Dynamics of the Glycogen β-Particle Number in Rat Hepatocytes during Glucose Refeeding
Abstract
:1. Introduction
2. Results
2.1. The Concentration of Glycogen in the Liver and the Content of Glycogen in Hepatocytes
2.2. The Absolute Amount of Glycogen in Individual Hepatocytes
2.3. Characterization of β-Particles
- (1)
- Detection of cells with the lowest glycogen content in the population of hepatocytes;
- (2)
- The assumption that glucose residues on the outer tiers of β-particles are associated with key enzyme proteins directly involved in glycogenesis and glycogenolysis, and residues located on the inner tiers of β-particles are free from proteins;
- (3)
- The assumption that glycogen synthase, glycogen phosphorylase and the debranching enzyme make up the majority of the proteins of the β-particle and, in accordance with their diameter, are associated with 7, 9 and 9 glucose residues.
2.4. Absolute Number of β-Particles in Hepatocytes
3. Discussion
4. Materials and Methods
4.1. Animals and Procedures
4.2. Determination of the Transition Coefficient from the Wet Weight of the Liver to the Dry (f)
4.3. Tissue Preparation
4.4. Histological Analysis
4.5. Isolated Hepatocyte Smears on Object Slides
4.6. Determination of the Dry Weight of Hepatocytes (DWH)
4.7. Calculation of The Hepatocyte Number in The Liver of Rats
4.8. Determination of Glycogen Concentration in Rat Liver
4.9. Determination of Glycogen Content in Hepatocytes
4.10. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Nisbet, E.G.; Grassineau, N.V.; Howe, C.J.; Abell, P.I.; Regelous, M.; Nisbet, R.E.R. The age of Rubisco: The evolution of oxygenic photosynthesis. Geobiology 2007, 5, 331–335. [Google Scholar] [CrossRef]
- Blankenship, R.E. Early evolution of photosynthesis. Plant Physiol. 2010, 154, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Hohmann-Marriott, M.F.; Blankenship, R.E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 2011, 62, 515–548. [Google Scholar] [CrossRef] [PubMed]
- Ball, S.; Colleoni, C.; Cenci, U.; Raj, J.N.; Tirtiaux, C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J. Exp. Bot. 2011, 62, 1775–1801. [Google Scholar] [CrossRef] [PubMed]
- Devos, P.; Baudhuin, P.; Van Hoof, F.; Hers, H.G. The alpha particulate liver glycogen. A morphometric approach to the kinetics of its synthesis and degradation. Biochem. J. 1983, 209, 159–165. [Google Scholar] [CrossRef]
- Sullivan, M.A.; Vilaplana, F.; Cave, R.A.; Stapleton, D.; Gray-Weale, A.A.; Gilbert, R.G. Nature of α and β particles in glycogen using molecular size distributions. Biomacromolecules 2010, 11, 1094–1100. [Google Scholar] [CrossRef]
- Melendez-Hevia, E.; Waddell, T.G.; Raposo, R.R.; Lupianez, J.A. Evolution of metabolism: Optimization of glycogen structure. J. Biol. Systems 1995, 3, 177–186. [Google Scholar] [CrossRef]
- Melendez, R.; Melendez-Hevia, E.; Canela, E.I. The fractal structure of glycogen: A clever solution to optimize cell metabolism. Biophys. J. 1999, 77, 1327–1332. [Google Scholar] [CrossRef]
- Gunja-Smith, Z.; Marshall, J.J.; Mercier, C.; Smith, E.E.; Whelan, W.J. A revision of the Meyer-Bernfeld model of glycogen and amylopectin. FEBS Lett. 1970, 12, 101–104. [Google Scholar] [CrossRef]
- Goldsmith, E.; Sprang, S.; Fletterick, R. Structure of maltoheptaose by difference Fourier methods and a model for glycogen. J. Mol. Biol. 1982, 156, 411–427. [Google Scholar] [CrossRef]
