446, 283 | Litseaglutinan A isomer 1 | NQ |
21 | 14.06 | 633 | - | - | Unknown 3 | NQ |
22 | 14.17 | 623 | C29H36O15 | 461 | (Iso)verbascoside isomer 1 | 5.55 ± 0.02 |
23 | 14.50 | 836 | C38H63N9O10S | - | Cherimolacyclopeptide A | NQ |
24 | 14.61 | 641 | - | - | Unknown 4 | NQ |
25 | 14.81 | 730 | C35H53N7O8S | - | Glaucacyclopeptide B | NQ |
26 | 14.91 | 609 | C29H38O14 | 446, 283 | Litseaglutinan A isomer 2 | NQ |
27 | 15.04 | 795 | C40H60N8O9 | - | Peptidic derivative | NQ |
28 | 15.08 | 298 | C17H17NO4 | - | Caffeoyltyramine isomer 2 | NQ |
29 | 15.17 | 298 | C17H17NO4 | - | Caffeoyltyramine isomer 3 | NQ |
30 | 15.39 | 591 | C29H36O13 | 445 | Osmanthuside B isomer 2 | 3.0 ± 0.2 |
31 | 15.69 | 609 | C29H38O14 | 446 | Litseaglutinan A isomer 3 | NQ |
32 | 15.84 | 623 | C29H36O15 | 461 | (Iso)verbascoside isomer 2 | 152.3 ± 1.0 |
33 | 15.87 | 958 | C45H69N9O10S2 | - | Cherimolacyclopeptide F | NQ |
TOTAL 272 ± 8 | ||||||
Peel | ||||||
1 | 0.67 | 191 | C7H12O6 | 173, 131 | Quinic acid | 4.4 ± 0.4 |
2 | 0.76 | 191 | C6H8O7 | - | Citric acid | 1.11 ± 0.09 |
3 | 5.33 | 443 | C21H32O10 | - | Penstemide | NQ |
4 | 6.01 | 411 | C24H28O6 | - | Eupomatene B | NQ |
5 | 7.54 | 395 | C16H28O11 | - | Nonioside | NQ |
6 | 9.66 | 741 | C32H38O18 | 300 | Calabricoside A | 0.48 ± 0.07 |
7 | 10.04 | 607 | C27H28O16 | 300 | Quercetin derivative | 6.7 ± 0.7 |
8 | 10.20 | 609 | C27H30O16 | 300 | Rutin | 4.7 ± 0.2 |
9 | 10.49 | 461 | C21H18O12 | 285 | Luteolin glucuronide | <LOQ |
10 | 10.65 | 593 | C27H30O15 | 285 | Kaempferol rutinoside isomer 1 | 0.52 ± 0.02 |
11 | 11.12 | 593 | C27H30O15 | 285 | Kaempferol rutinoside isomer 2 | 0.70 ± 0.06 |
12 | 11.46 | 537 | - | - | Unknown 5 | NQ |
13 | 11.56 | 561 | C30H26O11 | 289 | Catequin derivative | 3.4 ± 0.8 |
14 | 11.76 | 481 | C28H34O7 | - | Gedunin | NQ |
15 | 12.21 | 657 | C32H50O14 | - | Annoglabasin H | NQ |
16 | 13.55 | 641 | 607 | Hydroxyecdysone glycopyranoside | NQ | |
17 | 14.28 | 751 | 457 | Fargoside A | NQ | |
18 | 14.55 | 957 | - | - | Unknown 6 | NQ |
19 | 14.68 | 749 | C36H62O16 | 589 | Cleistrioside 5 | NQ |
20 | 14.88 | 680 | - | - | Unknown 7 | NQ |
21 | 15.35 | 335 | C20H32O4 | - | Dihydrokaurenoic acid isomer 1 | NQ |
22 | 15.66 | 335 | C20H32O4 | - | Dihydrokaurenoic acid isomer 2 | NQ |
TOTAL 22 ± 4 |
Methodology | CAS Extract | CAP Extract |
---|---|---|
TPC (mg GAE/g DE) | 30.4 ± 0.7 | 28.771 ± 0.008 |
FRAP (mmol Fe2+/g DE) | 0.292 ± 0.005 | 0.27 ± 0.01 |
TEAC (μmol TE/g DE) | 171 ± 2 | 130.0 ± 0.4 |
ORAC (mmol TE/g DE) | 0.368 ± 0.005 | 0.324 ± 0.009 |
HOCL (mg/L) 1 | 11 ± 2 | 28 ± 4 |
O2− (mg/L) 1 | N.A. | N.A. |
NO (mg/L) 1 | 1.5 ± 0.2 | 11.8 ± 0.3 |
AChE (mg/L) 2 | 26 ± 4 | 12 ± 1 |
Tyrosinase (mg/L) 1 | 157.1 * | 120 ± 10 |
XOD (mg/L) 1 | 7.2 ± 0.7 | 4.4 ± 0.4 |
Elastase (mg/L) 3 | 800 ± 60 | 410 ± 30 |
Hyaluronidase (mg/L) 1 | 170 ± 10 | 460 ± 20 |
Collagenase (mg/L) 1 | 660 ± 20 | 690 ± 30 |
Methodology | GA | EPI | PHY | PHE | ELA | KA |
---|---|---|---|---|---|---|
HOCl (mg/L) 1 | 3.8 ± 0.3 | 0.18 ± 0.01 | X | X | X | X |
