Differentiation of SARS-CoV-2 Variants Using RT-qPCRs by Targeting Recurrent Mutation Sites: A Diagnostic Laboratory Experience from Multi-Center Regional Study, August 2020–December 2021, Poland
Abstract
:1. Introduction
2. Results
2.1. Study Specimen Characteristics
2.1.1. Background Analysis
2.1.2. Final Collection
2.1.3. Demographics of the Individuals
2.2. Identification of SARS-CoV-2 Variants
3. Discussion
4. Materials and Methods
4.1. Specimen Collection
4.2. Nucleic Acids Extraction Methods and SARS-CoV-2 Detection
4.3. Differentiation of SARS-CoV-2 Variants
4.3.1. Alpha Variant Identification
4.3.2. Beta, Delta and Kappa Variants Identification
4.3.3. Omicron Variant Identification
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease 2019. Available online: https://www.who.int/emergencies/diseases/novelcoronavirus-2019 (accessed on 13 June 2022).
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Xiang, Z.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 22 July 2022).
- Jackson, J.K. Global Economic Effects of COVID-19: Overview—CRS Reports. Available online: https://crsreports.congress.gov/product/pdf/R/R46270#:~:text=Estimates%20indicate%20the%20COVID%2D19,slower%20rate%20projected%20for%202022 (accessed on 13 June 2022).
- Global Initiative on Sharing All Influenza Data (GISAID). Munich: Global Initiative on Sharing All Influenza Data. c2008–2022. Available online: https://www.gisaid.org (accessed on 13 June 2022).
- World Health Organization. Tracking SARS-CoV-2 Variants as of 7 June 2022. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 13 June 2022).
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Ta, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Duchene, S.; Featherstone, L.; Haritopoulou-Sinanidou, M.; Rambaut, A.; Lemey, P.; Baele, G. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol. 2020, 6, veaa061. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; COVID-19 Genomics UK (COG-UK) Consortium; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. SARS-CoV-2 Variants of Concern as of 9 June 2022. Available online: https://www.ecdc.europa.eu/en/covid-19/variants-concern (accessed on 13 June 2022).
- Di Caro, A.; Cunha, F.; Petrosillo, N.; Beeching, N.; Ergonul, O.; Petersen, E.; Koopmans, M. SARS-CoV-2 escape mutants and protective immunity from natural infections or immunizations. Clin. Microbiol. Infect. 2021, 27, 823–826. [Google Scholar] [CrossRef]
- Lazarevic, I.; Pravica, V.; Miljanovic, D.; Cupic, M. Immune Evasion of SARS-CoV-2 Emerging Variants: What Have We Learnt So Far? Viruses 2021, 13, 1192. [Google Scholar] [CrossRef]
- Rambaut, A.; Loman, N.; Pybus, O.; Barclay, W.; Barrett, J.; Carabelli, A.; Connor, T.; Peacock, T.; Robertson, D.L.; Volz, E.; et al. Preliminary Genomic Characterisation of an Emergent SARS-CoV-2 Lineage in the UK Defined by a Novel Set of Spike Mutations. Available online: https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-ukdefined-by-a-novel-set-of-spike-mutations/563 (accessed on 13 June 2022).
- Volz, E.; Mishra, S.; Chand, M.; Barrett, J.C.; Johnson, R.; Geidelberg, L.; Hinsley, W.R.; Laydon, D.J.; Dabrera, G.; O’Toole, A.; et al. Assessing Transmissibility of SARS-CoV-2 Lineage B.1.1.7 in England. Nature 2021, 593, 266–269. [Google Scholar] [CrossRef]
- Choi, J.Y.; Smith, D.M. SARS-CoV-2 Variants of Concern. Yonsei Med. J. 2021, 62, 961–968. [Google Scholar] [CrossRef]
- Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E.J.; Msomi, N.; et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 2021, 592, 438–443. [Google Scholar] [CrossRef]
- Mohammadi, M.; Shayestehpour, M.; Mirzaei, H. The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines. Braz. J. Infect. Dis. 2021, 25, 101606. [Google Scholar] [CrossRef]
- Faria, N.R.; Morales Claro, I.; Candid, D.; Moyses Franco, L.A.; Andrade, P.S.; Coletti, T.M.; Silva, C.A.M.; Sales, F.C.; Manuli, E.R.; Aguiar, R.S.; et al. Genomic Characterisation of an Emergent SARS-CoV-2 Lineage in Manaus: Preliminary Findings. Available online: https://virological.org/t/genomiccharacterisation-of-an-emergent-sars-cov-2-lineagein-manaus-prelimina (accessed on 17 June 2022).
