The Acute Antiallodynic Effect of Tolperisone in Rat Neuropathic Pain and Evaluation of Its Mechanism of Action
Abstract
:1. Introduction
2. Results
2.1. Tolperisone Produces Antiallodynic Effect in Neuropathic Pain Evoked by pSNL
2.2. Tolperisone and Pregabalin Treatments Reduce Elevated Cerebrospinal Fluid (CSF) Glutamate Level in Neuropathic Rats
2.3. Tolperisone Inhibits 4-Aminopyridine-Induced Glutamate Release from Rat Synaptosomes
2.4. Tolperisone Inhibits Potassium-Induced Glutamate Release from Rat Synaptosomes
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Chemicals
4.3. Experimental Protocols of the Animal Study
4.4. Partial Sciatic Nerve Ligation (pSNL)
4.5. Assessment of Mechanical Allodynia
4.6. Treatment of Animals
4.7. Capillary Electrophoresis Analysis of CSF Glutamate Content
4.8. Glutamate Release from Synaptosomes
4.9. Capillary Electrophoresis Analysis of Glutamate Released from Synaptosomes
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harte, S.E.; Harris, R.E.; Clauw, D.J. The neurobiology of central sensitization. J. Appl. Biobehav. Res. 2018, 23, e12137. [Google Scholar] [CrossRef] [Green Version]
- Al-Khrasani, M.; Mohammadzadeh, A.; Balogh, M.; Kiraly, K.; Barsi, S.; Hajnal, B.; Koles, L.; Zadori, Z.S.; Harsing, L.G., Jr. Glycine transporter inhibitors: A new avenue for managing neuropathic pain. Brain Res. Bull. 2019, 152, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghoul, W.M.; Li Volsi, G.; Weinberg, R.J.; Rustioni, A. Glutamate Immunocytochemistry in the Dorsal Horn After Injury or Stimulation of the Sciatic Nerve of Rats. Res. Bull. 1993, 30, 453–459. [Google Scholar] [CrossRef]
- Osikowicz, M.; Mika, J.; Przewlocka, B. The Glutamatergic System as a Target for Neuropathic Pain Relief. Exp. Physiol. 2012, 98, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Faber, C.G.; Hoeijmakers, J.G.; Ahn, H.S.; Cheng, X.; Han, C.; Choi, J.S.; Estacion, M.; Lauria, G.; Vanhoutte, E.K.; Gerrits, M.M.; et al. Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol. 2012, 71, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.D.; Chaplan, S.R.; Higuera, E.S.; Sorkin, L.S.; Stauderman, K.A.; Williams, M.E.; Yaksh, T.L. Upregulation of Dorsal Root Ganglion Alpha2Delta Calcium Channel Subunit and Its Correlation with Allodynia in Spinal Nerve-injured Rats. J. Neurosci. 2001, 21, 1868–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Primers 2017, 3, 17002. [Google Scholar] [CrossRef] [Green Version]
- Vink, S.; Alewood, P.F. Targeting voltage-gated calcium channels: Developments in peptide and small-molecule inhibitors for the treatment of neuropathic pain. Br. J. Pharm. 2012, 167, 970–989. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, K.; Masaki, T.; Black, J.A.; Waxman, S.G. Channels in Dorsal Root Ganglion Neurons Following Axotomy. Muscle Nerve 1999, 22, 502–507. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Lakatos, P.P.; Balogh, M.; Zador, F.; Karadi, D.A.; Zadori, Z.S.; Kiraly, K.; Galambos, A.R.; Barsi, S.; Riba, P.; et al. Pharmacological Evidence on Augmented Antiallodynia Following Systemic Co-Treatment with GlyT-1 and GlyT-2 Inhibitors in Rat Neuropathic Pain Model. Int. J. Mol. Sci. 2021, 22, 2479. [Google Scholar] [CrossRef]