O2 (mg/L) 1 | 50 ± 3 | 70 ± 5 | X | X | X | X |
NO (mg/L) 1 | 1.4 ± 0.3 | 0.87 ± 0.02 | X | X | X | X |
AChE (mg/L) 2 | X | X | 0.043 ± 0.004 | X | X | X |
Tyrosinase (% inh.) 3 | X | X | X | X | X | 49 ± 6 |
XOD (mg/L) 1 | X | 9 ± 1 | X | X | X | X |
Elastase (% inh.) 4 | X | X | X | X | 53 ± 5 | X |
Hyaluronidase (% inh.) 5 | <10% | <10% | X | X | X | X |
Collagenase (% inh.) 6 | X | X | X | 83 ± 2 | X | X |
Extracts | TRAP-6 (10 μM) | ADP (4 μM) | Collagen (1 μg/mL) | |||
---|---|---|---|---|---|---|
PA (%) | Inh. (%) | PA (%) | Inh. (%) | PA (%) | Inh. (%) | |
CAS | 21 ± 1 *** | 76 ± 1 | 67 ± 1 ** | 26 ± 1 | 24 ± 1 *** | 70 ± 2 |
CAP | 15 ± 1 *** | 82 ± 1 | 60 ± 1 *** | 34 ± 1 | 21 ± 1 *** | 75 ± 2 |
Ctrl (−) | 88 ± 1 | 0 | 94 ± 1 | 0 | 82 ± 3 | 0 |
Ctrl (+) | 27 ± 1 | 68 ± 1 | 29 ± 1 | 68 ± 1 | 25 ± 1 | 70 ± 2 |
Standard | LOD (µg/mL) | LOQ (µg/mL) | Calibration Range (mg/L) | Calibration Equations | R2 |
---|---|---|---|---|---|
Quinic acid (1) | 0.04 | 0.14 | (0.977–7.813) | y = 1099.56 x − 21.48 | 0.999 |
Quinic acid (2) | 0.04 | 0.14 | (3.906–31.25) | y = 2155.60 x − 5059.59 | 0.990 |
Verbascoside (1) | 0.09 | 0.29 | (0.488–31.25) | y = 2489.96 x + 688.35 | 0.996 |
Verbascoside (2) | 0.05 | 0.15 | (31.25–500) | y = 354.82 x + 89225.64 | 0.997 |
Catechin | 0.46 | 1.43 | (0.977–31.25) | y = 857.50 x − 748.37 | 0.999 |
Quercetin glucoside | 0.09 | 0.29 | (0.488–31.25) | y = 2820.85 x + 688.34 | 0.993 |
Myrecetin-3-glucoside | 0.03 | 0.10 | (31.25–250) | y = 19393.44 x + 114909.92 | 0.993 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-García, A.; Rodríguez, L.; Cádiz-Gurrea, M.d.l.L.; García-Villegas, A.; Fuentes, E.; Villegas-Aguilar, M.d.C.; Palomo, I.; Arráez-Román, D.; Segura-Carretero, A. Determination of the Bioactive Effect of Custard Apple By-Products by In Vitro Assays. Int. J. Mol. Sci. 2022, 23, 9238. https://doi.org/10.3390/ijms23169238
Rojas-García A, Rodríguez L, Cádiz-Gurrea MdlL, García-Villegas A, Fuentes E, Villegas-Aguilar MdC, Palomo I, Arráez-Román D, Segura-Carretero A. Determination of the Bioactive Effect of Custard Apple By-Products by In Vitro Assays. International Journal of Molecular Sciences. 2022; 23(16):9238. https://doi.org/10.3390/ijms23169238
Chicago/Turabian StyleRojas-García, Alejandro, Lyanne Rodríguez, María de la Luz Cádiz-Gurrea, Abigail García-Villegas, Eduardo Fuentes, María del Carmen Villegas-Aguilar, Iván Palomo, David Arráez-Román, and Antonio Segura-Carretero. 2022. "Determination of the Bioactive Effect of Custard Apple By-Products by In Vitro Assays" International Journal of Molecular Sciences 23, no. 16: 9238. https://doi.org/10.3390/ijms23169238
APA StyleRojas-García, A., Rodríguez, L., Cádiz-Gurrea, M. d. l. L., García-Villegas, A., Fuentes, E., Villegas-Aguilar, M. d. C., Palomo, I., Arráez-Román, D., & Segura-Carretero, A. (2022). Determination of the Bioactive Effect of Custard Apple By-Products by In Vitro Assays. International Journal of Molecular Sciences, 23(16), 9238. https://doi.org/10.3390/ijms23169238