- Melendez-Hevia, E.; Waddell, T.G.; Shelton, E.D. Optimization of molecular design in the evolution of metabolism: The glycogen molecule. Biochem. J. 1993, 295, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Melendez, R.; Melendez-Hevia, E.; Cascante, M. How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building. J. Mol. Evol. 1997, 45, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, D.; Nelson, C.; Parsawar, K.; McClain, D.; Gilbert-Wilson, R.; Barker, E.; Rudd, B.; Brown, K.; Hendrix, W.; O’Donnell, P.; et al. Analysis of hepatic glycogen-associated proteins. Proteomics 2010, 10, 2320–2329. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.M.; Xu, H.; Latchman, H.; Larkins, N.T.; Gooley, P.R.; Stapleton, D.I. Single fiber analyses of glycogen-related proteins reveal their differential association with glycogen in rat skeletal muscle. Am. J. Physiol. Cell Physiol. 2012, 303, C1146–C1155. [Google Scholar] [CrossRef]
- Roach, P.J.; Depaoli-Roach, A.A.; Hurley, T.D.; Tagliabracci, V.S. Glycogen and its metabolism: Some new development and old themes. Biochem. J. 2012, 441, 763–787. [Google Scholar] [CrossRef]
- Prats, C.; Graham, T.E.; Shearer, J. The dynamic life of the glycogen granule. J. Biol. Chem. 2018, 293, 7089–7098. [Google Scholar] [CrossRef]
- Bezborodkina, N.N.; Chestnova, A.Y.; Vorobev, M.L.; Kudryavtsev, B.N. Spatial structure of glycogen molecules in cells. Biochemistry 2018, 83, 467–482. [Google Scholar] [CrossRef]
- Bezborodkina, N.N.; Okovityi, S.V.; Kudryavtsev, B.N. Postprandial glycogen content is increased in the hepatocytes of human and rat cirrhotic liver. Cells 2021, 10, 976. [Google Scholar] [CrossRef]
- Brewer, K.M.; Gentry, M.S. Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future. In Brain Glycogen Metabolism. Advances in Neurobiology; DiNuzzo, M., Schousboe, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 23, pp. 17–81. [Google Scholar]
- Shearer, J.; Graham, T.E. Novel aspects of skeletal muscle glycogen and its regulation during rest and exercise. Exerc. Sport Sci. Rev. 2004, 32, 120–126. [Google Scholar] [CrossRef]
- Claassen, V. Neglected Factors in Pharmacology and Neuroscience Research; Elsevier: Amsterdam, The Netherlands, 1994; pp. 290–320. [Google Scholar]
- Kruszynska, Y.T. Carbohydrate Metabolism. In Oxford Textbook of Clinical Hepatology; Bircher, J., Benhamou, J.-P., McIntyre, N., Rizzetto, M., Rodés, J., Eds.; Oxford University Press: Oxford, UK, 1999; Volume 1, pp. 257–286. [Google Scholar]
- Bois-Joyeux, B.; Chanez, M.; Peret, J. Age-dependent glycolysis and gluconeogenesis enzyme activities in starved-refed rats. Diabete Metab. 1990, 16, 504–512. [Google Scholar]
- Jungermann, K. Role of intralobular compartmentation in hepatic metabolism. Diabete Metab. 1992, 18, 81–86. [Google Scholar] [PubMed]
- Bezborodkina, N.N.; Okovity, S.V.; Chestnova, A.; Yu, B.N. Kudryavtsev. Hepatocytes of cirrhotic rat liver accumulate glycogen more slowly then normal one. Hepatol. Int. 2013, 7, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Freminet, A.; Dallevet, G.; Guillet-Deniau, I.; Minaire, Y. Comparison of glycogen store in two strains of rat and guinea-pig under fed and fasted conditions. Comp. Biochem. Physiol. 1984, 79, 53–59. [Google Scholar] [CrossRef]
- Holness, M.J.; French, T.J.; Sugden, M.C. Hepatic glycogen synthesis on carbohydrate re-feeding after Starvation. Biochem. J. 1986, 235, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Minassian, C.; Ajzannay, A.; Riou, J.P.; Mithieux, G. Investigation of the mechanism of glycogen rebound in the liver of 72 h-fasted rats. J. Biol. Chem. 1994, 269, 16585–16589. [Google Scholar] [CrossRef]
