TMEM106B Acts as a Modifier of Cognitive and Motor Functions in Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Participants and Clinical Assessment
4.2. SNP Genotyping
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vieira, R.T. Epidemiology of Early-Onset Dementia: A Review of the Literature. Clin. Pract. Epidemiol. Ment. Health 2013, 9, 88–95. [Google Scholar] [CrossRef]
- Bang, J.; Spina, S.; Miller, B.L. Frontotemporal Dementia. Lancet 2015, 386, 1672–1682. [Google Scholar] [CrossRef]
- Josephs, K.A.; Holton, J.L.; Rossor, M.N.; Godbolt, A.K.; Ozawa, T.; Strand, K.; Khan, N.; Al-Sarraj, S.; Revesz, T. Frontotemporal Lobar Degeneration and Ubiquitin Immunohistochemistry. Neuropathol. Appl. Neurobiol. 2004, 30, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.K.; Diehl, J.; Mendez, M.F.; Neuhaus, J.; Shapira, J.S.; Forman, M.; Chute, D.J.; Roberson, E.D.; Pace-Savitsky, C.; Neumann, M.; et al. Frontotemporal Lobar Degeneration. Arch. Neurol. 2005, 62, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Hasegawa, M.; Akiyama, H.; Ikeda, K.; Nonaka, T.; Mori, H.; Mann, D.; Tsuchiya, K.; Yoshida, M.; Hashizume, Y.; et al. TDP-43 Is a Component of Ubiquitin-Positive Tau-Negative Inclusions in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Biochem. Biophys. Res. Commun. 2006, 351, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M.; Rademakers, R.; Roeber, S.; Baker, M.; Kretzschmar, H.A.; Mackenzie, I.R.A. A New Subtype of Frontotemporal Lobar Degeneration with FUS Pathology. Brain 2009, 132, 2922–2931. [Google Scholar] [CrossRef] [PubMed]
- Hutton, M.; Lendon, C.L.; Rizzu, P.; Baker, M.; Froelich, S.; Houlden, H.; Pickering-Brown, S.; Chakraverty, S.; Isaacs, A.; Grover, A.; et al. Association of Missense and 5’-Splice-Site Mutations in Tau with the Inherited Dementia FTDP-17. Nature 1998, 393, 702–705. [Google Scholar] [CrossRef]
- DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Flynn, H.; Adamson, J.; et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011, 72, 245–256. [Google Scholar] [CrossRef]
- Baker, M.; Mackenzie, I.R.; Pickering-Brown, S.M.; Gass, J.; Rademakers, R.; Lindholm, C.; Snowden, J.; Adamson, J.; Sadovnick, A.D.; Rollinson, S.; et al. Mutations in Progranulin Cause Tau-Negative Frontotemporal Dementia Linked to Chromosome 17. Nature 2006, 442, 916–919. [Google Scholar] [CrossRef]
- Cruts, M.; Gijselinck, I.; van der Zee, J.; Engelborghs, S.; Wils, H.; Pirici, D.; Rademakers, R.; Vandenberghe, R.; Dermaut, B.; Martin, J.-J.; et al. Null Mutations in Progranulin Cause Ubiquitin-Positive Frontotemporal Dementia Linked to Chromosome 17q21. Nature 2006, 442, 920–924. [Google Scholar] [CrossRef]
- Snowden, J.S.; Pickering-Brown, S.M.; Mackenzie, I.R.; Richardson, A.M.T.; Varma, A.; Neary, D.; Mann, D.M.A. Progranulin Gene Mutations Associated with Frontotemporal Dementia and Progressive Non-Fluent Aphasia. Brain 2006, 129, 3091–3102. [Google Scholar] [CrossRef] [PubMed]
