An Introduction to Spiral Steroids
Abstract
:1. Introduction
1.1. What Is a Spiral Steroid?
1.2. Naming, Symbols and Abbreviations
1.3. Mass Spectra of Steroid Phosphocholine Diesters
1.4. Steroid Ethanolamine Phosphodiesters (SEP)
1.5. Mass Spectral Analysis of Steroid Ethanolamine Phosphodiesters (SEP)
2. Biochemistry of Spiral Steroids
2.1. Initial Candidates for DLM
2.2. How Did We Find Spiral Steroids?
2.3. Why Were Spiral Steroids Not Found Prior to These Investigations?
2.4. How Did We Isolate the Phosphocholine Steroid Diesters?
2.5. Determining the Chemical Formula of the Steroid
2.6. Biosynthesis of Steroid Ethanolamine Phosphate Diester—Part 1—The Phosphate
2.7. Biosynthesis of Phosphosteroid Diesters—Part 2—The Steroid
3. Proposed Function of Steroid Phosphocholine Diesters
3.1. Function of the 23-Carbon Atom Class of Steroid Phosphocholine Diesters
3.2. Function of the 24-Carbon Atom Class of Steroid Phosphocholine Diesters
3.3. Function of the 25-Carbon Atom Class of Steroid Phosphocholine Diesters
3.4. Spiral Steroids during Pregnancy
3.5. Is There a Role for Replacement Hormone Therapy for Spiral Steroids?
4. Materials and Methods
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- The first column identifies a particular trial;
- The second column selects the number of carbon atoms in the particular trial. The third column has the number of oxygen atoms in the trial;
- To obtain the m/z of the steroid, 17 Da must be added to the m/z observed in the steroid fragment, observed within the mass spectrum. When phosphoesters fragment, the oxygen between the phosphorus and the carbon atom remains attached to the phosphorus atom. Carboxylic acids must be protonated to be detected in the positive ion spectrum. Thus, only 15 Da needs to be added to get the correct m/z value, if the proposed structure contains a carboxylic acid;
- H-Max is the maximum number of hydrogens that could form a molecule. It is twice the number of carbon atoms plus two. H-Max must be larger than H-Req;
- The H-Req in each trial (hydrogen atoms required to make a molecule) is calculated by subtracting the contributions to the m/z from the carbon and oxygen atoms;
- Delta is half the difference between H-Max and H-Req. Delta is the number of double bonds, or rings, in the proposed structure. Each Delta reduces the number of hydrogens required by two atoms. Alkenes, ketones, and carboxylic acids each contribute one Delta. Steroids must have Delta greater than 4 because of the four rings in the gonane. Delta must be between 4 and 12 to be consistent with a steroid molecule;
- The next line in the table increases the number of oxygen atoms, and repeats the calculation. After the range of possible Delta is exceeded, the next lines increase the number of carbon atoms, and the process is repeated;
- Knowledge of steroid enzyme biochemistry is used to restrict choices. For example, Occam’s razor suggests C337, C339, and C341, represent step wise reduction of double bonds or ketones. Similarly, MS-MS fragmentation with loss of 18 Da suggests the presence of a hydroxy group. The hydroxy group could not be at carbons 18, 19, or 21 because the adjacent carbon is a tertiary carbon;
- Finally, bold print identifies the composition that best fits the steroid fragment;
- The proposed composition does not eliminate stereoisomers.
21-carbon compounds | C313 | C329 | |||
23-carbon compounds | C337 | C339 | C341 | C361 * | C363 * |
24-carbon compounds | C353 | C369 | C389 * | ||
25-carbon compounds | X381 | X401 * | X413 |
References
- Szent-Gyorgyi, A. Chemical Physiology of Contraction in Body and Heart Muscle; Academic Press: New York, NY, USA, 1955. [Google Scholar]
- Shaikh, I.; Lau, B.; Siegfried, B.; Valdes, R. Isolation of Digoxin-like immunoreactive Factors from Mammalian Adrenal Cortex. J. Biol. Chem. 1991, 266, 13672–13678. [Google Scholar] [CrossRef]
- Hamlyn, J.; Blaustein, M.; Bova, S.; DuCharme, D.; Harris, D.; Mandel, F.; Mathews, W.; Ludens, J. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. USA 1991, 88, 6259–6263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedorva, O.; Talan, M.; Agalarov, N.; Lakita, E.; Bagrov, A. Endogenous Ligand of α1 Sodium Pump, Marinobufagenin, is a Novel Mediator of Sodium Chloride-Dependent Hypertension. Circulation 2002, 105, 1122–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slominski, A.; Zmijewski, M.; Semak, I.; Sweatman, T.; Janjetovic, Z.; Li, W.; Zjawiony, J. Sequential metabolism of 7-dehydrocholesterol to steroid 5,7-dienes in adrenal glands and its biological implication in skin. PLoS ONE 2008, 4, e4309. [Google Scholar] [CrossRef] [Green Version]
- Shackleton, C.; Roitman, E.; Guo, L.; Wilson, W.; Porter, F. Identification of 7(8) and 8(9) unsaturated adrenal steroid metabolites produced by patients with 7-dehydrosterol-delta-7-reductase deficiency (Smith-Lemli-Opitz Syndrome). J. Steroid Biochem. Mol. Biol. 2002, 82, 225–232. [Google Scholar] [CrossRef]