- Fernandez-Novell, J.M.; Roca, A.; Bellido, D.; Vilaro, S.; Guinovart, J.J. Transocation and aggregation of hepatic glycogen synthase during the fast-to refed transition. Eur. J. Biochem. 1996, 238, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, E.A.; Start, C. Regulation in Metabolism; John Wiley & Sons: London, UK; New York, NY, USA; Sydney, Australia; Toronto, ON, Canada, 1973; 349p. [Google Scholar]
- Niewoehner, C.B.; Gilboe, D.P.; Nuttall, F.Q. Metabolic effects of oral glucose in the liver of fasted rats. Am. J. Physiol. 1984, 246, E89–E94. [Google Scholar] [CrossRef] [PubMed]
- Carmona, A.; Nishina, P.M.; Avery, E.H.; Freedland, R.A. Time course changes in glycogen accretion, 6-Phosphogluconate, Fructose-2,6-Biphosphate, and lipogenesis upon refeeding a high sucrose diet tostarved rats. Int. J. Biochem. 1991, 23, 455–460. [Google Scholar] [CrossRef]
- Minassian, C.; Montano, S.; Mithieux, G. Regulatory role of glucose-6- phosphatase in the repletion of the liver glycogen during refeeding in fasted rats. Biochim. Biophys. Acta. 1999, 1452, 172–178. [Google Scholar] [CrossRef]
- Ruderman, N.B.; Aoki, T.T.; Cahill, G.F. Gluconeogenesis and Its Disorders in Man. In Gluconeogenesis: Its Regulation in Mammalian Species; Hanson, R.W., Mehlman, M.A., Lardy, H.A., Eds.; John Wiley and Sons: New York, NY, USA, 1976; pp. 515–532. [Google Scholar]
- Ercan, N.; Gannon, M.C.; Nuttall, F.Q. Liver glycogen synthase, phosphorylase and the glycogen concentration in rats given a glucose load orally: A 24-h study. Archiv Biochem. Biophys. 1994, 315, 35–40. [Google Scholar] [CrossRef]
- Beneke, G. Application of Interference Microscopy to Biological Material. In Introduction to Quantitative Cytochemistry; Wied, G.L., Ed.; Academic Press: New York, NY, USA, 1966; pp. 63–92. [Google Scholar]
- Brodsky, W.Y. Trophism of Cell; Science: Moscow, Russia, 1966; 355p. [Google Scholar]
- Princen, J.M.; Mol-Backx, G.P.; Yap, S.H. Restoration effects of glucose refeeding on reduced synthesis of albumin and total protein and on disaggregated polyribosomes in liver of starved rats: Evidence of a post-transcriptional control mechanism. Ann. Nutr. Metab. 1983, 27, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Bezborodkina, N.N.; Chestnova, A.Y.; Vorobev, M.L.; Kudryavtsev, B.N. Glycogen content in hepatocytes is related with their size in normal rat liver but not in cirrhotic one. Cytometry A 2016, 89, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Wanson, J.C.; Drochmans, P. Rabbit skeletal muscle glycogen. A morphological and biochemical study of glycogen β-particles isolated by the precipitation-centrifugation method. J. Cell Biol. 1968, 38, 130–150. [Google Scholar] [CrossRef]
- Elsner, P.; Quistorff, B.; Hansen, G.H.; Grunnet, N. Partly ordered synthesis and degradation of glycogen in cultured rat myotubes. J. Biol. Chem. 2002, 277, 4831–4838. [Google Scholar] [CrossRef] [PubMed]
- Marchand, I.; Chorneyko, K.; Tarnopolsky, M.; Hamilton, S.; Shearer, J.; Potvin, J.; Graham, T.E. Quantification of subcellular glycogen in resting human muscle: Granule size, number, and location. J. Appl. Physiol. 2002, 93, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; Yuan, Z.; Hill, A.K.; Wilson, R.J. The regulation of muscle glycogen: The granule and its proteins. Acta Physiol. 2010, 199, 489–498. [Google Scholar] [CrossRef]