- Freischmidt, A.; Wieland, T.; Richter, B.; Ruf, W.; Schaeffer, V.; Müller, K.; Marroquin, N.; Nordin, F.; Hübers, A.; Weydt, P.; et al. Haploinsufficiency of TBK1 Causes Familial ALS and Fronto-Temporal Dementia. Nat. Neurosci. 2015, 18, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Watts, G.D.J.; Wymer, J.; Kovach, M.J.; Mehta, S.G.; Mumm, S.; Darvish, D.; Pestronk, A.; Whyte, M.P.; Kimonis, V.E. Inclusion Body Myopathy Associated with Paget Disease of Bone and Frontotemporal Dementia Is Caused by Mutant Valosin-Containing Protein. Nat. Genet. 2004, 36, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Skibinski, G.; Parkinson, N.J.; Brown, J.M.; Chakrabarti, L.; Lloyd, S.L.; Hummerich, H.; Nielsen, J.E.; Hodges, J.R.; Spillantini, M.G.; Thusgaard, T.; et al. Mutations in the Endosomal ESCRTIII-Complex Subunit CHMP2B in Frontotemporal Dementia. Nat. Genet. 2005, 37, 806–808. [Google Scholar] [CrossRef] [PubMed]
- Renton, A.E.; Chiò, A.; Traynor, B.J. State of Play in Amyotrophic Lateral Sclerosis Genetics. Nat. Neurosci. 2014, 17, 17–23. [Google Scholar] [CrossRef]
- Van Deerlin, V.M.; Sleiman, P.M.A.; Martinez-Lage, M.; Chen-Plotkin, A.; Wang, L.-S.; Graff-Radford, N.R.; Dickson, D.W.; Rademakers, R.; Boeve, B.F.; Grossman, M.; et al. Common Variants at 7p21 Are Associated with Frontotemporal Lobar Degeneration with TDP-43 Inclusions. Nat. Genet. 2010, 42, 234–239. [Google Scholar] [CrossRef]
- Brady, O.A.; Zheng, Y.; Murphy, K.; Huang, M.; Hu, F. The Frontotemporal Lobar Degeneration Risk Factor, TMEM106B, Regulates Lysosomal Morphology and Function. Hum. Mol. Genet. 2013, 22, 685–695. [Google Scholar] [CrossRef]
- Busch, J.I.; Martinez-Lage, M.; Ashbridge, E.; Grossman, M.; Van Deerlin, V.M.; Hu, F.; Lee, V.M.; Trojanowski, J.Q.; Chen-Plotkin, A.S. Expression of TMEM106B, the Frontotemporal Lobar Degeneration-Associated Protein, in Normal and Diseased Human Brain. Acta Neuropathol. Commun. 2013, 1, 36. [Google Scholar] [CrossRef]
- Van der Zee, J.; Van Langenhove, T.; Kleinberger, G.; Sleegers, K.; Engelborghs, S.; Vandenberghe, R.; Santens, P.; Van den Broeck, M.; Joris, G.; Brys, J.; et al. TMEM106B Is Associated with Frontotemporal Lobar Degeneration in a Clinically Diagnosed Patient Cohort. Brain 2011, 134, 808–815. [Google Scholar] [CrossRef]
- Finch, N.; Carrasquillo, M.M.; Baker, M.; Rutherford, N.J.; Coppola, G.; DeJesus-Hernandez, M.; Crook, R.; Hunter, T.; Ghidoni, R.; Benussi, L.; et al. TMEM106B Regulates Progranulin Levels and the Penetrance of FTLD in GRN Mutation Carriers. Neurology 2011, 76, 467–474. [Google Scholar] [CrossRef]
- Hernández, I.; Rosende-Roca, M.; Alegret, M.; Mauleón, A.; Espinosa, A.; Vargas, L.; Sotolongo-Grau, O.; Tárraga, L.; Boada, M.; Ruiz, A. Association of TMEM106B Rs1990622 Marker and Frontotemporal Dementia: Evidence for a Recessive Effect and Meta-Analysis. J. Alzheimer’s Dis. 2014, 43, 325–334. [Google Scholar] [CrossRef] [PubMed]