- Shimamoto, K. Glutamate transporter blockers for elucidation of the function of excitatory neurotransmission systems. Chem. Rec. 2008, 8, 182–199. [Google Scholar] [CrossRef] [PubMed]
- Pratzel, H.G.; Alken, R.G.; Ramm, S. Efficacy and Tolerance of Repeated Oral Doses of Tolperisone Hydrochloride in the Treatment of Painful Reflex Muscle Spasm: Results of a Prospective Placebo-controlled Double-blind Trial. Pain 1996, 67, 417–425. [Google Scholar] [CrossRef]
- Hofer, D.; Lohberger, B.; Steinecker, B.; Schmidt, K.; Quasthoff, S.; Schreibmayer, W. A comparative study of the action of tolperisone on seven different voltage dependent sodium channel isoforms. Eur. J. Pharmacol. 2006, 538, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Quasthoff, S.; Pojer, C.; Mori, A.; Hofer, D.; Liebmann, P.; Kieseier, B.C.; Schreibmayer, W. No blocking effects of the pentapeptide QYNAD on Na+ channel subtypes expressed in Xenopus oocytes or action potential conduction in isolated rat sural nerve. Neurosci. Lett. 2003, 352, 93–96. [Google Scholar] [CrossRef]
- Novales-LI, P.; Sun, X.-P.; Takeuchi, H. Suppression of Calcium Current ina Snail Neurone by Eperisone and Its Analogues. Eur. J. Pharm. 1989, 168, 299–305. [Google Scholar] [CrossRef]
- Lai, J.; Porreca, F.; Hunter, J.C.; Gold, M.S. Voltage-gated sodium channels and hyperalgesia. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 371–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attal, N.; Cruccu, G.; Baron, R.; Haanpaa, M.; Hansson, P.; Jensen, T.S.; Nurmikko, T. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur. J. Neurol. 2010, 17, 1113-e88. [Google Scholar] [CrossRef]
- Bennett, G.J.; Chung, J.M.; Honore, M.; Seltzer, Z. Models of Neuropathic Pain in the Rat. Curr. Protoc. Pharmacol. 2003, 5, 1–16. [Google Scholar]
- Thesleff, S. Aminopyridines and Synaptic Transmission. Neuroscience 1980, 5, 1413–1419. [Google Scholar] [CrossRef]
- Sánchez-Prieto, J.; Budd, D.C.; Herrero, I.; Vázquez, E.; Nicholls, D.G. Presynaptic Receptors and the Control of Glutamate Exocytosis. Trends Neurosci. 1996, 19, 235–239. [Google Scholar] [CrossRef]
- Turner, J.T.; Lampe, R.A.; Dunlap, K. Characterization of Presynaptic Calcium Channels with w-Conotoxin MVIIC and w-Grammotoxin SIA: Role for a Resistant Calcium Channel Type in Neurosecretion. Mol. Pharmacol. 1995, 47, 346–353. [Google Scholar]
- Dobrev, D.; Milde, A.S.; Andreas, K.; Ravens, U. The Effects of Verapamil and Diltiazem on N-, P- and Q-type Calcium Channels Mediating Dopamine Release in Rat Striatum. Br. J. Pharmacol. 1999, 127, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dooley, D.J.; Donovan, C.M.; Meder, W.P.; Whetzel, S.Z. Preferential action of gabapentin and pregabalin at P/Q-type voltage-sensitive calcium channels: Inhibition of K+-evoked [3H]-norepinephrine release from rat neocortical slices. Synapse 2002, 45, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Nicholson, R.A. Depolarization-induced release of ethanolamine from brain synaptic preparations in vitro. Brain Res. 2005, 1060, 170–178. [Google Scholar] [CrossRef]
- Yu, K.; Niu, X.; He, B. Neuromodulation Management of Chronic Neuropathic Pain in The Central Nervous system. Adv. Funct. Mater. 2020, 30, 1908999. [Google Scholar] [CrossRef]
