Insulin Receptor-Related Receptor Regulates the Rate of Early Development in Xenopus laevis
Abstract
:1. Introduction
2. Results
2.1. Insrr Knockdown Elicits Retardation of Embryonic Development
2.2. Insrr Knockdown Causes a Shift of Gene Expression towards Genes Expressed in Earlier Stages of Development
2.3. The Effect of Alkaline Medium on Gene Expression in Wild-Type and Insrr Knockdown Embryos Is Different
3. Discussion
4. Material and Methods
4.1. Embryo Manipulations
4.2. Morpholino and mRNA Injection Experiments
4.3. RNA Purification and RNA-seq
4.4. Gene Expression Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Meyts, P. The Insulin Receptor: A Prototype for Dimeric, Allosteric Membrane Receptors? Trends Biochem. Sci. 2008, 33, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, A.G.; Zozulya, S.A.; Deyev, I.E.; Eladari, D. Insulin Receptor-Related Receptor as an Extracellular PH Sensor Involved in the Regulation of Acid-Base Balance. Biochim. Biophys. Acta—Proteins Proteom. 2013, 1834, 2170–2175. [Google Scholar] [CrossRef] [PubMed]
- Deev, I.E.; Vasilenko, K.P.; Kurmangaliev, E.Z.; Serova, O.V.; Popova, N.V.; Galagan, Y.S.; Burova, E.B.; Zozulya, S.A.; Nikol’skii, N.N.; Petrenko, A.G. Effect of Changes in Ambient PH on Phosphorylation of Cellular Proteins. Dokl. Biochem. Biophys. 2006, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Deyev, I.E.; Sohet, F.; Vassilenko, K.P.; Serova, O.V.; Popova, N.V.; Zozulya, S.A.; Burova, E.B.; Houillier, P.; Rzhevsky, D.I.; Berchatova, A.A.; et al. Insulin Receptor-Related Receptor as an Extracellular Alkali Sensor. Cell Metab. 2011, 13, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Deyev, I.E.; Popova, N.V.; Serova, O.V.; Zhenilo, S.V.; Regoli, M.; Bertelli, E.; Petrenko, A.G. Alkaline PH Induces IRR-Mediated Phosphorylation of IRS-1 and Actin Cytoskeleton Remodeling in a Pancreatic Beta Cell Line. Biochimie 2017, 138, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, T.; Kido, Y.; Nef, S.; Merenmies, J.; Parada, L.F.; Accili, D. Preserved Pancreatic Beta-Cell Development and Function in Mice Lacking the Insulin Receptor-Related Receptor. Mol. Cell Biol. 2001, 21, 5624–5630. [Google Scholar] [CrossRef]
- Deyev, I.E.; Rzhevsky, D.I.; Berchatova, A.A.; Serova, O.V.; Popova, N.V.; Murashev, A.N.; Petrenko, A.G. Deficient Response to Experimentally Induced Alkalosis in Mice with the Inactivated Insrr Gene. Acta Nat. 2011, 3, 114–117. [Google Scholar] [CrossRef]
- Weber, A.; Huesken, C.; Bergmann, E.; Kiess, W.; Christiansen, N.M.; Christiansen, H. Coexpression of Insulin Receptor-Related Receptor and Insulin-like Growth Factor 1 Receptor Correlates with Enhanced Apoptosis and Dedifferentiation in Human Neuroblastomas. Clin. Cancer Res. 2003, 9, 5683–5692. [Google Scholar]
