A Multifunctional Light-Driven Swimming Soft Robot for Various Application Scenarios
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication of Light-Responsive Microstructures
2.2. Study of the Deformation Properties of PNIPAM/CNT Hydrogels
2.3. Fabrication of Bionic Micromanipulator
2.4. Various Application Scenarios of Bionic Soft Robot
3. Materials and Methods
3.1. Materials
3.2. Preparation of PNIPAM Hydrogel Prepolymer Solution
3.3. Fabrication of Light-Driven Microfish
3.4. Surface Light Source and Point Light Source Coupling Drive
3.5. Finite Element Analysis of Microfish Swimming
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, B.H.; Li, K.; Kim, J.-T.; Park, Y.; Jang, H.; Wang, X.; Xie, Z.; Won, S.M.; Yoon, H.-J.; Lee, G.; et al. Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 2021, 597, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Nojoomi, A.; Arslan, H.; Lee, K.; Yum, K. Bioinspired 3D structures with programmable morphologies and motions. Nat. Commun. 2018, 9, 3705. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Choi, J.-C.; Lee, H.; Cho, W.; Lee, K.; Kim, J.G.; Lee, J.-W.; Joo, K.-I.; Cho, M.; Kim, H.-R.; et al. Continuous and programmable photomechanical jumping of polymer monoliths. Mater. Today 2021, 49, 97–106. [Google Scholar] [CrossRef]
- Sun, S.; Wu, P. A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J. Mater. Chem. 2011, 21, 4095–4097. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, X.; Wen, J.; Hu, D.; Li, R.; Wang, K. Chinese Calligraphy Inspired Design of Humidity/Light Dual Responsive Magic Paper. Adv. Mater. Technol. 2021, 6, 2100044. [Google Scholar] [CrossRef]
- Yang, X.; Shang, W.; Lu, H.; Liu, Y.; Yang, L.; Tan, R.; Wu, X.; Shen, Y. An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applications. Sci. Robot. 2020, 5, eabc8191. [Google Scholar] [CrossRef]
- Li, H.; Go, G.; Ko, S.Y.; Park, J.-O.; Park, S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct. 2016, 25, 027001. [Google Scholar] [CrossRef]
- Chen, W.; Sun, M.; Fan, X.; Xie, H. Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release. Appl. Mater. Today 2020, 19, 100583. [Google Scholar] [CrossRef]
- Ze, Q.; Wu, S.; Dai, J.; Leanza, S.; Ikeda, G.; Yang, P.C.; Iaccarino, G.; Zhao, R.R. Spinning-enabled wireless amphibious origami millirobot. Nat. Commun. 2022, 13, 3118. [Google Scholar] [CrossRef]
- Jones, T.J.; Jambon-Puillet, E.; Marthelot, J.; Brun, P.T. Bubble casting soft robotics. Nature 2021, 599, 229–233. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, D.; Yan, P.; Zhou, P.; Zou, J.; Gu, G. Inchworm Inspired Multimodal Soft Robots With Crawling, Climbing, and Transitioning Locomotion. IEEE Trans. Robot. 2022, 38, 1806–1819. [Google Scholar] [CrossRef]
- Liang, X.; Chen, G.; Lin, S.; Zhang, J.; Wang, L.; Zhang, P.; Lan, Y.; Liu, J. Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels. Adv. Mater. 2022, 34, 2107106. [Google Scholar] [CrossRef] [PubMed]
- Ze, Q.; Wu, S.; Nishikawa, J.; Dai, J.; Sun, Y.; Leanza, S.; Zemelka, C.; Novelino, L.S.; Paulino, G.H.; Zhao, R.R. Soft robotic origami crawler. Sci. Adv. 2022, 8, eabm7834. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yuan, Z.; Guo, J.; Bai, L.; Zhu, X.; Liu, F.; Pu, H.; Xin, L.; Peng, Y.; Luo, J.; et al. Legless soft robots capable of rapid, continuous, and steered jumping. Nat. Commun. 2021, 12, 7028. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Park, S.-J.; Matthews, D.G.; Kim, S.L.; Marquez, C.A.; Zimmerman, J.F.; Ardoña, H.A.M.; Kleber, A.G.; Lauder, G.V.; Parker, K.K. An autonomously swimming biohybrid fish designed with human cardiac biophysics. Science 2022, 375, 639–647. [Google Scholar] [CrossRef]
- Xu, B.; Han, X.; Hu, Y.; Luo, Y.; Chen, C.-H.; Chen, Z.; Shi, P. A Remotely Controlled Transformable Soft Robot Based on Engineered Cardiac Tissue Construct. Small 2019, 15, 1900006. [Google Scholar] [CrossRef]
- Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X.-J.; Xie, R.; Chu, L.-Y. Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels with Responsive Bending Property as Temperature-Controlled Manipulators. Adv. Funct. Mater. 2015, 25, 2980–2991. [Google Scholar] [CrossRef]
- Higashi, K.; Miki, N. A self-swimming microbial robot using microfabricated nanofibrous hydrogel. Sens. Actuators B Chem. 2014, 202, 301–306. [Google Scholar] [CrossRef]
- Migliorini, L.; Santaniello, T.; Yan, Y.; Lenardi, C.; Milani, P. Low-voltage electrically driven homeostatic hydrogel-based actuators for underwater soft robotics. Sens. Actuators B Chem. 2016, 228, 758–766. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, Y. PNIPAM microgels for biomedical applications: From dispersed particles to 3D assemblies. Soft Matter 2011, 7, 6375–6384. [Google Scholar] [CrossRef]
- Saunders, B.R.; Laajam, N.; Daly, E.; Teow, S.; Hu, X.; Stepto, R. Microgels: From responsive polymer colloids to biomaterials. Adv. Colloid Interface Sci. 2009, 147–148, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, G.R.; Smith, M.H.; South, A.B.; Lyon, L.A. Design of Multiresponsive Hydrogel Particles and Assemblies. Adv. Funct. Mater. 2010, 20, 1697–1712. [Google Scholar] [CrossRef]
- Pelton, R. Temperature-sensitive aqueous microgels. Adv. Colloid Interface Sci. 2000, 85, 1–33. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Shao, C.; Nie, M.; Huang, Q.; Li, J.; Sun, L.; Zhao, Y. Photoresponsive Delivery Microcarriers for Tissue Defects Repair. Adv. Sci. 2019, 6, 1901280. [Google Scholar] [CrossRef]
- Ji, M.; Jiang, N.; Chang, J.; Sun, J. Near-Infrared Light-Driven, Highly Efficient Bilayer Actuators Based on Polydopamine-Modified Reduced Graphene Oxide. Adv. Funct. Mater. 2014, 24, 5412–5419. [Google Scholar] [CrossRef]
- Zhao, Q.; Liang, Y.; Ren, L.; Yu, Z.; Zhang, Z.; Ren, L. Bionic intelligent hydrogel actuators with multimodal deformation and locomotion. Nano Energy 2018, 51, 621–631. [Google Scholar] [CrossRef]
- Miao, J.-T.; Ge, M.; Wu, Y.; Peng, S.; Zheng, L.; Chou, T.Y.; Wu, L. 3D printing of sacrificial thermosetting mold for building near-infrared irradiation induced self-healable 3D smart structures. Chem. Eng. J. 2022, 427, 131580. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kanao, K.; Arie, T.; Akita, S.; Takei, K. Air Ambient-Operated pNIPAM-Based Flexible Actuators Stimulated by Human Body Temperature and Sunlight. ACS Appl. Mater. Interfaces 2015, 7, 11002–11006. [Google Scholar] [CrossRef]
- Qin, J.; Chu, K.; Huang, Y.; Zhu, X.; Hofkens, J.; He, G.; Parkin, I.P.; Lai, F.; Liu, T. The bionic sunflower: A bio-inspired autonomous light tracking photocatalytic system. Energy Environ. Sci. 2021, 14, 3931–3937. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Shi, D.; Wang, X.; Chen, Y.; Yuan, Z.; Li, Y.; Ge, Z.; Yang, W. A Multifunctional Light-Driven Swimming Soft Robot for Various Application Scenarios. Int. J. Mol. Sci. 2022, 23, 9609. https://doi.org/10.3390/ijms23179609
Wang Z, Shi D, Wang X, Chen Y, Yuan Z, Li Y, Ge Z, Yang W. A Multifunctional Light-Driven Swimming Soft Robot for Various Application Scenarios. International Journal of Molecular Sciences. 2022; 23(17):9609. https://doi.org/10.3390/ijms23179609
Chicago/Turabian StyleWang, Zhen, Dongni Shi, Xiaowen Wang, Yibao Chen, Zheng Yuan, Yan Li, Zhixing Ge, and Wenguang Yang. 2022. "A Multifunctional Light-Driven Swimming Soft Robot for Various Application Scenarios" International Journal of Molecular Sciences 23, no. 17: 9609. https://doi.org/10.3390/ijms23179609
APA StyleWang, Z., Shi, D., Wang, X., Chen, Y., Yuan, Z., Li, Y., Ge, Z., & Yang, W. (2022). A Multifunctional Light-Driven Swimming Soft Robot for Various Application Scenarios. International Journal of Molecular Sciences, 23(17), 9609. https://doi.org/10.3390/ijms23179609