Transcription Factors Runx1 and Runx3 Suppress Keratin Expression in Undifferentiated Keratinocytes
Abstract
:1. Introduction
2. Result
2.1. Both Runx1 and Runx3 Transcripts and Respective Proteins Were Expressed in Cultured Keratinocytes
2.2. Inhibition of Runx1 and Runx3 Expression Increased Keratin 1 and Keratin 10 Expression in Cultured Keratinocytes
2.3. Overexpression of Runx1 and Runx3 Suppressed Keratin 1 and Keratin 10 Expression in Cultured Keratinocytes
2.4. Endogenous Runx1 and Runx3 Proteins Is Associated with the Promoter Sequences of Keratin 1 and Keratin 10 Genes in Undifferentiated but Not Differentiated Keratinocytes
2.5. Inhibition of Runx1 and Runx3 Expression Did Not Alter Proliferation Capabilities of Cultured Keratinocytes
2.6. In Mouse Skin, Inhibition of Runx1 and Runx3 Expression Increased the Ratio of Keratin 1- and Keratin 10-Positive Keratinocytes in the Basal Layer of the Epidermis
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. RNAi and Recombinant Adenovirus Infection
4.3. Antibodies
4.4. Immunostaining of Cells and Tissues
4.5. Immunoblotting
4.6. Reverse Transcription Followed by Semi-Quantitative or Real-Time PCR (RT-PCR)
4.7. Chromatin Immunoprecipitation
4.8. Generation of Runx3-Floxed Mice
4.9. Generation of Keratinocyte-Specific Gene-Deletion Mice
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roop, D. Defects in the barrier. Science 1995, 267, 474–475. [Google Scholar] [CrossRef]
- Tomic-Canic, M.; Komine, M.; Freedberg, I.M.; Blumenberg, M. Epidermal signal transduction and transcription factor activation in activated keratinocytes. J. Dermatol. Sci. 1998, 17, 167–181. [Google Scholar] [CrossRef]
- Ghadially, R. 25 years of epidermal stem cell research. J. Investig. Dermatol. 2012, 132, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, E.; Sato, Y.; Minagawa, A.; Okuyama, R. Pathogenesis of psoriasis and development of treatment. J. Dermatol. 2018, 45, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Ratushny, V.; Gober, M.D.; Hick, R.; Ridky, T.W.; Seykora, J.T. From keratinocyte to cancer: The pathogenesis and modeling of cutaneous squamous cell carcinoma. J. Clin. Investig. 2012, 122, 464–472. [Google Scholar] [CrossRef]
- Okuyama, R.; Tagami, H.; Aiba, S. Notch signaling: Its role in epidermal homeostasis and in the pathogenesis of skin diseases. J. Dermatol. Sci. 2008, 49, 187–194. [Google Scholar] [CrossRef]
- Yang, A.; Schweitzer, R.; Sun, D.; Kaghad, M.; Walker, N.; Bronson, R.T.; Tabin, C.; Sharpe, A.; Caput, D.; Crum, C.; et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999, 398, 714–718. [Google Scholar] [CrossRef]
- Mills, A.A.; Zheng, B.; Wang, X.J.; Vogel, H.; Roop, D.R.; Bradley, A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999, 398, 708–713. [Google Scholar] [CrossRef]
- Nguyen, B.C.; Lefort, K.; Mandinova, A.; Antonini, D.; Devgan, V.; Della Gatta, G.; Koster, M.I.; Zhang, Z.; Wang, J.; Tommasi di Vignano, A.; et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 2006, 20, 1028–1042. [Google Scholar] [CrossRef]
- Okuyama, R.; Ogawa, E.; Nagoshi, H.; Yabuki, M.; Kurihara, A.; Terui, T.; Aiba, S.; Obinata, M.; Tagami, H.; Ikawa, S. p53 homologue, p51/p63, maintains the immaturity of keratinocyte stem cells by inhibiting Notch1 activity. Oncogene 2007, 26, 4478–4488. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, E.; Okuyama, R.; Ikawa, S.; Nagoshi, H.; Egawa, T.; Kurihara, A.; Yabuki, M.; Tagami, H.; Obinata, M.; Aiba, S. p51/p63 Inhibits ultraviolet B-induced apoptosis via Akt activation. Oncogene 2008, 27, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Koster, M.I. Making an epidermis. Ann. N. Y. Acad. Sci. 2009, 1170, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Laurikkala, J.; Mikkola, M.L.; James, M.; Tummers, M.; Mills, A.A.; Thesleff, I. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 2006, 133, 1553–1563. [Google Scholar] [CrossRef]
- Ortt, K.; Raveh, E.; Gat, U.; Sinha, S. A chromatin immunoprecipitation screen in mouse keratinocytes reveals Runx1 as a direct transcriptional target of DeltaNp63. J. Cell. Biochem. 2008, 104, 1204–1219. [Google Scholar] [CrossRef]
- Chuang, L.S.; Ito, K.; Ito, Y. RUNX family: Regulation and diversification of roles through interacting proteins. Int. J. Cancer 2013, 132, 1260–1271. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; van Deursen, J.; Hiebert, S.W.; Grosveld, G.; Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996, 84, 321–330. [Google Scholar] [CrossRef]
- Komori, T.; Yagi, H.; Nomura, S.; Yamaguchi, A.; Sasaki, K.; Deguchi, K.; Shimizu, Y.; Bronson, R.T.; Gao, Y.H.; Inada, M.; et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997, 89, 755–764. [Google Scholar] [CrossRef]