- Ozaki, K. Insulin Receptor-Related Receptor in Rat Islets of Langerhans. Eur. J. Endocrinol. 1998, 139, 244–247. [Google Scholar] [CrossRef]
- Reinhardt, R.R.; Chin, E.; Zhang, B.; Roth, R.A.; Bondy, C.A. Selective Coexpression of Insulin Receptor-Related Receptor (IRR) and TRK in NGF-Sensitive Neurons. J. Neurosci. 1994, 14, 4674–4683. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Tsuji, N.; Ozaki, K.; Ohta, M.; Itoh, N. Insulin Receptor-Related Receptor Messenger Ribonucleic Acid in the Stomach Is Focally Expressed in the Enterochromaffin-like Cells. Endocrinology 1995, 136, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, N.; Tsujimoto, K.; Takada, N.; Ozaki, K.; Ohta, M.; Itoh, N. Expression of Insulin Receptor-Related Receptor in the Rat Brain Examined by in Situ Hybridization and Immunohistochemistry. Mol. Brain Res. 1996, 41, 250–258. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Tsuji, N.; Ozaki, K.; Minami, M.; Satoh, M.; Itoh, N. Expression of Insulin Receptor-Related Receptor RnRNA in the Rat Brain Is Highly Restricted to Forebrain Cholinergic Neurons. Neurosci. Lett. 1995, 188, 105–108. [Google Scholar] [CrossRef]
- Serova, O.V.; Gantsova, E.A.; Deyev, I.E.; Petrenko, A.G. The Value of PH Sensors in Maintaining Homeostasis of the Nervous System. Russ. J. Bioorg. Chem. 2020, 46, 506–519. [Google Scholar] [CrossRef]
- Erickson, R.P.; Strnatka, D. Insulin Receptor-Related (Irr) Is Expressed in Pre-Implantation Embryos: A Possible Relationship to “Growth Factor Y” and Sex Determination. Mol. Reprod. Dev. 2011, 78, 552. [Google Scholar] [CrossRef] [PubMed]
- Meijles, D.N.; Fuller, S.J.; Cull, J.J.; Alharbi, H.O.; Cooper, S.T.E.; Sugden, P.H.; Clerk, A. The Insulin Receptor Family and Protein Kinase B (Akt) Are Activated in the Heart by Alkaline PH and A1-Adrenergic Receptors. Biochem. J. 2021, 478, 2059. [Google Scholar] [CrossRef]
- Gantsova, E.A.; Deyev, I.E.; Petrenko, A.G.; Serova, O.V. Analysis of the Development of Insrr Knockout Mouse Preimplantation Embryos. Russ. J. Dev. Biol. 2022, 53, 192–197. [Google Scholar] [CrossRef]
- Hernández-Sánchez, C.; Mansilla, A.; de Pablo, F.; Zardoya, R. Evolution of the Insulin Receptor Family and Receptor Isoform Expression in Vertebrates. Mol. Biol. Evol. 2008, 25, 1043–1053. [Google Scholar] [CrossRef]
- Session, A.M.; Uno, Y.; Kwon, T.; Chapman, J.A.; Toyoda, A.; Takahashi, S.; Fukui, A.; Hikosaka, A.; Suzuki, A.; Kondo, M.; et al. Genome Evolution in the Allotetraploid Frog Xenopus Laevis. Nature 2016, 538, 336–343. [Google Scholar] [CrossRef]
- Yanai, I.; Peshkin, L.; Jorgensen, P.; Kirschner, M.W. Mapping Gene Expression in Two Xenopus Species: Evolutionary Constraints and Developmental Flexibility. Dev. Cell 2011, 20, 483–496. [Google Scholar] [CrossRef]