- van Blitterswijk, M.; Mullen, B.; Nicholson, A.M.; Bieniek, K.F.; Heckman, M.G.; Baker, M.C.; DeJesus-Hernandez, M.; Finch, N.A.; Brown, P.H.; Murray, M.E.; et al. TMEM106B Protects C9ORF72 Expansion Carriers against Frontotemporal Dementia. Acta Neuropathol. 2014, 127, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Pottier, C.; Zhou, X.; Perkerson, R.B.; Baker, M.; Jenkins, G.D.; Serie, D.J.; Ghidoni, R.; Benussi, L.; Binetti, G.; López de Munain, A.; et al. Potential Genetic Modifiers of Disease Risk and Age at Onset in Patients with Frontotemporal Lobar Degeneration and GRN Mutations: A Genome-Wide Association Study. Lancet Neurol. 2018, 17, 548–558. [Google Scholar] [CrossRef]
- Lattante, S.; Le Ber, I.; Galimberti, D.; Serpente, M.; Rivaud-Péchoux, S.; Camuzat, A.; Clot, F.; Fenoglio, C.; Scarpini, E.; Brice, A.; et al. Defining the Association of TMEM106B Variants among Frontotemporal Lobar Degeneration Patients with GRN Mutations and C9orf72 Repeat Expansions. Neurobiol. Aging 2014, 35, 2658.e1–2658.e5. [Google Scholar] [CrossRef]
- Cruchaga, C.; Graff, C.; Chiang, H.-H.; Wang, J.; Hinrichs, A.L.; Spiegel, N.; Bertelsen, S.; Mayo, K.; Norton, J.B.; Morris, J.C.; et al. Association of TMEM106B Gene Polymorphism With Age at Onset in Granulin Mutation Carriers and Plasma Granulin Protein Levels. Arch. Neurol. 2011, 68, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, A.M.; Finch, N.A.; Wojtas, A.; Baker, M.C.; Perkerson, R.B.; Castanedes-Casey, M.; Rousseau, L.; Benussi, L.; Binetti, G.; Ghidoni, R.; et al. TMEM106B p.T185S Regulates TMEM106B Protein Levels: Implications for Frontotemporal Dementia. J. Neurochem. 2013, 126, 781–791. [Google Scholar] [CrossRef]
- Schwenk, B.M.; Lang, C.M.; Hogl, S.; Tahirovic, S.; Orozco, D.; Rentzsch, K.; Lichtenthaler, S.F.; Hoogenraad, C.C.; Capell, A.; Haass, C.; et al. The FTLD Risk Factor TMEM106B and MAP6 Control Dendritic Trafficking of Lysosomes. EMBO J. 2013, 33, 450–467. [Google Scholar] [CrossRef]
- Busch, J.I.; Unger, T.L.; Jain, N.; Skrinak, R.T.; Charan, R.A.; Chen-Plotkin, A.S. Increased Expression of the Frontotemporal Dementia Risk Factor TMEM106B Causes C9orf72-Dependent Alterations in Lysosomes. Hum. Mol. Genet. 2016, 25, 2681–2697. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.D.; Suh, E.; Grossman, M.; Elman, L.; McCluskey, L.; Van Swieten, J.C.; Al-Sarraj, S.; Neumann, M.; Gelpi, E.; Ghetti, B.; et al. TMEM106B Is a Genetic Modifier of Frontotemporal Lobar Degeneration with C9orf72 Hexanucleotide Repeat Expansions. Acta Neuropathol. 2014, 127, 407–418. [Google Scholar] [CrossRef]
- Hu, T.; Chen, Y.; Ou, R.; Wei, Q.; Cao, B.; Zhao, B.; Wu, Y.; Song, W.; Chen, X.; Shang, H.-F. Association Analysis of Polymorphisms in VMAT2 and TMEM106B Genes for Parkinson’s Disease, Amyotrophic Lateral Sclerosis and Multiple System Atrophy. J. Neurol. Sci. 2017, 377, 65–71. [Google Scholar] [CrossRef]