- Chasalow, F.; Pierce-Cohen, L. Ionotropin is the mammalian digoxin-like material (DLM). It is a phosphocholine ester of a steroid with 23 carbon atoms. Steroids 2018, 136, 63–75. [Google Scholar] [CrossRef]
- Chasalow, F. Spiral Phosphocholine Steroids and DLM in Chicken Eggs (Gallus gallus domesticus). EC Paediatr. 2019, 8, 1–12. [Google Scholar] [CrossRef]
- Chasalow, F. A New Concept: Ionotropin might be a Factor in Mobilization for [a] the Fight or Flight Response and [b] Child Birth. Pediatrics (E-Cronicon) 2018, 7, 909–918. [Google Scholar] [CrossRef]
- Chasalow, F. Phosphocholine Steroid Esters in Pacific Oysters (Crassostrea gigas). EC Paediatr. 2020, 9, 115–126. [Google Scholar] [CrossRef]
- Sabbadin, C.; Calo, L.; Armanini, D. The story of spironolactone from 1957 to now: From sodium balance to inflammation. G Ital. Nephrol 2016, 33, S66. [Google Scholar]
- Walsh, P.; Crawford, F.; Hawker, C. Measurement of digoxin by radioimmunoassay. Ann. Clin. Lab. Science. 1977, 7, 79–87. [Google Scholar]
- Graves, S. The Possible role of Digitalislike Factors in Pregnancy-Induced Hypertension. Hypertension 1987, 10 (Suppl. I), I-84–I-86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagrov, A.; Shapiro, J.; Fedorova, O. Endogenous Cardiotonic Steroids: Physiology, Pharmacology, and Novel Therapeutic Targets. Pharmacol. Rev. 2009, 61, 9–38. [Google Scholar] [CrossRef] [PubMed]
- Hamlyn, J.; Blaustein, M. Endogenous Ouabain: Recent Advances and Controversies. Hypertension 2016, 68, 526–532. [Google Scholar] [CrossRef]
- Blaustein, M. Why isn’t endogenous ouabain more widely accepted? Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H635–H639. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, M.G.; Lewis, K.; Yandle, T.; Lord, G.; McKinnon, W.; Hilton, P. Ouabain, a circulating hormone secreted by the adrenals, is pivotal in cardiovascular disease. Fact or fantasy? J. Hypertens. 2009, 27, 3–8. [Google Scholar] [CrossRef]
- Abi-Ghanem, D.; Lai, X.; Berghman, L.; Horvat, D.; Li, J.; Romo, D.; Uddin, N.; Kamano, Y.; Nogawa, T.; Xu, J.; et al. A chemiflourescent immunoassay for the determination of marinobufagenin in body fluids. J. Immunoass. Immunochem. 2011, 32, 331–346. [Google Scholar] [CrossRef]
- Lenaerts, C.; Bond, L.; Tuytten, R.; Delporte, C.; Antwerpen, P.; Blankert, P. D3. Early prediction of preeclampsia risk assessment: Analytical determination for marinobufagenin in pregnant women. J. Matern.-Fetal Neonatal Med. 2016, 29 (Suppl. S2), 18. [Google Scholar] [CrossRef]
- Chasalow, F.; Blethen, S.; Taysi, K. Possible abnormalities of steroid secretion in children with Smith-Lemli-Opitz syndrome and their parents. Steroids 1985, 46, 827–843. [Google Scholar] [CrossRef]
- Bradlow, H.; Fleisher, M.; Breed, C.; Chasalow, F. Biochemical classification of patients with gross cystic breast disease. N. Y. Acad. Sci. 1990, 586, 12–16. [Google Scholar] [CrossRef]
- Chasalow, F.; Bradlow, H.L. Digoxin-like materials in human breast cyst fluids. Ann. N. Y. Acad. Sci. 1990, 586, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Gibellini, F.; Smith, T. The Kennedy Pathway—De Novo Synthesis of phosphatidyl ethanol-amine and Phosphatidylcholine. IUBMB Life 2010, 62, 414–428. [Google Scholar] [CrossRef] [PubMed]
- Bobenchik, A.; Augagneur, Y.; Hao, B.; Hoch, J.; Mamoun, C. Phosphoethanolamine methyltransferases in phosphocholine biosynthesis: Functions and potential for antiparasite therapy. FEMS Microbiol. Rev. 2011, 35, 609–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burstein, S.; Gut, M. Biosynthesis of pregnenolone. Recent Prog. Horm. Res. 1971, 27, 303–349. [Google Scholar] [CrossRef] [PubMed]
- Tentori, S.; Messaggio, E.; Brioni, E.; Casamassima, N.; Simoni, M.; Zagato, L.; Hamlyn, J.; Manunta, P.; Lanzani, C. Endogenous ouabain and aldosterone are co-elevated in the circulation of patients with essential hypertension. J. Hypertens. 2016, 34, 2074–2080. [Google Scholar] [CrossRef]
- Manunta, P.; Ferrandi, M.; Bianchi, G.; Hamlyn, J. Endogenous ouabain in cardiovascular function and disease. J. Hypertens. 2009, 27, 9–18. [Google Scholar] [CrossRef]
- Chasalow, F.; John, C.; Bochner, R. Spiral steroids as potential markers for pre-eclampsia: A pilot study. Steroids 2019, 151, 108466. [Google Scholar] [CrossRef]
- Chasalow, F. Pre-eclampsia: It’s all about Potassium. In Eclampsia; Wright, S., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2021; pp. 63–113. ISBN 978-1-53619-574-3. [Google Scholar]
- Chasalow, F.; Blethen, S. Steroid Metabolic Consequences of 7-Dehydrosterol Reductase Deficiency (SLO). EC Paediatr. 2020, 9, 60–69. [Google Scholar] [CrossRef]
- Chasalow, F. Role of Spiral Steroids in Pregnancy and Pre-Eclampsia; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/online-first/78858 (accessed on 10 July 2022).