- Renterıa, M.E.; Gandhi, N.S.; Vinuesa, P.; Helmerhorst, E.; Mancera, R.L. A Comparative Structural Bioinformatics Analysis of the Insulin Receptor Family Ectodomain Based on Phylogenetic Information. PLoS ONE 2008, 3, e3667. [Google Scholar] [CrossRef] [PubMed]
- Ermakova, G.V.; Solovieva, E.A.; Martynova, N.Y.; Zaraisky, A.G. The Homeodomain Factor Xanf Represses Expression of Genes in the Presumptive Rostral Forebrain That Specify More Caudal Brain Regions. Dev. Biol. 2007, 307, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Zubkov, E.A.; Morozova, A.Y.; Chachina, N.A.; Shayahmetova, D.M.; Mozhaev, A.A.; Deyev, I.E.; Chekhonin, V.P.; Petrenko, A.G. Behavioral Phenotype of Mice with Alkali Sensor IRR Gene Knockout. Zhurnal Vyss. Nervn. Deyatelnosti Im. I.P. Pavlov. 2017, 67, 106–112. [Google Scholar]
- Boutilier, R.G.; Glass, M.L.; Heisler, N. Blood Gases, and Extracellular/Intracellular Acid-Base Status as a Function of Temperature in the Anuran Amphibians Xenopus Laevis and Bufo Marinus. J. Exp. Biol. 1987, 130, 13–25. [Google Scholar] [CrossRef]
- Howell, B.J.; Baumgardner, F.W.; Bondi, K.; Rahn, H. Acid-Base Balance in Cold-Blooded Vertebrates as a Function of Body Temperature. Am. J. Physiol. 1970, 218, 600–606. [Google Scholar] [CrossRef]
- Wijethunga, U.; Greenlees, M.; Shine, R. The Acid Test: PH Tolerance of the Eggs and Larvae of the Invasive Cane Toad (Rhinella Marina) in Southeastern Australia. Physiol. Biochem. Zool. 2015, 88, 433–443. [Google Scholar] [CrossRef]
- Rossi, A.; Kontarakis, Z.; Gerri, C.; Nolte, H.; Hölper, S.; Krüger, M.; Stainier, D.Y.R. Genetic Compensation Induced by Deleterious Mutations but Not Gene Knockdowns. Nature 2015, 524, 230–233. [Google Scholar] [CrossRef]
- Peng, J. Gene Redundancy and Gene Compensation: An Updated View. J. Genet. Genom. 2019, 46, 329–333. [Google Scholar] [CrossRef]
- Shingleton, A.W.; Das, J.; Vinicius, L.; Stern, D.L. The Temporal Requirements for Insulin Signaling during Development in Drosophila. PLoS Biol. 2005, 3, e289. [Google Scholar] [CrossRef]
- Toyoshima, Y.; Monson, C.; Duan, C.; Wu, Y.; Gao, C.; Yakar, S.; Sadler, K.C.; LeRoith, D. The Role of Insulin Receptor Signaling in Zebrafish Embryogenesis. Endocrinology 2008, 149, 5996–6005. [Google Scholar] [CrossRef]
- Dimitrov, S.; Almouzni, G.; Dasso, M.; Wolffe, A.P. Chromatin Transitions during Early Xenopus Embryogenesis: Changes in Histone H4 Acetylation and in Linker Histone Type. Dev. Biol. 1993, 160, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Almouzni, G.; Khochbin, S.; Dimitrov, S.; Wolffe, A.P. Histone Acetylation Influences Both Gene Expression and Development of Xenopus Laevis. Dev. Biol. 1994, 165, 654–669. [Google Scholar] [CrossRef] [PubMed]