- Vass, R.; Ashbridge, E.; Geser, F.; Hu, W.T.; Grossman, M.; Clay-Falcone, D.; Elman, L.; McCluskey, L.; Lee, V.M.Y.; Van Deerlin, V.M.; et al. Risk Genotypes at TMEM106B Are Associated with Cognitive Impairment in Amyotrophic Lateral Sclerosis. Acta Neuropathol. 2011, 121, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Van Blitterswijk, M.; Mullen, B.; Wojtas, A.; Heckman, M.G.; Diehl, N.N.; Baker, M.C.; DeJesus-Hernandez, M.; Brown, P.H.; Murray, M.E.; Hsiung, G.-Y.R.; et al. Genetic Modifiers in Carriers of Repeat Expansions in the C9ORF72 Gene. Mol. Neurodegener. 2014, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Tropea, T.F.; Mak, J.; Guo, M.H.; Xie, S.X.; Suh, E.; Rick, J.; Siderowf, A.; Weintraub, D.; Grossman, M.; Irwin, D.; et al. TMEM106B Effect on Cognition in Parkinson Disease and Frontotemporal Dementia. Ann. Neurol. 2019, 85, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.H.H.; Verhaaren, B.F.J.; Vrooman, H.A.; Uitterlinden, A.G.; Hofman, A.; van Duijn, C.M.; van der Lugt, A.; Niessen, W.J.; Vernooij, M.W.; Ikram, M.A. TMEM106B Influences Volume of Left-Sided Temporal Lobe and Interhemispheric Structures in the General Population. Biol. Psychiatry 2014, 76, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, H. Comparison of the Pattern of Atrophy of the Corpus Callosum in Frontotemporal Dementia, Progressive Supranuclear Palsy, and Alzheimer’s Disease. J. Neurol. Neurosurg. Psychiatry 2000, 69, 623–629. [Google Scholar] [CrossRef]
- Kim, E.J.; Rabinovici, G.D.; Seeley, W.W.; Halabi, C.; Shu, H.; Weiner, M.W.; DeArmond, S.J.; Trojanowski, J.Q.; Gorno-Tempini, M.L.; Miller, B.L.; et al. Patterns of MRI Atrophy in Tau Positive and Ubiquitin Positive Frontotemporal Lobar Degeneration. J. Neurol. Neurosurg. Psychiatry 2007, 78, 1375–1378. [Google Scholar] [CrossRef]
- Borroni, B.; Alberici, A.; Cercignani, M.; Premi, E.; Serra, L.; Cerini, C.; Cosseddu, M.; Pettenati, C.; Turla, M.; Archetti, S.; et al. Granulin Mutation Drives Brain Damage and Reorganization from Preclinical to Symptomatic FTLD. Neurobiol. Aging 2012, 33, 2506–2520. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Agosta, F.; Scola, E.; Canu, E.; Magnani, G.; Marcone, A.; Valsasina, P.; Caso, F.; Copetti, M.; Comi, G.; et al. Functional Network Connectivity in the Behavioral Variant of Frontotemporal Dementia. Cortex 2013, 49, 2389–2401. [Google Scholar] [CrossRef]
- Premi, E.; Formenti, A.; Gazzina, S.; Archetti, S.; Gasparotti, R.; Padovani, A.; Borroni, B. Effect of TMEM106B Polymorphism on Functional Network Connectivity in Asymptomatic GRN Mutation Carriers. JAMA Neurol. 2014, 71, 216. [Google Scholar] [CrossRef]
- Rutherford, N.J.; Carrasquillo, M.M.; Li, M.; Bisceglio, G.; Menke, J.; Josephs, K.A.; Parisi, J.E.; Petersen, R.C.; Graff-Radford, N.R.; Younkin, S.G.; et al. TMEM106B Risk Variant Is Implicated in the Pathologic Presentation of Alzheimer Disease. Neurology 2012, 79, 717–718. [Google Scholar] [CrossRef]
- Yu, L.; De Jager, P.L.; Yang, J.; Trojanowski, J.Q.; Bennett, D.A.; Schneider, J.A. The TMEM106B Locus and TDP-43 Pathology in Older Persons without FTLD. Neurology 2015, 84, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.E.; Cannon, A.; Graff-Radford, N.R.; Liesinger, A.M.; Rutherford, N.J.; Ross, O.A.; Duara, R.; Carrasquillo, M.M.; Rademakers, R.; Dickson, D.W. Differential Clinicopathologic and Genetic Features of Late-Onset Amnestic Dementias. Acta Neuropathol. 