A Self-Supplying H2O2 Modified Nanozyme-Loaded Hydrogel for Root Canal Biofilm Eradication
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Modified Nanozyme
2.2. Characterization of the Modified Nanozyme-Loaded Hydrogel
2.3. Release Profile of ROS from the Hydrogel
2.4. Concentration Selection of the Modified Nanozymes
2.5. Antibiofilm In Vitro
2.6. Effect of the Modified Nanozyme-Loaded Hydrogel on Bacterial Structure
2.7. Detection of Extracellular Polysaccharides
2.8. In Vivo Antibiofilm Activity
2.8.1. Imaging Examination
2.8.2. Histological Analysis
2.8.3. In Vivo Safety
3. Discussion
4. Materials and Methods
4.1. Synthesis and Characterization of the Modified Nanozyme
4.2. Synthesis and Characterization of the Modified Nanozyme-Loaded Hydrogels
4.3. Detection of ROS Release from the Hydrogels
4.4. Concentration Selection of the Modified Nanozyme
4.4.1. CCK-8 Assay
4.4.2. CFU Count Test
4.5. In Vitro Antibiofilm Test
4.5.1. Effect of the Modified Nanozyme Hydrogel on Single-Strain Biofilms
4.5.2. Effects of the Modified Nanozyme Hydrogel on Multi-Strain Biofilms
4.6. Effect of the Modified Nanozyme Hydrogel on Bacterial Biofilm Structure
4.7. Exopolysaccharide Detection
4.8. In Vivo Experiments
4.8.1. Preparation of the Root Canal System
4.8.2. Intracanal Infection
4.8.3. Intracanal Medication
4.8.4. Radiographic and Histological Analyses
4.8.5. In Vivo Safety
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Xu, Y.; Liu, M.; Yu, J.; Yang, H.; Lei, W.; Huang, C. An MSN-based synergistic nanoplatform for root canal bio-film eradication via fenton-enhanced sonodynamic therapy. J. Mater. Chem. B 2021, 9, 7686–7697. [Google Scholar] [PubMed]
- Sasser, L. Endodontic disinfection for orthograde root canal treatment in veterinary dentistry. J. Veter. Dent. 2020, 37, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Seracchiani, M.; Donfrancesco, O.; Relucenti, M.; Reda, R.; Zanza, A.; Gambarini, G.; Testarelli, L. In vitro evaluation of a recently developed rotary file: AF rotary. Braz. Dent. Sci. 2021, 24, 2558. [Google Scholar] [CrossRef]
- Lakhani, A.A.; Sekhar, K.S.; Gupta, P.; Tejolatha, B.; Gupta, A.; Kashyap, S.; Desai, V.; Farista, S. Efficacy of triple anti-biotic paste, moxifloxacin, calcium hydroxide and 2% chlorhexidine gel in elimination of E. faecalis: An in vitro study. J. Clin. Diagn. Res. 2017, 11, ZC06–ZC09. [Google Scholar]
- Baras, B.H.; Wang, S.; Melo, M.A.S.; Tay, F.; Fouad, A.F.; Arola, D.D.; Weir, M.D.; Xu, H.H.K. Novel bioactive root canal sealer with antibiofilm and remineralization properties. J. Dent. 2019, 83, 67–76. [Google Scholar] [CrossRef]
- Demenech, L.S.; Tomazinho, F.S.F.; Baratto-Filho, F.; Brancher, J.A.; Pereira, L.F.; Gabardo, M.C.L. Biocompatibility of the 8.25% sodium hypochlorite irrigant solution in endodontics: An in vivo study. Microsc. Res. Tech. 2021, 84, 1506–1512. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, Q.; Jiang, Y.; Wu, X.; Yue, X.; Geng, Y.; Shen, J.; Ding, D. Semiconducting polymer nanoparticles with intramolecular motion-induced photothermy for tumor phototheranostics and tooth root canal therapy. Adv. Mater. 2022, 34, e2200179. [Google Scholar] [CrossRef]
- Bonsor, S.J.; Nichol, R.; Reid, T.M.S.; Pearson, G.J. An alternative regimen for root canal disinfection. Br. Dent. J. 2006, 201, 101–105. [Google Scholar] [CrossRef]
- Supranoto, S.C.; Slot, D.E.; Addy, M.; Van der Weijden, G.A. The effect of chlorhexidine dentifrice or gel versus chlorhexidine mouthwash on plaque, gingivitis, bleeding and tooth discoloration: A systematic review. Int. J. Dent. Hyg. 2015, 13, 83–92. [Google Scholar] [CrossRef]
