Crystal Structures of the Clostridium botulinum Neurotoxin A6 Cell Binding Domain Alone and in Complex with GD1a Reveal Significant Conformational Flexibility
Abstract
:1. Introduction
2. Results and Discussion
2.1. New Crystal Form of HC/A6
2.2. Crystal Structure of HC/A6 in Complex with GD1a Oligosaccharide
2.3. HC/A6 (Crystal Form II) Reveals a Large Hinge-Rotation between HCN and HCC Subdomains
2.4. Structural Comparison of HC/A6 in the Presence/Absence of GD1a
2.5. B-Factor Analysis
3. Materials and Methods
3.1. Protein Expression and Purification
3.2. X-ray Crystallography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhaked, R.K.; Singh, M.K.; Singh, P.; Gupta, P. Botulinum Toxin: Bioweapon & Magic Drug. Indian J. Med. Res. 2010, 132, 489–503. [Google Scholar]
- Fleck-Derderian, S.; Shankar, M.; Rao, A.K.; Chatham-Stephens, K.; Adjei, S.; Sobel, J.; Meltzer, M.I.; Meaney-Delman, D.; Pillai, S.K. The Epidemiology of Foodborne Botulism Outbreaks: A Systematic Review. Clin. Infect. Dis. 2017, 66, S73–S81. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Popoff, M.R. Antibodies and Vaccines against Botulinum Toxins: Available Measures and Novel Approaches. Toxins 2019, 11, 528. [Google Scholar] [CrossRef]
- Evidente, V.G.H.; Adler, C.H. An Update on the Neurologic Applications of Botulinum Toxins. Curr. Neurol. Neurosci. Rep. 2010, 10, 338–344. [Google Scholar] [CrossRef]
- Jankovic, J. Botulinum Toxin in Clinical Practice. J. Neurol. Neurosurg. Psychiatry 2004, 75, 951–957. [Google Scholar] [CrossRef]
- Zornetta, I.; Azarnia Tehran, D.; Arrigoni, G.; Anniballi, F.; Bano, L.; Leka, O.; Zanotti, G.; Binz, T.; Montecucco, C. The First Non Clostridial Botulinum-like Toxin Cleaves VAMP within the Juxtamembrane Domain. Sci. Rep. 2016, 6, 30257. [Google Scholar] [CrossRef]
- Mansfield, M.J.; Adams, J.B.; Doxey, A.C. Botulinum Neurotoxin Homologs in Non-Clostridium Species. FEBS Lett. 2014, 589, 342–348. [Google Scholar] [CrossRef]
- Brunt, J.; Carter, A.T.; Stringer, S.C.; Peck, M.W. Identification of a Novel Botulinum Neurotoxin Gene Cluster in Enterococcus. FEBS Lett. 2018, 592, 310–317. [Google Scholar] [CrossRef]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef]
- Whitemarsh, R.C.M.; Tepp, W.H.; Bradshaw, M.; Lin, G.; Pier, C.L.; Scherf, J.M.; Johnson, E.A.; Pellett, S. Characterization of Botulinum Neurotoxin A Subtypes 1 through 5 by Investigation of Activities in Mice, in Neuronal Cell Cultures, and in Vitro. Infect. Immun. 2013, 81, 3894–3902. [Google Scholar] [CrossRef]
- Pellett, S.; Tepp, W.H.; Whitemarsh, R.C.M.M.; Bradshaw, M.; Johnson, E.A. In Vivo Onset and Duration of Action Varies for Botulinum Neurotoxin A Subtypes 1-5. Toxicon 2015, 107, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Pier, C.L.; Chen, C.; Tepp, W.H.; Lin, G.; Janda, K.D.; Barbieri, J.T.; Pellett, S.; Johnson, E.A. Botulinum Neurotoxin Subtype A2 Enters Neuronal Cells Faster than Subtype A1. FEBS Lett. 2011, 585, 199–206. [Google Scholar] [CrossRef]
- Arndt, J.W.; Jacobson, M.J.; Abola, E.E.; Forsyth, C.M.; Tepp, W.H.; Marks, J.D.; Johnson, E.A.; Stevens, R.C. A Structural Perspective of the Sequence Variability within Botulinum Neurotoxin Subtypes A1-A4. J. Mol. Biol. 2006, 362, 733–742. [Google Scholar] [CrossRef]