- Fujino, T.; Nomoto, H.; Kutsuna, S.; Ujiie, M.; Suzuki, T.; Sato, R.; Fujimoto, T.; Kuroda, K.; Wakita, T.; Ohmagari, N. Novel SARS-CoV-2 variant in travelers from Brazil to Japan. Emerg. Infect. Dis. 2021, 27, 1243–1245. [Google Scholar] [CrossRef] [PubMed]
- Escalera, A.; Gonzalez-Reiche, A.S.; Aslam, S.; Mena, I.; Laporte, M.; Pearl, R.L.; Fossati, A.; Rathnasinghe, R.; Alshammary, H.; van de Guchte, A.; et al. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host Microbe 2022, 30, 373–387.e7. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Kumar, M.; Srivastava, V.; Kumar, D.; Rathore, D.; Pandit, R.; Chaitanya, G. First Detection of SARS-CoV-2 Delta Variant (B.1.617.2) in the Wastewater of (Ahmedabad) India. Available online: https://www.medrxiv.org/content/10.1101/2021.07.07.21260142v1 (accessed on 17 June 2022).
- Liu, Z.; VanBlargan, L.A.; Bloyet, L.M.; Rothlauf, P.W.; Chen, R.E.; Stumpf, S.; Zhao, H.; Errico, J.M.; Theel, E.S.; Liebeskind, M.J.; et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe 2021, 29, 477–488.e4. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cheng, G. Sequence analysis of the emerging SARS-CoV-2 variant Omicron in South Africa. J. Med. Virol. 2022, 94, 1728–1733. [Google Scholar] [CrossRef]
- Pulliam, J.R.C.; van Schalkwyk, C.; Govender, N.; von Gottberg, A.; Cohen, C.; Groome, M.J.; Dushoff, J.; Mlisana, K.; Moultrie, H. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science 2022, 376, eabn4947. [Google Scholar] [CrossRef]
- World Health Organization. Genomic Sequencing of SARS-CoV-2: A Guide to Implementation for Maximum Impact on Public Health. Available online: https://www.who.int/publications/i/item/9789240018440 (accessed on 13 June 2022).
- European Centre for Disease Prevention and Control (ECDC). Methods for the Detection and Identification of SARS-CoV-2 Variants. Available online: https://www.ecdc.europa.eu/en/publications-data/methods-detection-and-identification-SARSCoV-2-variant (accessed on 13 June 2022).
- Dutta, A. COVID-19 waves: Variant dynamics and control. Sci. Rep. 2022, 12, 9332. [Google Scholar] [CrossRef]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/region/euro/country/pl (accessed on 22 July 2022).
- Kozinska, A.; Wegrzynska, K.; Komiazyk, M.; Walory, J.; Wasko, I.; Baraniak, A. Viral Etiological Agent(s) of Respiratory Tract Infections in Symptomatic Individuals during the Second Wave of COVID-19 Pandemic: A Single Drive-Thru Mobile Collection Site Study. Pathogens 2022, 11, 475. [Google Scholar] [CrossRef]
- Louca, S. SARS-CoV-2 infections in 165 countries over time. Int. J. Infect. Dis. 2021, 111, 336–346. [Google Scholar] [CrossRef]
- Martín, U.; Bacigalupe, A.; Jiménez Carrillo, M. COVID-19 and gender: Certainties and uncertainties in monitoring the pandemic. Rev. Esp. Salud Publica 2021, 95, 33927179. [Google Scholar]
