Whole-Genome Inter-Sex Variation in Russian Sturgeon (Acipenser gueldenstaedtii)
Abstract
:1. Introduction
2. Results
2.1. Sequencing and Assembly of AG Draft Genome
2.1.1. Assembly Metrics
2.1.2. Mapping and Coverage Depth Statistics
2.2. Alignment to a Related Species Genome—A. ruthenus (AR)
2.3. Quantifying Inter-Species Variation (between AG and AR)
2.4. Substitution Rates in Individual Genes Identified in the AG Assembly
2.5. Quantifying Inter-Sex Variation in AG
2.6. Identification of Clusters of Inter-Sex Variation in AG
2.7. Identification of Genes Nearest to Clusters of Inter-Sex Variation
3. Discussion
4. Materials and Methods
4.1. Fish and Sampling Procedure
4.2. DNA Extraction
4.3. Genome Sequencing
4.4. De Novo Genome Assembly
4.5. Additional Reference Genomes
4.6. Estimation of Nucleotide Substitution Rates (dN/dS)
4.7. Genome Mapping and Coverage Assessment
4.8. Identifying Contigs Covered by Reads from Only One of the Sexes
4.9. Variant Discovery
4.10. Identification of Genes Adjacent to Sex-Associated Variants
4.11. Functional Enrichment Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hurvitz, A.; Degani, G.; Goldberg, D.; Din, S.Y.; Jackson, K.; Levavi-Sivan, B. Cloning of FSHβ, LHβ, and Glycoprotein α Subunits from the Russian Sturgeon (Acipenser gueldenstaedtii), β-Subunit MRNA Expression, Gonad Development, and Steroid Levels in Immature Fish. Gen. Comp. Endocrinol. 2005, 140, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Birstein, V.J.; Bemis, W.E.; Waldman, J.R. The Threatened Status of Acipenseriform Species: A Summary. Environ. Biol. Fishes 1997, 48, 427–435. [Google Scholar] [CrossRef]
- Vecsei, P.; Litvak, M.K.; Noakes, D.L.G.; Rien, T.; Hochleithner, M. A Noninvasive Technique for Determining Sex of Live Adult North American Sturgeons. Environ. Biol. Fishes 2003, 68, 333–338. [Google Scholar] [CrossRef]
- Hurvitz, A.; Jackson, K.; Degani, G.; Levavi-Sivan, B. Use of Endoscopy for Gender and Ovarian Stage Determinations in Russian Sturgeon (Acipenser gueldenstaedtii) Grown in Aquaculture. Aquaculture 2007, 270, 158–166. [Google Scholar] [CrossRef]
- Fontana, F. Chromosomal Nucleolar Organizer Regions in Four Sturgeon Species as Markers of Karyotype Evolution in Acipenseriformes (Pisces). Genome 1994, 37, 888–892. [Google Scholar] [CrossRef]
- Eenennaam, J.P.V.; Doroshov, S.I. Effects of Age and Body Size on Gonadal Development of Atlantic Sturgeon. J. Fish Biol. 1998, 53, 624–637. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L.; Van Eenennaam, J.P.; Medrano, J.F.; Doroshov, S.I. Brief Communication. Evidence of Female Heterogametic Genetic Sex Determination in White Sturgeon. J. Hered. 1999, 90, 231–233. [Google Scholar] [CrossRef]
- Burcea, A.; Popa, G.-O.; Florescu (Gune), I.E.; Maereanu, M.; Dudu, A.; Georgescu, S.E.; Costache, M. Expression Characterization of Six Genes Possibly Involved in Gonad Development for Stellate Sturgeon Individuals (Acipenser stellatus, Pallas 1771). Int. J. Genom. 2018, 2018, 7835637. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xia, Y.; Shao, C.; Han, L.; Chen, X.; Yu, M.; Sha, Z. Discovery and Identification of Candidate Sex-Related Genes Based on Transcriptome Sequencing of Russian Sturgeon (Acipenser gueldenstaedtii) Gonads. Physiol. Genom. 2016, 48, 464–476. [Google Scholar] [CrossRef] [Green Version]
- Degani, G.; Hurvitz, A.; Eliraz, Y.; Meerson, A. Sex-Related Gonadal Gene Expression Differences in the Russian Sturgeon (Acipenser gueldenstaedtii) Grown in Stable Aquaculture Conditions. Anim. Reprod. Sci. 2019, 200, 75–85. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, W.; Li, L.; Ma, X.; Chen, J. Genetic Variation and Relationships of Seven Sturgeon Species and Ten Interspecific Hybrids. Genet. Sel. Evol. 2013, 45, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.B.; Zhang, Y.; Dong, X.L.; Xi, Q.K.; Song, D.; Fu, H.T.; Sun, D.J. Comparative Transcriptome Analysis of Testes and Ovaries for the Discovery of Novel Genes from Amur Sturgeon (Acipenser schrenckii). Genet. Mol. Res. 2015, 14, 18913–18927. [Google Scholar] [CrossRef] [PubMed]