2014, 128, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.T.; Wang, W.-X.; Partch, A.B.; Monsell, S.E.; Valladares, O.; Ellingson, S.R.; Wilfred, B.R.; Naj, A.C.; Wang, L.-S.; Kukull, W.A.; et al. Reassessment of Risk Genotypes (GRN, TMEM106B, and ABCC9 Variants) Associated With Hippocampal Sclerosis of Aging Pathology. J. Neuropathol. Exp. Neurol. 2015, 74, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Aoki, N.; Murray, M.E.; Ogaki, K.; Fujioka, S.; Rutherford, N.J.; Rademakers, R.; Ross, O.A.; Dickson, D.W. Hippocampal Sclerosis in Lewy Body Disease Is a TDP-43 Proteinopathy Similar to FTLD-TDP Type A. Acta Neuropathol. 2015, 129, 53–64. [Google Scholar] [CrossRef]
- Lu, R.-C.; Wang, H.; Tan, M.-S.; Yu, J.-T.; Tan, L. TMEM106B and APOE Polymorphisms Interact to Confer Risk for Late-Onset Alzheimer’s Disease in Han Chinese. J. Neural Transm. 2014, 121, 283–287. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, J.; Zhang, Y.; Zhang, H.; Gao, S.; Wang, T.; Han, Z.; Wang, L.; Sun, B.; Liu, G. Rs1990622 Variant Associates with Alzheimer’s Disease and Regulates TMEM106B Expression in Human Brain Tissues. BMC Med. 2021, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, L.; Atkins, L.; Leigh, P. Correlates of Quality of Life in People with Motor Neuron Disease (MND). Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2002, 3, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Mitsumoto, H.; Bene, M. Del Improving the Quality of Life for People with ALS: The Challenge Ahead. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000, 1, 329–336. [Google Scholar] [CrossRef]
- Chiò, A.; Logroscino, G.; Hardiman, O.; Swingler, R.; Mitchell, D.; Beghi, E.; Traynor, B.G.; On Behalf of the Eurals Consortium. Prognostic Factors in ALS: A Critical Review. Amyotroph. Lateral Scler. 2009, 10, 310–323. [Google Scholar] [CrossRef]
- Poletti, B.; Solca, F.; Carelli, L.; Madotto, F.; Lafronza, A.; Faini, A.; Monti, A.; Zago, S.; Calini, D.; Tiloca, C.; et al. The Validation of the Italian Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Amyotroph. Lateral Scler. Front. Degener. 2016, 17, 489–498. [Google Scholar] [CrossRef]
- Montuschi, A.; Iazzolino, B.; Calvo, A.; Moglia, C.; Lopiano, L.; Restagno, G.; Brunetti, M.; Ossola, I.; Lo Presti, A.; Cammarosano, S.; et al. Cognitive Correlates in Amyotrophic Lateral Sclerosis: A Population-Based Study in Italy. J. Neurol. Neurosurg. Psychiatry 2015, 86, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Strutt, A.M.; Palcic, J.; Wager, J.G.; Titus, C.; MacAdam, C.; Brown, J.; Scott, B.M.; Harati, Y.; Schulz, P.E.; York, M.K. Cognition, Behavior, and Respiratory Function in Amyotrophic Lateral Sclerosis. ISRN Neurol. 2012, 2012, 912123. [Google Scholar] [CrossRef] [PubMed]
- Beeldman, E.; Raaphorst, J.; Klein Twennaar, M.; de Visser, M.; Schmand, B.A.; de Haan, R.J. The Cognitive Profile of ALS: A Systematic Review and Meta-Analysis Update. J. Neurol. Neurosurg. Psychiatry 2016, 87, 611–619. [Google Scholar] [CrossRef]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. El Escorial Revisited: Revised Criteria for the Diagnosis of Amyotrophic Lateral Sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000, 1, 293–299. [Google Scholar] [CrossRef]
- Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A Revised ALS Functional Rating Scale That Incorporates Assessments of Respiratory Function. J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef]
- Quinn, C.; Edmundson, C.; Dahodwala, N.; Elman, L. Reliable and Efficient Scale to Assess Upper Motor Neuron Disease Burden in Amyotrophic Lateral Sclerosis. Muscle Nerve 2020, 61, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Strong, M.J.; Abrahams, S.; Goldstein, L.H.; Woolley, S.; Mclaughlin, P.; Snowden, J.; Mioshi, E.; Roberts-South, A.; Benatar, M.; HortobáGyi, T.; et al. Amyotrophic Lateral Sclerosis-Frontotemporal Spectrum Disorder (ALS-FTSD): Revised Diagnostic Criteria. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 153–174. [Google Scholar] [CrossRef]
- Alberici, A.; Geroldi, C.; Cotelli, M.; Adorni, A.; Calabria, M.; Rossi, G.; Borroni, B.; Padovani, A.; Zanetti, O.; Kertesz, A. The Frontal Behavioural Inventory (Italian Version) Differentiates Frontotemporal Lobar Degeneration Variants from Alzheimer’s Disease. Neurol. Sci. 2007, 28, 80–86. [Google Scholar] [CrossRef]
- Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; van Swieten, J.C.; Seelaar, H.; Dopper, E.G.P.; Onyike, C.U.; et al. Sensitivity of Revised Diagnostic Criteria for the Behavioural Variant of Frontotemporal Dementia. Brain 2011, 134, 2456–2477. [Google Scholar] [CrossRef]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of Primary Progressive Aphasia and Its Variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef]
- Govaarts, R.; Beeldman, E.; Kampelmacher, M.J.; van Tol, M.-J.; van den Berg, L.H.; van der Kooi, A.J.; Wijkstra, P.J.; Zijnen-Suyker, M.; Cobben, N.A.M.; Schmand, B.A.; et al. The Frontotemporal Syndrome of ALS Is Associated with Poor Survival. J. Neurol. 2016, 263, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Caga, J.; Mahoney, C.J.; Kiernan, M.C.; Huynh, W. Behavioural Changes Predict Poorer Survival in Amyotrophic Lateral Sclerosis. Brain Cogn. 2021, 150, 105710. [Google Scholar] [CrossRef] [PubMed]
- Van Eijk, R.P.A.; Jones, A.R.; Sproviero, W.; Shatunov, A.; Shaw, P.J.; Leigh, P.N.; Young, C.A.; Shaw, C.E.; Mora, G.; Mandrioli, J.; et al. Meta-Analysis of Pharmacogenetic Interactions in Amyotrophic Lateral Sclerosis Clinical Trials. Neurology 2017, 89, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
Variable | N° Patients (Frequency) | Median (Range) |
---|---|---|
Sex | 865 | |
Male | 554 (64.0%) | |
Female | 311 (36.0%) | |
ALS family history | 865 | |
familial | 20 (2.3%) | |
sporadic | 845 (97.7%) | |
ALS gene mutations | 865 | |
C9orf72 | 20 (2.4%) | |
SOD1 | 0 (0.0%) | |
TARDBP | 4 (0.5%) | |
FUS | 2 (0.2%) | |
Age at onset (years) | 865 | 61.6 (13.6–90.6) |
Survival (months) | 865 | 27.5 (2.9–450.6) |
Site of onset | 815 | |
Bulbar | 206 (25.3%) | |
Spinal | 609 (74.7%) | |