- Liu, H.; Shen, Y.; Wang, Z.; Haapasalo, M. The ability of different irrigation methods to remove mixtures of calcium hydroxide and barium sulphate from isthmuses in 3D printed transparent root canal models. Odontology 2021, 110, 27–34. [Google Scholar] [CrossRef]
- Xiao, J.; Hai, L.; Li, Y.; Li, H.; Gong, M.; Wang, Z.; Tang, Z.; Deng, L.; He, D. An ultrasmall Fe3O4-decorated polydopamine hybrid nanozyme enables continuous conversion of oxygen into toxic hydroxyl radical via GSH-depleted cascade redox reactions for intensive wound disinfection. Small 2022, 18, e2105465. [Google Scholar]
- Unnikrishnan, B.; Lien, C.-W.; Chu, H.-W.; Huang, C.-C. A review on metal nanozyme-based sensing of heavy metal ions: Challenges and future perspectives. J. Hazard. Mater. 2021, 401, 123397. [Google Scholar] [CrossRef]
- Li, F.; Zang, M.; Hou, J.; Luo, Q.; Yu, S.; Sun, H.; Xu, J.; Liu, J. Cascade catalytic nanoplatform constructed by laterally-functionalized pillar [5] arenes for antibacterial chemodynamic therapy. J. Mater. Chem. B 2021, 9, 5069–5075. [Google Scholar]
- Song, M.; Cheng, Y.; Tian, Y.; Chu, C.; Zhang, C.; Lu, Z.; Chen, X.; Pang, X.; Liu, G. Sonoactivated chemodynamic therapy: A robust ROS generation nanotheranostic eradicates multidrug-resistant bacterial infection. Adv. Funct. Mater. 2020, 30, 2003587. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, H.; Sun, B.; Du, S.; Cui, S.; Zhang, L.; Ding, N.; Yang, D. PH-responsive oxygen and hydrogen peroxide self-supplying nanosystem for photodynamic and chemodynamic therapy of wound infection. ACS Appl. Mater. Interfaces 2021, 13, 59720–59730. [Google Scholar]
- Cui, H.; Liu, M.; Yu, W.; Cao, Y.; Zhou, H.; Yin, J.; Liu, H.; Que, S.; Wang, J.; Huang, C.; et al. Copper peroxide-loaded gelatin sponges for wound dressings with antimicrobial and accelerating healing properties. ACS Appl. Mater. Interfaces 2021, 13, 26800–26807. [Google Scholar]
- Gao, S.; Jin, Y.; Ge, K.; Li, Z.; Liu, H.; Dai, X.; Zhang, Y.; Chen, S.; Liang, X.; Zhang, J. Self-supply of O2 and H2O2 by a nanocatalytic medicine to enhance combined chemo/chemodynamic therapy. Adv. Sci. 2019, 6, 1902137. [Google Scholar] [CrossRef]
- Mamat, M.; Wang, X.; Wu, L.; Zhao, R.; Cao, J.; Qi, X.; Shen, S. CaO2/Fe3O4 nanocomposites for oxygen-independent generation of radicals and cancer therapy. Colloids Surf B Biointerfaces 2021, 204, 111803. [Google Scholar]
- Shen, J.; Yu, H.; Shu, Y.; Ma, M.; Chen, H. A robust ROS generation strategy for enhanced chemodynamic/photodynamic therapy via H2O2/O2 self-supply and Ca2+ overloading. Adv. Funct. Mater. 2021, 31, 2106106. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Huang, J.; Zhao, M.; Wu, J. In situ formation of injectable hydrogels for chronic wound healing. J. Mater. Chem. B 2020, 8, 8768–8780. [Google Scholar] [CrossRef]
- Smith, M.H.; Lyon, L.A. Multifunctional nanogels for siRNA delivery. Acc. Chem. Res. 2012, 45, 985–993. [Google Scholar] [CrossRef]
- Shi, L.; Wang, F.; Zhu, W.; Xu, Z.; Fuchs, S.; Hilborn, J.; Zhu, L.; Ma, Q.; Wang, Y.; Weng, X.; et al. Self-healing silk fibroin-based hydrogel for bone regeneration: Dynamic metal-ligand self-assembly approach. Adv. Funct. Mater. 2017, 27, 591. [Google Scholar] [CrossRef]
- Li, D.; Zhao, L.; Cong, M.; Liu, L.; Yan, G.; Li, Z.; Li, B.; Yu, W.; Sun, H.; Yang, B. Injectable thermosensitive chitosan/gelatin-based hydrogel carried erythropoietin to effectively enhance maxillary sinus floor augmentation in vivo. Dent. Mater. 2020, 36, e229–e240. [Google Scholar] [CrossRef]
- Xu, X.; Gu, Z.; Chen, X.; Shi, C.; Liu, C.; Liu, M.; Wang, L.; Sun, M.; Zhang, K.; Liu, Q.; et al. An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater. 2019, 86, 235–246. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. ISO Copyright Office: Geneva, Switzerland, 2009; pp. 10993–10995.