- Degani, G.; Hajouj, A.; Hurvitz, A. Sex-Based Variation of Gene Expression in the Gonads and Fins of Russian Sturgeon (Acipenser gueldenstaedtii). Open J. Anim. Sci. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Kuhl, H.; Guiguen, Y.; Höhne, C.; Kreuz, E.; Du, K.; Klopp, C.; Lopez-Roques, C.; Yebra-Pimentel, E.S.; Ciorpac, M.; Gessner, J.; et al. A 180 Myr-Old Female-Specific Genome Region in Sturgeon Reveals the Oldest Known Vertebrate Sex Determining System with Undifferentiated Sex Chromosomes. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200089. [Google Scholar] [CrossRef] [PubMed]
- Scribner, K.T.; Kanefsky, J. Molecular Sexing of Lake Sturgeon. J. Great Lakes Res. 2021, 47, 934–936. [Google Scholar] [CrossRef]
- Curzon, A.Y.; Shirak, A.; Meerson, A.; Degani, G.; Hurvitz, A.; Ben-Naim, N.; Domovitz, R.; Ron, M.; Seroussi, E. Cross-Species Conservation of a Transposase-Linked Element Enables Genetic Sexing of Commercial Populations of Russian Sturgeon (Acipenser gueldenstaedtii). Anim. Genet. 2022, 53, 441–446. [Google Scholar] [CrossRef]
- Lebeda, I.; Ráb, P.; Majtánová, Z.; Flajšhans, M. Artificial Whole Genome Duplication in Paleopolyploid Sturgeons Yields Highest Documented Chromosome Number in Vertebrates. Sci. Rep. 2020, 10, 19705. [Google Scholar] [CrossRef]
- Levy, S.E.; Myers, R.M. Advancements in Next-Generation Sequencing. Annu. Rev. Genom. Hum. Genet. 2016, 17, 95–115. [Google Scholar] [CrossRef] [Green Version]
- Lischer, H.E.L.; Shimizu, K.K. Reference-Guided de Novo Assembly Approach Improves Genome Reconstruction for Related Species. BMC Bioinform. 2017, 18, 474. [Google Scholar] [CrossRef] [Green Version]
- Paul-Prasanth, B.; Nakamura, M.; Nagahama, Y. Chapter 1—Sex Determination in Fishes. In Hormones and Reproduction of Vertebrates; Norris, D.O., Lopez, K.H., Eds.; Academic Press: London, UK, 2011; pp. 1–14. ISBN 978-0-12-375009-9. [Google Scholar]
- Rajendiran, P.; Jaafar, F.; Kar, S.; Sudhakumari, C.; Senthilkumaran, B.; Parhar, I.S. Sex Determination and Differentiation in Teleost: Roles of Genetics, Environment, and Brain. Biology 2021, 10, 973. [Google Scholar] [CrossRef]
- Nakamura, M. Sex Determination in Amphibians. Semin. Cell Dev. Biol. 2009, 20, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.-J.; Veltsos, P. The Diversity and Evolution of Sex Chromosomes in Frogs. Genes 2021, 12, 483. [Google Scholar] [CrossRef] [PubMed]
- Heule, C.; Salzburger, W.; Böhne, A. Genetics of Sexual Development: An Evolutionary Playground for Fish. Genetics 2014, 196, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, I.; Modi, D. Sex Determination in Teleost Fish. In Recent Updates in Molecular Endocrinology and Reproductive Physiology of Fish: An Imperative Step in Aquaculture; Sundaray, J.K., Rather, M.A., Kumar, S., Agarwal, D., Eds.; Springer: Singapore, 2021; pp. 121–138. ISBN 9789811583698. [Google Scholar]
- Liew, W.C.; Orbán, L. Zebrafish Sex: A Complicated Affair. Brief. Funct. Genom. 2014, 13, 172–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabián, M.; Morán, P.; Fernández, A.I.; Villanueva, B.; Chtioui, A.; Kent, M.P.; Covelo-Soto, L.; Fernández, A.; Saura, M. Identification of Genomic Regions Regulating Sex Determination in Atlantic Salmon Using High Density SNP Data. BMC Genom. 2019, 20, 764. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, R.M.; Seppey, M.; Simão, F.A.; Manni, M.; Ioannidis, P.; Klioutchnikov, G.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol. Evol. 2018, 35, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [Green Version]
- Aylward, F. Introduction to Calculating DN/DS Ratios with Codeml Protocol Metadata. Available online: https://www.protocols.io/view/introduction-to-calculating-dn-ds-ratios-with-code-qhwdt7e/metadata (accessed on 14 August 2022).