- Bates, D.; Schultheis, B.C.; Hanes, M.C.; Jolly, S.M.; Chakravarthy, K.V.; Deer, T.R.; Levy, R.M.; Hunter, C.W. A Comprehensive Algorithm for Management of Neuropathic Pain. Pain Med. 2019, 20, S2–S12. [Google Scholar] [CrossRef] [Green Version]
- Seltzer, Z.; Dubner, R.; Shir, Y. A Novel Behavioral Model of Neuropathic Pain Disorders Produced in Rats by Partial Sciatic Nerve Injury. Pain 1990, 43, 205–218. [Google Scholar] [CrossRef]
- Fernandez-Montoya, J.; Avendano, C.; Negredo, P. The Glutamatergic System in Primary Somatosensory Neurons and Its Involvement in Sensory Input-Dependent Plasticity. Int. J. Mol. Sci. 2017, 19, 69. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef]
- Inquimbert, P.; Bartels, K.; Babaniyi, O.B.; Barrett, L.B.; Tegeder, I.; Scholz, J. Peripheral nerve injury produces a sustained shift in the balance between glutamate release and uptake in the dorsal horn of the spinal cord. Pain 2012, 153, 2422–2431. [Google Scholar] [CrossRef] [Green Version]
- Nie, H.; Weng, H.R. Impaired glial glutamate uptake induces extrasynaptic glutamate spillover in the spinal sensory synapses of neuropathic rats. J. Neurophysiol. 2010, 103, 2570–2580. [Google Scholar] [CrossRef] [PubMed]
- Sung, B.; Wang, S.; Zhou, B.; Lim, G.; Yang, L.; Zeng, Q.; Lim, J.-A.; Wang, J.D.; Kang, J.X.; Mao, J. Altered Spinal Arachidonic Acid Turnover After Peripheral Nerve Injury Regulates Regional Glutamate Concentration and Neuropathic Pain Behaviors in Rats. Pain 2007, 132, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Chunmei, L.; Han, R.; Wang, Y.; Yang, M.; Wang, H.; Tian, J. LPM580098, a Novel Triple Reuptake Inhibitor of Serotonin, Noradrenaline and Dopamine, Attenuates Neuropathic Pain. Front. Pharmacol. 2019, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Murai, N.; Sekizawa, T.; Gotoh, T.; Watabiki, T.; Takahashi, M.; Kakimoto, S.; Takahashi, Y.; Iino, M.; Nagakura, Y. Spontaneous and evoked pain-associated behaviors in a rat model of neuropathic pain respond differently to drugs with different mechanisms of action. Pharmacol. Biochem. Behav. 2016, 141, 10–17. [Google Scholar] [CrossRef]
- Murphy, K.M. Synaptosomes; Springer: New York, NY, USA, 2018; Volume 141. [Google Scholar]
- Nicholls, D.G. Synaptosomal Bioenergetics and Glutamate Release. In Synaptosomes; Murphy, K.M., Ed.; Springer: New York, NY, USA, 2018; Volume 141, p. 109. [Google Scholar]
- Svajdova, S.; Buday, T.; Brozmanova, M. Lidocaine, a Non-selective Inhibitor of Voltage-Gated Sodium Channels, Blocks Chemically-Induced Cough in Awake Naive Guinea Pigs. Adv. Exp. Med. Biol 2019, 1160, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kammerer, M.; Brawek, B.; Freiman, T.M.; Jackisch, R.; Feuerstein, T.J. Effects of antiepileptic drugs on glutamate release from rat and human neocortical synaptosomes. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2011, 383, 531–542. [Google Scholar] [CrossRef]
- Bauer, C.S.; Nieto-Rostro, M.; Rahman, W.; Tran-Van-Minh, A.; Ferron, L.; Douglas, L.; Kadurin, I.; Sri Ranjan, Y.; Fernandez-Alacid, L.; Millar, N.S.; et al. The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J. Neurosci. 2009, 29, 4076–4088. [Google Scholar] [CrossRef] [Green Version]