- Wu, M.-K.; Dummer, P.; Wesselink, P.R. Consequences of and strategies to deal with residual post-treatment root canal infection. Int. Endod. J. 2006, 39, 343–356. [Google Scholar] [CrossRef]
- Li, W.; Yang, H.; Gong, Y.; Wang, S.; Li, Y.; Wei, H. Effects of a chimeric lysin against planktonic and sessile entero-coccus faecalis hint at potential application in endodontic therapy. Viruses 2018, 10, 290. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Everett, J.; Sidow, S.; Bergeron, B.E.; Tian, F.; Ma, J.; Tay, F.R. In vitro evaluation of efficacy of two endodontic sonic-powered irrigant agitation systems in killing single-species intracanal biofilms. J. Dent. 2021, 115, 103859. [Google Scholar] [CrossRef]
- Marinković, J.; Ćulafić, D.M.; Nikolić, B.; Đukanović, S.; Marković, T.; Tasić, G.; Ćirić, A.; Marković, D. Antimicrobial potential of irrigants based on essential oils of cymbopogon martinii and Thymus zygis towards in vitro multispecies biofilm cultured in ex vivo root canals. Arch. Oral Biol. 2020, 117, 104842. [Google Scholar] [CrossRef]
- Basrani, B.; Tjäderhane, L.; Santos, J.; Pascon, E.; Grad, H.; Lawrence, H.; Friedman, S. Efficacy of chlorhexidine- and calcium hydroxide-containing medicaments against Enterococcus faecalis in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2003, 96, 618–624. [Google Scholar] [CrossRef]
- Qiu, Y.; Tan, G.; Fang, Y.; Liu, S.; Zhou, Y.; Kumar, A.; Trivedi, M.; Liu, D.; Liu, J.-Q. Biomedical applications of metal-organic framework (MOF)-based nano-enzymes. New J. Chem. 2021, 45, 20987–21000. [Google Scholar] [CrossRef]
- Cui, R.; Shi, J.; Liu, Z. Metal-organic framework-encapsulated nanoparticles for synergetic chemo/chemodynamic therapy with targeted H2O2 self-supply. Dalton Trans. 2021, 50, 15870–15877. [Google Scholar] [CrossRef]
- Lin, Y.; Dai, Y.; Zhang, L.; Wu, Q. Efficient degradation of phenol in aqueous solution by Fe2+/H2O2/CaO2 system. Environ. Technol. Innov. 2022, 27, 102320. [Google Scholar] [CrossRef]
- Xue, G.; Zheng, M.; Qian, Y.; Li, Q.; Gao, P.; Liu, Z.; Chen, H.; Li, X. Comparison of aniline removal by UV/CaO2 and UV/H2O2: Degradation kinetics and mechanism. Chemosphere 2020, 255, 126983. [Google Scholar] [CrossRef]
- Han, Y.; Ouyang, J.; Li, Y.; Wang, F.; Jiang, J.H. Engineering H2O2 self-supplying nanotheranostic platform for targeted and imaging-guided chemodynamic therapy. ACS Appl. Mater. Interfaces 2020, 12, 288–297. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Qin, J.; Lei, L. Improvement of H2O2 utilization by the persistent heterogeneous fenton reaction with the Fe3O4-zeolite-cyclodextrin composite. Ind. Eng. Chem. Res. 2020, 59, 2192–2202. [Google Scholar] [CrossRef]
- Li, Z.; Rong, L. Cascade reaction-mediated efficient ferroptosis synergizes with immunomodulation for high-performance cancer therapy. Biomater. Sci. 2020, 8, 6272–6285. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.L.; Wang, X.Y. Inhibition of enterococcus faecalis by calcium peroxide. Chin. J. Dent Res. 2016, 19, 109–113. [Google Scholar] [CrossRef]