ALSFRS-R | 449 | 40 (9–48) |
PUMNS | 690 | 9 (0–29) |
MRC total score | 531 | 54 (6–60) |
ECAS total score | 195 | 105 (31–129) |
ECAS ALS-specific score | 195 | 78 (21–97) |
ECAS ALS-non-specific score | 195 | 27 (10–34) |
Cognitive phenotype (Strong revised criteria) | 195 | |
ALScn | 87 (44.6%) | |
ALSbi | 35 (17.9%) | |
ALSci | 49 (25.1%) | |
ALScbi | 24 (12.3%) | |
N° of ALS/FTD patients | 25 (2.9%) | |
FBI total score | 155 | 2 (0–5) |
FBI A score | 155 | 1 (0–4) |
FBI B score | 155 | 0 (0–2) |
rs1990622 SNP genotype | 865 | |
AA | 305 (35.3%) | |
AG | 421 (48.7%) | |
GG | 139 (16.1%) |
AA | AG | GG | (AG + GG) | (AA + AG) | Add. (AA vs. AG vs. GG) | Dom. [AA vs. (AG + GG)] | Rec. [(AA + AG) vs. GG] | |
---|---|---|---|---|---|---|---|---|
Median (Range) | Median (Range) | Median (Range) | Median (Range) | Median (Range) | ||||
Site of onset | NA | NA | NA | NA | NA | 0.074 | 0.023 | 0.340 |
ALSFRS-R | 40 (9–48) | 39 (16–48) | 42 (20–46) | 40 (16–48) | 39 (9–48) | 0.042 | 0.471 | 0.041 |
PUMNS | 10 (0–28) | 10 (0–29) | 7 (0–29) | 9 (0–29) | 10 (0–29) | 0.025 | 0.054 | 0.015 |
MRC total score | 55 (14–60) | 52 (6–60) | 54 (12–60) | 53 (6–60) | 54 (6–60) | 0.005 | 0.001 | 0.424 |
ECAS total score | 108 (31–129) | 105 (39–128) | 99 (35–123) | 104 (35–128) | 106 (31–129) | 0.091 | 0.251 | 0.032 |
ECAS ALS-specific score | 80 (21–97) | 80 (24–95) | 72 (22–91) | 77 (22–95) | 80 (21–97) | 0.136 | 0.387 | 0.047 |
ECAS ALS-non-specific score | 27 (10–34) | 27 (13–34) | 26 (11–34) | 26 (11–34) | 27 (10–34) | 0.202 | 0.306 | 0.084 |
ECAS memory score | 16 (2–22) | 15 (2–22) | 14 (1–22) | 15 (1–22) | 16 (2–22) | 0.130 | 0.266 | 0.050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manini, A.; Ratti, A.; Brusati, A.; Maranzano, A.; Fogh, I.; Peverelli, S.; Messina, S.; Gentilini, D.; Verde, F.; Poletti, B.; et al. TMEM106B Acts as a Modifier of Cognitive and Motor Functions in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2022, 23, 9276. https://doi.org/10.3390/ijms23169276
Manini A, Ratti A, Brusati A, Maranzano A, Fogh I, Peverelli S, Messina S, Gentilini D, Verde F, Poletti B, et al. TMEM106B Acts as a Modifier of Cognitive and Motor Functions in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences. 2022; 23(16):9276. https://doi.org/10.3390/ijms23169276
Chicago/Turabian StyleManini, Arianna, Antonia Ratti, Alberto Brusati, Alessio Maranzano, Isabella Fogh, Silvia Peverelli, Stefano Messina, Davide Gentilini, Federico Verde, Barbara Poletti, and et al. 2022. "TMEM106B Acts as a Modifier of Cognitive and Motor Functions in Amyotrophic Lateral Sclerosis" International Journal of Molecular Sciences 23, no. 16: 9276. https://doi.org/10.3390/ijms23169276
APA StyleManini, A., Ratti, A., Brusati, A., Maranzano, A., Fogh, I., Peverelli, S., Messina, S., Gentilini, D., Verde, F., Poletti, B., Morelli, C., Silani, V., & Ticozzi, N. (2022). TMEM106B Acts as a Modifier of Cognitive and Motor Functions in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 23(16), 9276. https://doi.org/10.3390/ijms23169276