- Ito, K.; Lim, A.C.; Salto-Tellez, M.; Motoda, L.; Osato, M.; Chuang, L.S.; Lee, C.W.; Voon, D.C.; Koo, J.K.; Wang, H.; et al. RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 2008, 14, 226–237. [Google Scholar] [CrossRef]
- Li, Q.L.; Ito, K.; Sakakura, C.; Fukamachi, H.; Inoue, K.; Chi, X.Z.; Lee, K.Y.; Nomura, S.; Lee, C.W.; Han, S.B.; et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 2002, 109, 113–124. [Google Scholar] [CrossRef]
- Inoue, K.; Ozaki, S.; Shiga, T.; Ito, K.; Masuda, T.; Okado, N.; Iseda, T.; Kawaguchi, S.; Ogawa, M.; Bae, S.C.; et al. Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat. Neurosci. 2002, 5, 946–954. [Google Scholar] [CrossRef] [Green Version]
- Hennings, H.; Michael, D.; Cheng, C.; Steinert, P.; Holbrook, K.; Yuspa, S.H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 1980, 19, 245–254. [Google Scholar] [PubMed]
- Tarutani, M.; Itami, S.; Okabe, M.; Ikawa, M.; Tezuka, T.; Yoshikawa, K.; Kinoshita, T.; Takeda, J. Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc. Natl. Acad. Sci. USA 1997, 94, 7400–7405. [Google Scholar] [PubMed]
- Ichikawa, M.; Asai, T.; Saito, T.; Seo, S.; Yamazaki, I.; Yamagata, T.; Mitani, K.; Chiba, S.; Ogawa, S.; Kurokawa, M.; et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 2004, 10, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Masse, I.; Barbollat-Boutrand, L.; Molina, M.; Berthier-Vergnes, O.; Joly-Tonetti, N.; Martin, M.T.; Caron de Fromentel, C.; Kanitakis, J.; Lamartine, J. Functional interplay between p63 and p53 controls RUNX1 function in the transition from proliferation to differentiation in human keratinocytes. Cell Death Dis. 2012, 3, e318. [Google Scholar]
- Zolotarenko, A.; Chekalin, E.; Mesentsev, A.; Kiseleva, L.; Gribanova, E.; Mehta, R.; Baranova, A.; Tatarinova, T.V.; Piruzian, E.S.; Bruskin, S. Integrated computational approach to the analysis of RNA-seq data reveals new transcriptional regulators of psoriasis. Exp. Mol. Med. 2016, 48, e268. [Google Scholar] [CrossRef]
- Tsoi, L.C.; Spain, S.L.; Knight, J.; Ellinghaus, E.; Stuart, P.E.; Capon, F.; Ding, J.; Li, Y.; Tejasvi, T.; Gudjonsson, J.E.; et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 2012, 44, 1341–1348. [Google Scholar]
- Okuyama, R.; Nguyen, B.C.; Talora, C.; Ogawa, E.; Tommasi di Vignano, A.; Lioumi, M.; Chiorino, G.; Tagami, H.; Woo, M.; Dotto, G.P. High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. Dev. Cell 2004, 6, 551–562. [Google Scholar]
- Kohu, K.; Ohmori, H.; Wong, W.F.; Onda, D.; Wakoh, T.; Kon, S.; Yamashita, M.; Nakayama, T.; Kubo, M.; Satake, M. The Runx3 transcription factor augments Th1 and down-modulates Th2 phenotypes by interacting with and attenuating GATA3. J. Immunol. 2009, 183, 7817–7824. [Google Scholar] [CrossRef]
- Shang, Y.; Hu, X.; DiRenzo, J.; Lazar, M.A.; Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000, 103, 843–852. [Google Scholar]
- Yagi, T.; Tokunaga, T.; Furuta, Y.; Nada, S.; Yoshida, M.; Tsukada, T.; Saga, Y.; Takeda, N.; Ikawa, Y.; Aizawa, S. A novel ES cell line, TT2, with high germline-differentiating potency. Anal. Biochem. 1993, 214, 70–76. [Google Scholar]
- Kanki, H.; Suzuki, H.; Itohara, S. High-efficiency CAG-FLPe deleter mice in C57BL/6J background. Exp. Anim. 2006, 55, 137–141. [Google Scholar] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, E.; Edamitsu, T.; Ohmori, H.; Kohu, K.; Kurokawa, M.; Kiyonari, H.; Satake, M.; Okuyama, R. Transcription Factors Runx1 and Runx3 Suppress Keratin Expression in Undifferentiated Keratinocytes. Int. J. Mol. Sci. 2022, 23, 10039. https://doi.org/10.3390/ijms231710039
Ogawa E, Edamitsu T, Ohmori H, Kohu K, Kurokawa M, Kiyonari H, Satake M, Okuyama R. Transcription Factors Runx1 and Runx3 Suppress Keratin Expression in Undifferentiated Keratinocytes. International Journal of Molecular Sciences. 2022; 23(17):10039. https://doi.org/10.3390/ijms231710039
Chicago/Turabian StyleOgawa, Eisaku, Tomohiro Edamitsu, Hidetaka Ohmori, Kazuyoshi Kohu, Mineo Kurokawa, Hiroshi Kiyonari, Masanobu Satake, and Ryuhei Okuyama. 2022. "Transcription Factors Runx1 and Runx3 Suppress Keratin Expression in Undifferentiated Keratinocytes" International Journal of Molecular Sciences 23, no. 17: 10039. https://doi.org/10.3390/ijms231710039
APA StyleOgawa, E., Edamitsu, T., Ohmori, H., Kohu, K., Kurokawa, M., Kiyonari, H., Satake, M., & Okuyama, R. (2022). Transcription Factors Runx1 and Runx3 Suppress Keratin Expression in Undifferentiated Keratinocytes. International Journal of Molecular Sciences, 23(17), 10039. https://doi.org/10.3390/ijms231710039