- Thi, P.L.; Lee, Y.; Tran, D.L.; Hoang Thi, T.T.; Park, K.M.; Park, K.D. Calcium peroxide-mediated in situ formation of multifunctional hydrogels with enhanced mesenchymal stem cell behaviors and antibacterial properties. J. Mater. Chem. B 2020, 8, 11033–11043. [Google Scholar] [CrossRef]
- Bukhari, S.; Kim, D.; Liu, Y.; Karabucak, B.; Koo, H. Novel endodontic disinfection approach using catalytic nanoparticles. J. Endod. 2018, 44, 806–812. [Google Scholar] [CrossRef]
- Sun, Q.; Duan, M.; Fan, W.; Fan, B. Ca-Si mesoporous nanoparticles with the optimal Ag-Zn ratio inhibit the Enterococcus faecalis infection of teeth through dentinal tubule infiltration: An in vitro and in vivo study. J. Mater. Chem. B 2021, 9, 2200–2211. [Google Scholar] [CrossRef]
- El Karim, I.; Kennedy, J.; Hussey, D. The antimicrobial effects of root canal irrigation and medication. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2007, 103, 560–569. [Google Scholar] [CrossRef]
- Yang, S.; Lian, G. ROS and diseases: Role in metabolism and energy supply. Mol. Cell Biochem. 2020, 467, 1–12. [Google Scholar] [CrossRef]
- Tang, W.; Zhao, Z.; Chong, Y.; Wu, C.; Liu, Q.; Yang, J.; Zhou, R.; Lian, Z.-X.; Liang, G. Tandem enzymatic self-assembly and slow release of dexamethasone enhances its antihepatic fibrosis effect. ACS Nano 2018, 12, 9966–9973. [Google Scholar] [CrossRef]
- Klouda, L. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2015, 97, 338–349. [Google Scholar] [CrossRef]
- Xu, X.; Shen, Y.; Wang, W.; Sun, C.; Li, C.; Xiong, Y.; Tu, J. Preparation and in vitro characterization of thermosensitive and mucoadhesive hydrogels for nasal delivery of phenylephrine hydrochloride. Eur. J. Pharm. Biopharm. 2014, 88, 998–1004. [Google Scholar] [CrossRef]
- Bai, R.G.; Muthoosamy, K.; Manickam, S.; Hilal-Alnaqbi, A. Graphene-based 3D scaffolds in tissue engineering: Fabrication, applications, and future scope in liver tissue engineering. Int. J. Nanomed. 2019, 14, 5753–5783. [Google Scholar] [CrossRef] [Green Version]
- Pereira, T.C.; Dijkstra, R.J.B.; Petridis, X.; Sharma, P.K.; van de Meer, W.J.; van der Sluis, L.W.M.; de Andrade, F.B. Chemical and mechanical influence of root canal irrigation on biofilm removal from lateral morphological features of simulated root canals, dentine discs and dentinal tubules. Int. Endod. J. 2020, 54, 112–129. [Google Scholar] [CrossRef]
- Tan, H.Y.; Wang, N.; Li, S.; Hong, M.; Wang, X.; Feng, Y. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell Longev. 2016, 2016, 2795090. [Google Scholar] [CrossRef]
- Warnatsch, A.; Tsourouktsoglou, T.-D.; Branzk, N.; Wang, Q.; Reincke, S.; Herbst, S.; Gutierrez, M.; Papayannopoulos, V. Reactive oxygen species localization programs inflammation to clear microbes of different size. Immunity 2017, 46, 421–432. [Google Scholar] [CrossRef]