- Shvedunova, M.; Akhtar, A. Modulation of Cellular Processes by Histone and Non-Histone Protein Acetylation. Nat. Rev. Mol. Cell Biol. 2022, 23, 329–349. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, M.; Blythe, S.A.; Tobias, J.W.; Zhang, K.; Yang, J.; Klein, P.S. Chromatin Accessibility and Histone Acetylation in the Regulation of Competence in Early Development. Dev. Biol. 2020, 462, 20–35. [Google Scholar] [CrossRef]
- Legube, G.; Trouche, D. Regulating Histone Acetyltransferases and Deacetylases. EMBO Rep. 2003, 4, 944–947. [Google Scholar] [CrossRef] [PubMed]
- Davie, J.R. Inhibition of Histone Deacetylase Activity by Butyrate. J. Nutr. 2003, 133, 2485S–2493S. [Google Scholar] [CrossRef]
- Tsai, S.C.; Seto, E. Regulation of Histone Deacetylase 2 by Protein Kinase CK2. J. Biol. Chem. 2002, 277, 31826–31833. [Google Scholar] [CrossRef] [PubMed]
- Pluemsampant, S.; Safronova, O.S.; Nakahama, K.I.; Morita, I. Protein Kinase CK2 Is a Key Activator of Histone Deacetylase in Hypoxia-Associated Tumors. Int. J. Cancer 2008, 122, 333–341. [Google Scholar] [CrossRef]
- Donella-Deana, A.; Cesaro, L.; Sarno, S.; Ruzzene, M.; Brunati, A.M.; Marin, O.; Vilk, G.; Doherty-Kirby, A.; Lajoie, G.; Litchfield, D.W.; et al. Tyrosine Phosphorylation of Protein Kinase CK2 by Src-Related Tyrosine Kinases Correlates with Increased Catalytic Activity. Biochem. J. 2003, 372, 841–849. [Google Scholar] [CrossRef]
- Morton, M.J.; O’Connell, A.D.; Sivaprasadarao, A.; Hunter, M. Determinants of PH Sensing in the Two-Pore Domain K+ Channels TASK-1 and -2. Pflug. Arch. Eur. J. Physiol. 2003, 445, 577–583. [Google Scholar] [CrossRef]
- Serova, O.V.; Orsa, A.N.; Chachina, N.A.; Petrenko, A.G.; Deyev, I.E. C-Met Receptor Can Be Activated by Extracellular Alkaline Medium. J. Recept. Signal Transduct. 2019, 39, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Serova, O.V.; Chachina, N.A.; Gantsova, E.A.; Popova, N.V.; Petrenko, A.G.; Deyev, I.E. Autophosphorylation of Orphan Receptor ERBB2 Can Be Induced by Extracellular Treatment with Mildly Alkaline Media. Int. J. Mol. Sci. 2019, 20, 1515. [Google Scholar] [CrossRef] [PubMed]
- Orlov, E.E.; Nesterenko, A.M.; Korotkova, D.D.; Parshina, E.A.; Martynova, N.Y.; Zaraisky, A.G. Targeted Search for Scaling Genes Reveals Matrixmetalloproteinase 3 as a Scaler of the Dorsal-Ventral Pattern in Xenopus Laevis Embryos. Dev. Cell 2022, 57, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Gingeras, T.R. Mapping RNA-Seq Reads with STAR. Curr. Protoc. Bioinform. 2015, 51, 11.14.1–11.14.19. [Google Scholar] [CrossRef]
- Anders, S.; Theodor Pyl, P.; Huber, W. HTSeq—a Python Framework to Work with High-Throughput Sequencing Data. Bioinformatics 2015, 31, 116–169. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics Enrichment Tools: Paths toward the Comprehensive Functional Analysis of Large Gene Lists. Available online: https://pubmed.ncbi.nlm.nih.gov/19033363/ (accessed on 17 June 2020).