- Balogh, M.; Varga, B.K.; Karadi, D.A.; Riba, P.; Puskar, Z.; Kozsurek, M.; Al-Khrasani, M.; Kiraly, K. Similarity and dissimilarity in antinociceptive effects of dipeptidyl-peptidase 4 inhibitors, Diprotin A and vildagliptin in rat inflammatory pain models following spinal administration. Brain Res. Bull. 2019, 147, 78–85. [Google Scholar] [CrossRef]
- Khalefa, B.I.; Shaqura, M.; Al-Khrasani, M.; Furst, S.; Mousa, S.A.; Schafer, M. Relative contributions of peripheral versus supraspinal or spinal opioid receptors to the antinociception of systemic opioids. Eur. J. Pain 2012, 16, 690–705. [Google Scholar] [CrossRef]
- Mousa, S.A.; Cheppudira, B.P.; Shaqura, M.; Fischer, O.; Hofmann, J.; Hellweg, R.; Schafer, M. Nerve growth factor governs the enhanced ability of opioids to suppress inflammatory pain. Brain 2007, 130, 502–513. [Google Scholar] [CrossRef] [Green Version]
- Pinter, E.; Helyes, Z.; Nemeth, J.; Porszasz, R.; Petho, G.; Than, M.; Keri, G.; Horvath, A.; Jakab, B.; Szolcsanyi, J. Pharmacological characterisation of the somatostatin analogue TT-232: Effects on neurogenic and non-neurogenic inflammation and neuropathic hyperalgesia. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2002, 366, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Jako, T.; Szabo, E.; Tabi, T.; Zachar, G.; Csillag, A.; Szoko, E. Chiral analysis of amino acid neurotransmitters and neuromodulators in mouse brain by CE-LIF. Electrophoresis 2014, 35, 2870–2876. [Google Scholar] [CrossRef] [PubMed]
- Modi, J.; Prentice, H.; Wu, J.Y. Preparation, Stimulation and Other Uses of Adult Rat Brain Synaptosomes. Bio Protoc. 2017, 7, e2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, Z.; Tabi, T.; Zachar, G.; Csillag, A.; Szoko, E. Comparison of quantitative performance of three fluorescence labels in CE/LIF analysis of aspartate and glutamate in brain microdialysate. Electrophoresis 2011, 32, 2816–2822. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakatos, P.P.; Karádi, D.Á.; Galambos, A.R.; Essmat, N.; Király, K.; Laufer, R.; Geda, O.; Zádori, Z.S.; Tábi, T.; Al-Khrasani, M.; et al. The Acute Antiallodynic Effect of Tolperisone in Rat Neuropathic Pain and Evaluation of Its Mechanism of Action. Int. J. Mol. Sci. 2022, 23, 9564. https://doi.org/10.3390/ijms23179564
Lakatos PP, Karádi DÁ, Galambos AR, Essmat N, Király K, Laufer R, Geda O, Zádori ZS, Tábi T, Al-Khrasani M, et al. The Acute Antiallodynic Effect of Tolperisone in Rat Neuropathic Pain and Evaluation of Its Mechanism of Action. International Journal of Molecular Sciences. 2022; 23(17):9564. https://doi.org/10.3390/ijms23179564
Chicago/Turabian StyleLakatos, Péter P., Dávid Árpád Karádi, Anna Rita Galambos, Nariman Essmat, Kornél Király, Rudolf Laufer, Orsolya Geda, Zoltán S. Zádori, Tamás Tábi, Mahmoud Al-Khrasani, and et al. 2022. "The Acute Antiallodynic Effect of Tolperisone in Rat Neuropathic Pain and Evaluation of Its Mechanism of Action" International Journal of Molecular Sciences 23, no. 17: 9564. https://doi.org/10.3390/ijms23179564
APA StyleLakatos, P. P., Karádi, D. Á., Galambos, A. R., Essmat, N., Király, K., Laufer, R., Geda, O., Zádori, Z. S., Tábi, T., Al-Khrasani, M., & Szökő, É. (2022). The Acute Antiallodynic Effect of Tolperisone in Rat Neuropathic Pain and Evaluation of Its Mechanism of Action. International Journal of Molecular Sciences, 23(17), 9564. https://doi.org/10.3390/ijms23179564