- Haitao, T.; Vermunt, J.V.; Abeykoon, J.; Ghamrawi, R.; Gunaratne, M.; Jayachandran, M.; Narang, K.; Parashuram, S.; Suvakov, S.; Garovic, V.D. COVID-19 and Sex Differences: Mechanisms and Biomarkers. Mayo Clin. Proc. 2020, 95, 2189–2203. [Google Scholar] [CrossRef]
- Mukherjee, S.; Pahan, K. Is COVID-19 Gender-sensitive? J. Neuroimmune Pharmacol. 2021, 16, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Komiazyk, M.; Walory, J.; Gawor, J.; Ksiazek, I.; Gromadka, R.; Baraniak, A. Case Report of COVID-19 after full vaccination: Viral loads and anti-SARS-CoV-2 antibodies. Diagnostics 2021, 11, 1815. [Google Scholar] [CrossRef] [PubMed]
- Charkiewicz, R.; Nikliński, J.; Biecek, P.; Kiśluk, J.; Pancewicz, S.; Moniuszko-Malinowska, A.M.; Flisiak, R.; Krętowski, A.J.; Dzięcioł, J.; Moniuszko, M.; et al. The first SARS-CoV-2 genetic variants of concern (VOC) in Poland: The concept of a comprehensive approach to monitoring and surveillance of emerging variants. Adv. Med. Sci. 2021, 66, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Serwin, K.; Aksak-Wąs, B.; Parczewski, M. Phylodynamic Dispersal of SARS-CoV-2 Lineages Circulating across Polish-German Border Provinces. Viruses 2022, 14, 884. [Google Scholar] [CrossRef]
- Gogolewski, K.; Miasojedow, B.; Sadkowska-Todys, M.; Stepień, M.; Demkow, U.; Lech, A.; Szczurek, E.; Rabczenko, D.; Rosińsk, M.; Gambin, A. Data-driven case fatality rate estimation for the primary lineage of SARS-CoV-2 in Poland. Methods 2022, 203, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Ham, R.E.; Smothers, A.R.; Che, R.; Sell, K.J.; Peng, C.A.; Dea, D. Identifying SARS-CoV-2 Variants of Concern through Saliva-Based RT-qPCR by Targeting Recurrent Mutation Sites. Microbiol. Spectr. 2022, 10, e0079722. [Google Scholar] [CrossRef]
- Umunnakwe, C.N.; Makatini, Z.N.; Maphanga, M.; Mdunyelwa, A.; Mlambo, K.M.; Manyaka, P.; Nijhuis, M.; Wensing, A.; Tempelman, H.A. Evaluation of a commercial SARS-CoV-2 multiplex PCR genotyping assay for variant identification in resource-scarce settings. PLoS ONE 2022, 17, e0269071. [Google Scholar] [CrossRef]
- Castro, G.M.; Sicilia, P.; Bolzon, M.L.; Lopez, L.; Barbás, M.G.; Pisano, M.B.; Ré, V.E. Tracking SARS-CoV-2 Variants Using a Rapid Typification Strategy: A Key Tool for Early Detection and Spread Investigation of Omicron in Argentina. Front. Med. 2022, 9, 851861. [Google Scholar] [CrossRef]
- Borillo, G.A.; Kagan, R.M.; Marlowe, E.M. Rapid and Accurate Identification of SARS-CoV-2 Variants Using Real Time PCR Assays. Front. Cell. Infect. Microbiol. 2022, 12, 894613. [Google Scholar] [CrossRef]
- Visualization of COVID-19 Spread. Available online: https://covidhub.psnc.pl/eng/mapa/#! (accessed on 23 July 2022).