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
Gene | Fold Change insrr MO 7.2/control MO 7.2 | Fold Change insrr MO 8.5/insrr MO 7.2 | |
---|---|---|---|
mylpf.L | 0.15 | 2.95 | Myosin light chain, phosphorylatable, fast skeletal muscle L homeolog |
act3.L | 0.15 | 1.89 | Actin alpha 4 L homeolog |
act2 | 0.20 | 2.32 | C-C motif chemokine ligand 4 |
myl1.S | 0.25 | 1.93 | Myosin light chain 1 S homeolog |
col2a1.L | 0.26 | 2.07 | Collagen, type II, alpha 1 L homeolog |
des.1.L | 0.26 | 2.11 | Desmin, gene 1 L homeolog |
ankrd37.L | 0.29 | 1.12 | Ankyrin repeat domain 37 L homeolog |
fbxl22.S | 0.30 | 1.94 | F-box and leucine-rich repeat protein 22 S homeolog |
tnnc2.L | 0.30 | 1.68 | Troponin C2, fast skeletal type L homeolog |
pax6.S | 0.30 | 2.43 | Paired box 6 S homeolog |
des.1.S | 0.30 | 1.95 | Desmin, gene 1 S homeolog |
smyd1.L | 0.31 | 2.21 | SET and MYND domain containing 1 L homeolog |
tnnt3.L | 0.32 | 2.26 | Troponin T type 3, fast skeletal type L homeolog |
nr2f5.S | 0.32 | 1.87 | Nuclear receptor subfamily 2, group F, member 5 S homeolog |
thbs4.S | 0.32 | 1.85 | Thrombospondin 4 S homeolog |
ccna1.L | 1.99 | 0.48 | Cyclin A1 L homeolog |
cdc6.L | 1.99 | 1.11 | Cell division cycle 6 L homeolog |
neu1.L | 2.00 | 0.56 | Neuraminidase 1 L homeolog |
cdk5r2.S | 2.03 | 0.57 | Cyclin-dependent kinase 5, regulatory subunit 2 (p39) S homeolog |
mapre3.S | 2.05 | 1.01 | Microtubule associated protein RP/EB family member 3 S homeolog |
cer1.S | 2.11 | 0.54 | Cerberus 1, DAN family BMP antagonist S homeolog |
patl2.L | 2.18 | 0.86 | Protein associated with topoisomerase II homolog 2 L homeolog |
ccna2.L | 2.18 | 0.85 | Cyclin A2 L homeolog |
xpo6.S | 2.19 | 0.67 | Exportin 6 S homeolog |
tapt1.S | 2.25 | 0.67 | Transmembrane anterior posterior transformation 1 S homeolog |
eomes.S | 2.42 | 0.36 | Eomesodermin S homeolog |
zpd.L | 2.51 | 1.05 | Zona pellucid protein D L homeolog |
frzb.S | 2.71 | 0.39 | Frizzled-related protein S homeolog |
fitm2.L | 2.77 | 0.94 | Fat storage-inducing transmembrane protein 2 L homeolog |
larp6-like.1.S | 3.71 | 0.97 | Acheron S homeolog |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotkova, D.D.; Gantsova, E.A.; Goryashchenko, A.S.; Eroshkin, F.M.; Serova, O.V.; Sokolov, A.S.; Sharko, F.; Zhenilo, S.V.; Martynova, N.Y.; Petrenko, A.G.; et al. Insulin Receptor-Related Receptor Regulates the Rate of Early Development in Xenopus laevis. Int. J. Mol. Sci. 2022, 23, 9250. https://doi.org/10.3390/ijms23169250
Korotkova DD, Gantsova EA, Goryashchenko AS, Eroshkin FM, Serova OV, Sokolov AS, Sharko F, Zhenilo SV, Martynova NY, Petrenko AG, et al. Insulin Receptor-Related Receptor Regulates the Rate of Early Development in Xenopus laevis. International Journal of Molecular Sciences. 2022; 23(16):9250. https://doi.org/10.3390/ijms23169250
Chicago/Turabian StyleKorotkova, Daria D., Elena A. Gantsova, Alexander S. Goryashchenko, Fedor M. Eroshkin, Oxana V. Serova, Alexey S. Sokolov, Fedor Sharko, Svetlana V. Zhenilo, Natalia Y. Martynova, Alexander G. Petrenko, and et al. 2022. "Insulin Receptor-Related Receptor Regulates the Rate of Early Development in Xenopus laevis" International Journal of Molecular Sciences 23, no. 16: 9250. https://doi.org/10.3390/ijms23169250
APA StyleKorotkova, D. D., Gantsova, E. A., Goryashchenko, A. S., Eroshkin, F. M., Serova, O. V., Sokolov, A. S., Sharko, F., Zhenilo, S. V., Martynova, N. Y., Petrenko, A. G., Zaraisky, A. G., & Deyev, I. E. (2022). Insulin Receptor-Related Receptor Regulates the Rate of Early Development in Xenopus laevis. International Journal of Molecular Sciences, 23(16), 9250. https://doi.org/10.3390/ijms23169250