- Obel, L.F.; Muller, M.S.; Walls, A.B.; Sickmann, H.M.; Bak, L.K.; Waagepetersen, H.S.; Schousboe, A. Brain glycogen-new perspective on its metabolic function and regulation at the subcellular level. Front. Neuroenergetics 2012, 4, 3. [Google Scholar] [CrossRef]
- Marchand, I.; Tarnopolsky, M.; Adamo, K.B.; Bourgeois, J.M.; Chorneyko, K.; Graham, T.E. Quantitative assessment of human muscle glycogen granules size and number in subcellular locations during recovery from prolonged exercise. J. Physiol. 2007, 580, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Rybicka, K.K. Glycosomes—The organelles of glycogen metabolism. Tissue Cell 1996, 28, 253–265. [Google Scholar] [CrossRef]
- Zingone, A.; Hiraiwa, H.; Pan, C.J.; Lin, B.; Chen, H.; Ward, J.M.; Chou, J.Y. Correction of glycogen storage disease type 1a in a mouse model by gene therapy. J. Biol. Chem. 2000, 275, 828–832. [Google Scholar] [CrossRef]
- Beaty, R.M.; Jackson, M.; Peterson, D.; Bird, A.; Brown, T.; Benjamin, D.K., Jr.; Juopperi, T.; Kishnani, P.; Boney, A.; Chen, Y.T.; et al. Delivery of glucose-6-phosphatase in a canine model for glycogen storage disease, type Ia, with adeno-associated virus (AAV) vectors. Gene Ther. 2002, 9, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
Time, min | Dry Weight of Hepatocyte, pg | Glycogen Content Per Hepatocyte, pg |
---|---|---|
0 | 621 ± 2 1 | 7.28 ± 0.17 |
10 | 693.2 ± 3.1 | 21.09 ± 0.62 |
20 | 744.2 ± 3.2 | 44.54 ± 1.70 |
30 | 778.7 ± 3.2 | 76.49 ± 4.08 |
45 | 800.4 ± 3.2 | 54.54 ± 3.51 |
60 | 806.3 ± 3.3 | 80.42 ± 4.40 |
75 | 808.3 ± 3.3 | 103.87 ± 3.90 |
90 | 809.8 ± 3.3 | 89.52 ± 3.51 |
120 | 810.4 ± 3.3 | 80.58 ± 1.77 |
Time, min | Number of Glucose Residues in β-Particle | Mass of β-Particle, 1 pg × 10−8 | Diameter of β-Particle, nm | Volume of β-Particle, nm3 |
---|---|---|---|---|
0 | 172 ± 4 | 4.63 ± 0.12 | 10.8 | 659.3 |
10 | 357 ± 10 | 9.61 ± 0.30 | 14.6 | 1628.8 |
20 | 547 ± 19 | 14.72 ± 0.57 | 16.7 | 2437.6 |
30 | 751 ± 22 | 20.21 ± 0.66 | 18.6 | 3367.8 |
45 | 342 ± 29 | 9.21 ± 0.87 | 14.3 | 1530.5 |
60 | 778 ± 59 | 20.94 ± 1.77 | 18.8 | 3477.7 |
75 | 1377 ± 75 | 37.06 ± 2.25 | 21.8 | 5422.3 |
90 | 1019 ± 43 | 27.42 ± 1.32 | 20.1 | 4250.1 |
120 | 739 ± 23 | 19.89 ± 0.69 | 18.5 | 3313.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezborodkina, N.N.; Stepanov, A.V.; Vorobev, M.L.; Stein, G.I.; Okovityi, S.V.; Kudryavtsev, B.N. Dynamics of the Glycogen β-Particle Number in Rat Hepatocytes during Glucose Refeeding. Int. J. Mol. Sci. 2022, 23, 9263. https://doi.org/10.3390/ijms23169263
Bezborodkina NN, Stepanov AV, Vorobev ML, Stein GI, Okovityi SV, Kudryavtsev BN. Dynamics of the Glycogen β-Particle Number in Rat Hepatocytes during Glucose Refeeding. International Journal of Molecular Sciences. 2022; 23(16):9263. https://doi.org/10.3390/ijms23169263
Chicago/Turabian StyleBezborodkina, Natalia N., Andrei V. Stepanov, Mikhail L. Vorobev, Grigory I. Stein, Sergey V. Okovityi, and Boris N. Kudryavtsev. 2022. "Dynamics of the Glycogen β-Particle Number in Rat Hepatocytes during Glucose Refeeding" International Journal of Molecular Sciences 23, no. 16: 9263. https://doi.org/10.3390/ijms23169263
APA StyleBezborodkina, N. N., Stepanov, A. V., Vorobev, M. L., Stein, G. I., Okovityi, S. V., & Kudryavtsev, B. N. (2022). Dynamics of the Glycogen β-Particle Number in Rat Hepatocytes during Glucose Refeeding. International Journal of Molecular Sciences, 23(16), 9263. https://doi.org/10.3390/ijms23169263