Line | M | S | A | B | C | D | ||
---|---|---|---|---|---|---|---|---|
(Da) | (Da) | (Da) | (Da) | (Da) | (Da) | |||
Phosphodiester precursor with 21 carbon atoms | ||||||||
1 | & | 330 | 313 | 459 | 496 | 518 | 534 | |
2 | 346 | 329 | 475 | 512 | 534 | 560 | ||
Phosphodiesters with 23 carbon atoms | ||||||||
3 | @ | & | 354 | 337 | 483 | 520 | 542 | 558 |
4 | @ | & | 356 | 339 | 485 | 522 | 544 | 560 |
5 | @ | & | 358 | 341 | 487 | 524 | 546 | 562 |
6 | # | & | 376 | 361 | 507! | 544 | 566 | 578 |
7 | # | & | 378 | 363 | 509! | 546 | 568 | 580 |
Phosphodiesters with 24 carbon atoms | ||||||||
8 | @ | 370 | 353 | ! | 536 | 558 | 574 | |
9 | @ | 386 | 369 | ! | 552 | 574 | 590 | |
10 | # | 374 | 389 | ! | 572 | 594 | 620 | |
Phosphodiesters with 25 carbon atoms | ||||||||
11 | @ | 398 | 381 | ! | 564 | 580 | 596 | |
12 | # | 416 | 401 | ! | ! | ! | ! | |
13 | @ | 430 | 413 | ! | ! | ! | ! |
Symbol | Alkenes | -OH | -COOH | Spiral | Composition | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 7 | 23 | C | H | O | Delta | |||||
21 Carbon atom compounds | |||||||||||
C313, E313 | X | X | 21 | 30 | 3 | 7 | |||||
C329, E329 | X | X | X | 21 | 30 | 4 | 7 | ||||
23 Carbon atom compounds | |||||||||||
C337, E337 | X | X | X | X | 23 | 30 | 3 | 9 | |||
C339, E339 | X | X | X | 23 | 32 | 3 | 8 | ||||
C341, E341 | X | X | 23 | 34 | 3 | 7 | |||||
C361, E361 | X | X | 23 | 36 | 4 | 6 | |||||
C363, E363 | X | 23 | 38 | 4 | 5 | ||||||
24 Carbon atom compounds | |||||||||||
X353 | X | X | X | 24 | 34 | 3 | 8 | ||||
X369 | X | X | X | X | 24 | 34 | 4 | 8 | |||
C389, E389 | X | X | X | X | 24 | 36 | 5 | 7 | |||
25 Carbon atom compounds | |||||||||||
X381 | X | X | X | 25 | 34 | 4 | 9 | ||||
X401 | X | X | X | 25 | 36 | 5 | 8 | ||||
X413 | X | X | X X | X | 25 | 34 | 6 | 9 |
# of Carbon Atoms in Steroid | Acyl- Co-A | Chemical Formula | Identifying Position in Steroid |
---|---|---|---|
23 | Acetyl- | -CO-CH3 | 22, 23 |
24 | Propyl- | -CO-CH2-CH3 | 22, 23, 24 |
25 | Acetoacetyl- | -CO-CH2-CO-CH3 | 22, 23, 24, 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chasalow, F. An Introduction to Spiral Steroids. Int. J. Mol. Sci. 2022, 23, 9523. https://doi.org/10.3390/ijms23179523
Chasalow F. An Introduction to Spiral Steroids. International Journal of Molecular Sciences. 2022; 23(17):9523. https://doi.org/10.3390/ijms23179523
Chicago/Turabian StyleChasalow, Fred. 2022. "An Introduction to Spiral Steroids" International Journal of Molecular Sciences 23, no. 17: 9523. https://doi.org/10.3390/ijms23179523
APA StyleChasalow, F. (2022). An Introduction to Spiral Steroids. International Journal of Molecular Sciences, 23(17), 9523. https://doi.org/10.3390/ijms23179523