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Suyama, M.; Torrents, D.; Bork, P. PAL2NAL: Robust Conversion of Protein Sequence Alignments into the Corresponding Codon Alignments. Nucleic Acids Res. 2006, 34, W609–W612. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Garrison, E.; Marth, G. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [Green Version]
Reference Sequence | Start * | End * | Variants | Nearest Gene | Short Name | In Gene? |
---|---|---|---|---|---|---|
CACTIG010000023.1 | 35,214,339 | 35,219,825 | 46 | NC_048332.1|vascular_cell_adhesion_molecule_1b | vcam1b | + |
CACTIG010000039.1 | 31,510,109 | 31,517,637 | 52 | NC_048333.1|sorting_nexin-7-like | snx7 | − |
CACTIG010000069.1 | 54,920,692 | 54,925,300 | 30 | NC_048323.1|sorting_nexin-25-like | snx25 | + |
CACTIG010000082.1 | 11,280,103 | 11,289,542 | 32 | NC_048336.1|decorin-like | dcn | − |
CACTIG010000082.1 | 27,990,061 | 27,998,319 | 47 | NC_048336.1|dnaJ_homolog_subfamily_B_member_9-like | dnajb9 | − |
CACTIG010000152.1 | 22,143,064 | 22,149,608 | 86 | NC_048348.1|potassium_voltage-gated_channel_subfamily_C_member_1 | kcnc1 | + |
CACTIG010000179.1 | 61,245,978 | 61,249,200 | 32 | NC_048326.1|orofacial_cleft_1_candidate_gene_1_protein_homolog | ofcc1 | + |
CACTIG010000194.1 | 91,630,461 | 91,639,996 | 34 | NC_048325.1|neuropilin_and_tolloid-like_protein_1 | neto1 | − |
CACTIG010000208.1 | 13,330,045 | 13,338,213 | 34 | NC_048342.1|neuronal_migration_protein_doublecortin-like | dcx | − |
CACTIG010000217.1 | 58,035,319 | 58,039,159 | 39 | NC_048327.1|phosphatase_and_actin_regulator_2-like | phactr2 | + |
CACTIG010000217.1 | 58,052,280 | 58,058,468 | 42 | NC_048327.1|phosphatase_and_actin_regulator_2-like | phactr2 | + |
CACTIG010000236.1 | 7,300,133 | 7,309,147 | 31 | NC_048329.1|protein_mono-ADP-ribosyltransferase_PARP12-like | parp12 | + |
CACTIG010000236.1 | 11,730,268 | 11,739,819 | 37 | NC_048329.1|SH3_and_multiple_ankyrin_repeat_domains_3a | shank3a | + |
CACTIG010000236.1 | 12,145,816 | 12,147,030 | 30 | NC_048329.1|protein_FAM107B-like | fam107b | − |
CACTIG010000236.1 | 45,581,476 | 45,589,775 | 53 | NC_048329.1|synaptic_vesicular_amine_transporter-like | slc18 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degani, G.; Nevo Sarel, M.; Hajouj, A.; Hurvitz, A.; Veksler-Lublinsky, I.; Meerson, A. Whole-Genome Inter-Sex Variation in Russian Sturgeon (Acipenser gueldenstaedtii). Int. J. Mol. Sci. 2022, 23, 9469. https://doi.org/10.3390/ijms23169469
Degani G, Nevo Sarel M, Hajouj A, Hurvitz A, Veksler-Lublinsky I, Meerson A. Whole-Genome Inter-Sex Variation in Russian Sturgeon (Acipenser gueldenstaedtii). International Journal of Molecular Sciences. 2022; 23(16):9469. https://doi.org/10.3390/ijms23169469
Chicago/Turabian StyleDegani, Gad, Michal Nevo Sarel, Akram Hajouj, Avshalom Hurvitz, Isana Veksler-Lublinsky, and Ari Meerson. 2022. "Whole-Genome Inter-Sex Variation in Russian Sturgeon (Acipenser gueldenstaedtii)" International Journal of Molecular Sciences 23, no. 16: 9469. https://doi.org/10.3390/ijms23169469
APA StyleDegani, G., Nevo Sarel, M., Hajouj, A., Hurvitz, A., Veksler-Lublinsky, I., & Meerson, A. (2022). Whole-Genome Inter-Sex Variation in Russian Sturgeon (Acipenser gueldenstaedtii). International Journal of Molecular Sciences, 23(16), 9469. https://doi.org/10.3390/ijms23169469