- Sheikh, A.; McMenamin, J.; Taylor, B.; Robertson, C. SARS-CoV-2 Delta VOC in Scotland: Demographics, risk of hospital admission, and vaccine effectiveness. Lancet 2021, 397, 2461–2462. [Google Scholar] [CrossRef]
- Shiehzadegan, S.; Alaghemand, N.; Fox, M.; Venketaraman, V. Analysis of the Delta Variant B.1.617.2 COVID-19. Clin. Pract. 2021, 11, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Komiazyk, M.; Walory, J.; Kozinska, A.; Wasko, I.; Baraniak, A. Impact of the Nucleic Acid Extraction Method and the RT-qPCR Assay on SARS-CoV-2 Detection in Low-Viral Samples. Diagnostics 2021, 11, 2247. [Google Scholar] [CrossRef] [PubMed]
Center 1 | Type of Center/ Collection | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|
No. of Samples | No. of Negative Cases | No. of Positive Cases | No. of Positive Cases with CT < 30 | No. of Samples | No. of Negative Cases | No. of Positive Cases | No. of Positive Cases with CT < 30 | ||
H1 | third level hospital | 3125 | 3026 | 99 | 27 | 7603 | 7429 | 90 | 65 |
H2 | 446 | 348 | 98 | 27 | 1317 | 1224 | 54 | 12 | |
H3 | 5671 | 4973 | 698 | 147 | 846 | 747 | 81 | 62 | |
H4 | 309 | 287 | 22 | 9 | 510 | 498 | 9 | 8 | |
H5 | second level hospital | 734 | 570 | 164 | 40 | 786 | 658 | 86 | 46 |
H6 | 87 | 79 | 8 | 3 | 0 | 0 | 0 | 0 | |
H7 | 194 | 132 | 62 | 16 | 454 | 344 | 91 | 47 | |
MCS1 | drive-thru walk-thru | 1419 | 673 | 746 | 169 | 673 | 435 | 216 | 147 |
MCS2 | 3274 | 3051 | 223 | 30 | 4107 | 3971 | 121 | 104 | |
I/Q1 | Epidemio-logical Survei-llance | 1719 | 1416 | 303 | 111 | 409 | 394 | 8 | 2 |
I/Q2 | 47 | 26 | 21 | 10 | 50 | 29 | 17 | 14 |
No. of Tested Samples 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Center 1 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | MCS1 | MCS2 | I/Q1 | I/Q2 | |
Variables | ||||||||||||
Female | 13/36 | 13/2 | 77/31 | 9/7 | 22/26 | 3/0 | 4/23 | 80/71 | 14/60 | 55/2 | 2/4 | |
Male | 14/29 | 14/10 | 70/31 | 0/1 | 18/20 | 0/0 | 12/24 | 89/76 | 16/44 | 56/0 | 8/10 | |
Age in years: | ||||||||||||
0–5 | 1/10 | 0/0 | 5/3 | 0/2 | 0/0 | 0/0 | 1/1 | 3/1 | 0/1 | 4/0 | 0/0 | |
6–18 | 1/10 | 1/0 | 8/1 | 0/0 | 2/0 | 0/0 | 0/0 | 7/2 | 0/11 | 9/0 | 0/0 | |
19–35 | 4/15 | 1/0 | 27/15 | 4/4 | 11/3 | 1/0 | 0/1 | 57/27 | 10/36 | 37/0 | 1/2 | |
36–64 | 18/28 | 20/3 | 56/24 | 5/2 | 18/22 | 2/0 | 5/19 | 80/79 | 19/48 | 42/2 | 5/5 | |
≥65 | 3/2 | 5/9 | 51/19 | 0/0 | 9/21 | 0/0 | 10/26 | 22/38 | 1/8 | 19/0 | 4/7 |
Center 1 | 2020 | 2021 | |||||||
---|---|---|---|---|---|---|---|---|---|
No. of Tested Samlpes | SARS-CoV-2 Variant | No. of Tested Samples | SARS-CoV-2 Variant | ||||||
Alpha | Other | Alpha | Delta | Kappa | Omicron | Other | |||
H1 | 27 | 3 | 24 | 65 | 18 | 34 | 5 | 0 | 8 |
H2 | 27 | 11 | 16 | 12 | 10 | 2 | 0 | 0 | 0 |
H3 | 147 | 11 | 136 | 62 | 22 | 22 | 10 | 0 | 8 |
H4 | 9 | 0 | 9 | 8 | 6 | 0 | 0 | 0 | 2 |
H5 | 40 | 6 | 34 | 46 | 13 | 9 | 1 | 0 | 23 |
H6 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
H7 | 16 | 3 | 13 | 47 | 11 | 0 | 0 | 0 | 36 |
MCS1 | 169 | 30 | 139 | 147 | 100 | 0 | 0 | 0 | 47 |
MCS2 | 30 | 1 | 29 | 104 | 35 | 44 | 11 | 2 | 12 |
I/Q1 | 111 | 4 | 107 | 2 | 0 | 0 | 0 | 0 | 2 |
I/Q2 | 10 | 0 | 10 | 14 | 5 | 4 | 3 | 0 | 2 |
Month of Collection | Variant | No. of Variant Samples in Centers 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H1 | H2 | H3 | H4 | H5 | H6 | H7 | MCS1 | MCS2 | I/Q1 | I/Q2 | ||
20 August | Other | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 1 | 54 | 0 |
20 September | Other | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 5 | 24 | 0 |