- Park, J.W.; Hanawa, T.; Chung, J.H. The relative effects of Ca and Mg ions on MSC osteogenesis in the surface modification of microrough Ti implants. Int. J. Nanomed. 2019, 14, 5697–5711. [Google Scholar] [CrossRef]
- Youssef, A.-R.; Emara, R.; Taher, M.M.; Al-Allaf, F.A.; Almalki, M.; Almasri, M.A.; Siddiqui, S.S. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health 2019, 19, 133. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Huang, J.; Zhang, W.; Xue, W.; Jiang, Y.; Li, S.; Wu, X.; Xu, H.; Ren, J.; Chi, B. Mechanoadaptive injectable hydrogel based on poly (gamma-glutamic acid) and hyaluronic acid regulates fibroblast migration for wound healing. Carbohydr. Polym. 2021, 273, 118607. [Google Scholar] [CrossRef]
- Albuquerque, M.T.P.; Evans, J.D.; Gregory, R.L.; Valera, M.C.; Bottino, M.C. Antibacterial TAP-mimic electrospun polymer scaffold: Effects on P. gingivalis-infected dentin biofilm. Clin. Oral Investig. 2015, 20, 387–393. [Google Scholar] [CrossRef]
Groups | Mean ± SD | p Value |
---|---|---|
Fe3O4-CaO2-Hydrogel | 0.12 ± 0.01 | p < 0.0001 |
CaO2-Hydrogel | 0.34 ± 0.04 | p < 0.0001 |
Fe3O4-Hydrogel | 0.70 ± 0.06 | p < 0.05 |
Hydrogel | 0.80 ± 0.08 | p > 0.05 |
Groups | Mean ± SD | p Value |
---|---|---|
Fe3O4-CaO2-Hydrogel | 0.43 ± 0.10 | p < 0.01 |
CaO2-Hydrogel | 0.75 ± 0.06 | p < 0.05 |
Fe3O4-Hydrogel | 1.20 ± 0.29 | p > 0.05 |
Hydrogel | 1.35 ± 0.31 | p > 0.05 |
Ca(OH)2 | 0.75 ± 0.24 | p < 0.05 |
Groups | Mean ± SD | p Value |
---|---|---|
Fe3O4-CaO2-Hydrogel | 0.53 ± 0.13 | p < 0.05 |
CaO2-Hydrogel | 0.60 ± 0.12 | p < 0.05 |
Fe3O4-Hydrogel | 1.18 ± 0.21 | p > 0.05 |
Hydrogel | 1.18 ± 0.29 | p > 0.05 |
Ca(OH)2 | 0.64 ± 0.21 | p < 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Hong, L.; Zou, X.; Alshawwa, H.; Zhao, Y.; Zhao, H.; Liu, X.; Si, C.; Zhang, Z. A Self-Supplying H2O2 Modified Nanozyme-Loaded Hydrogel for Root Canal Biofilm Eradication. Int. J. Mol. Sci. 2022, 23, 10107. https://doi.org/10.3390/ijms231710107
Song J, Hong L, Zou X, Alshawwa H, Zhao Y, Zhao H, Liu X, Si C, Zhang Z. A Self-Supplying H2O2 Modified Nanozyme-Loaded Hydrogel for Root Canal Biofilm Eradication. International Journal of Molecular Sciences. 2022; 23(17):10107. https://doi.org/10.3390/ijms231710107
Chicago/Turabian StyleSong, Jiazhuo, Lihua Hong, Xinying Zou, Hamed Alshawwa, Yuanhang Zhao, Hong Zhao, Xin Liu, Chao Si, and Zhimin Zhang. 2022. "A Self-Supplying H2O2 Modified Nanozyme-Loaded Hydrogel for Root Canal Biofilm Eradication" International Journal of Molecular Sciences 23, no. 17: 10107. https://doi.org/10.3390/ijms231710107
APA StyleSong, J., Hong, L., Zou, X., Alshawwa, H., Zhao, Y., Zhao, H., Liu, X., Si, C., & Zhang, Z. (2022). A Self-Supplying H2O2 Modified Nanozyme-Loaded Hydrogel for Root Canal Biofilm Eradication. International Journal of Molecular Sciences, 23(17), 10107. https://doi.org/10.3390/ijms231710107