20 October | Alpha | 1 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 4 | 0 |
Other | 9 | 2 | 38 | 0 | 10 | 3 | 0 | 18 | 8 | 29 | 2 | |
20 November | Alpha | 1 | 1 | 3 | 0 | 2 | 0 | 0 | 18 | 1 | 0 | 0 |
Other | 9 | 11 | 37 | 5 | 13 | 0 | 6 | 44 | 2 | 0 | 2 | |
20 December | Alpha | 1 | 10 | 3 | 0 | 3 | 0 | 3 | 12 | 0 | 0 | 0 |
Other | 6 | 3 | 29 | 4 | 11 | 0 | 7 | 77 | 13 | 0 | 6 | |
21 January | Alpha | 3 | 3 | 2 | 1 | 0 | 0 | 2 | 5 | 0 | 0 | 0 |
Other | 1 | 0 | 5 | 0 | 7 | 0 | 14 | 34 | 7 | 2 | 1 | |
21 February | Alpha | 0 | 0 | 6 | 1 | 0 | 0 | 2 | 7 | 2 | 0 | 0 |
Other | 0 | 0 | 2 | 1 | 1 | 0 | 21 | 11 | 1 | 0 | 0 | |
21 March | Alpha | 8 | 6 | 9 | 1 | 5 | 0 | 2 | 88 | 24 | 0 | 2 |
Other | 1 | 0 | 0 | 0 | 7 | 0 | 1 | 2 | 1 | 0 | 0 | |
21 April | Alpha | 4 | 0 | 3 | 3 | 7 | 0 | 3 | 0 | 8 | 0 | 3 |
Other | 1 | 0 | 1 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | |
21 May | Alpha | 3 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
Other | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |
21 June | Alpha | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
21 July | Delta | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
21 August | Delta | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
21 September | Delta | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Other | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
21 October | Delta | 9 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 11 | 0 | 0 |
Kappa | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | |
Other | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
21 November | Delta | 9 | 1 | 12 | 0 | 2 | 0 | 0 | 0 | 11 | 0 | 3 |
Kappa | 2 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 3 | |
Other | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | |
21 December | Delta | 13 | 1 | 6 | 0 | 5 | 0 | 0 | 0 | 17 | 0 | 1 |
Kappa | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | |
Omicron | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | |
Other | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wegrzynska, K.; Komiazyk, M.; Walory, J.; Kozinska, A.; Wasko, I.; Baraniak, A. Differentiation of SARS-CoV-2 Variants Using RT-qPCRs by Targeting Recurrent Mutation Sites: A Diagnostic Laboratory Experience from Multi-Center Regional Study, August 2020–December 2021, Poland. Int. J. Mol. Sci. 2022, 23, 9416. https://doi.org/10.3390/ijms23169416
Wegrzynska K, Komiazyk M, Walory J, Kozinska A, Wasko I, Baraniak A. Differentiation of SARS-CoV-2 Variants Using RT-qPCRs by Targeting Recurrent Mutation Sites: A Diagnostic Laboratory Experience from Multi-Center Regional Study, August 2020–December 2021, Poland. International Journal of Molecular Sciences. 2022; 23(16):9416. https://doi.org/10.3390/ijms23169416
Chicago/Turabian StyleWegrzynska, Karolina, Magdalena Komiazyk, Jaroslaw Walory, Aleksandra Kozinska, Izabela Wasko, and Anna Baraniak. 2022. "Differentiation of SARS-CoV-2 Variants Using RT-qPCRs by Targeting Recurrent Mutation Sites: A Diagnostic Laboratory Experience from Multi-Center Regional Study, August 2020–December 2021, Poland" International Journal of Molecular Sciences 23, no. 16: 9416. https://doi.org/10.3390/ijms23169416
APA StyleWegrzynska, K., Komiazyk, M., Walory, J., Kozinska, A., Wasko, I., & Baraniak, A. (2022). Differentiation of SARS-CoV-2 Variants Using RT-qPCRs by Targeting Recurrent Mutation Sites: A Diagnostic Laboratory Experience from Multi-Center Regional Study, August 2020–December 2021, Poland. International Journal of Molecular Sciences, 23(16), 9416. https://doi.org/10.3390/ijms23169416