- Davies, J.R.; Liu, S.M.; Acharya, K.R. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins 2018, 10, 421. [Google Scholar] [CrossRef]
- Carter, A.T.; Peck, M.W. Genomes, Neurotoxins and Biology of Clostridium Botulinum Group I and Group II. Res. Microbiol. 2015, 166, 303–317. [Google Scholar] [CrossRef]
- Das Gupta, B.R.; Sugiyama, H. Role of a Protease in Natural Activation of Clostridium Botulinum Neurotoxin. Infect. Immun. 1972, 6, 587–590. [Google Scholar] [CrossRef]
- Dekleva, M.L.; DasGupta, B.R. Nicking of Single Chain Clostridium Botulinum Type A Neurotoxin by an Endogenous Protease. Biochem. Biophys. Res. Commun. 1989, 162, 767–772. [Google Scholar] [CrossRef]
- Rummel, A. The Long Journey of Botulinum Neurotoxins into the Synapse. Toxicon 2015, 107, 9–24. [Google Scholar] [CrossRef]
- Dong, M.; Masuyer, G.; Stenmark, P. Botulinum and Tetanus Neurotoxins. Annu. Rev. Biochem. 2019, 88, 811–837. [Google Scholar] [CrossRef]
- Yu, R.K.; Saito, M. Structure and Localization of Gangliosides. In Neurobiology of Glycoconjugates; Springer: Boston, MA, USA, 1989; pp. 1–34. ISBN 9781475759570. [Google Scholar]
- Yu, R.K.; Tsai, Y.-T.; Ariga, T.; Yanagisawa, M. Structures, Biosynthesis, and Functions of Gangliosides-an Overview. J. Oleo Sci. 2011, 60, 537–544. [Google Scholar] [CrossRef]
- Gong, Y.; Tagawa, Y.; Lunn, M.P.T.; Laroy, W.; Heffer-Lauc, M.; Li, C.Y.; Griffin, J.W.; Schnaar, R.L.; Sheikh, K. Localization of Major Gangliosides in the PNS: Implications for Immune Neuropathies. Brain 2002, 125, 2491–2506. [Google Scholar] [CrossRef] [Green Version]
- Stenmark, P.; Dupuy, J.; Imamura, A.; Kiso, M.; Stevens, R.C. Crystal Structure of Botulinum Neurotoxin Type A in Complex with the Cell Surface Co-Receptor GT1b-Insight into the Toxin-Neuron Interaction. PLoS Pathog. 2008, 4, e1000129. [Google Scholar] [CrossRef]
- Hamark, C.; Berntsson, R.P.A.; Masuyer, G.; Henriksson, L.M.; Gustafsson, R.; Stenmark, P.; Widmalm, G. Glycans Confer Specificity to the Recognition of Ganglioside Receptors by Botulinum Neurotoxin A. J. Am. Chem. Soc. 2017, 139, 218–230. [Google Scholar] [CrossRef]
- Gregory, K.S.; Mahadeva, T.B.; Liu, S.M.; Acharya, K.R. Structural Features of Clostridium Botulinum Neurotoxin Subtype A2 Cell Binding Domain. Toxins 2022, 14, 356. [Google Scholar] [CrossRef]
- Gregory, K.S.; Liu, S.M.; Acharya, K.R. Crystal Structure of Botulinum Neurotoxin Subtype A3 Cell Binding Domain in Complex with GD1a Co-Receptor Ganglioside. FEBS Open Bio. 2020, 10, 298–305. [Google Scholar] [CrossRef]
- Gregory, K.S.; Mojanaga, O.O.; Liu, S.M.; Acharya, K.R. Crystal Structures of Botulinum Neurotoxin Subtypes A4 and A5 Cell Binding Domains in Complex with Receptor Ganglioside. Toxins 2022, 14, 129. [Google Scholar] [CrossRef]
- Yowler, B.C.; Schengrund, C.L.; Pennsyl, V. Botulinum Neurotoxin A Changes Conformation upon Binding to Ganglioside GT1b. Biochemistry 2004, 43, 9725–9731. [Google Scholar] [CrossRef]
- Davies, J.R.; Britton, A.; Liu, S.M.; Acharya, K.R. High-Resolution Crystal Structures of the Botulinum Neurotoxin Binding Domains from Subtypes A5 and A6. FEBS Open Bio. 2020, 10, 1474–1481. [Google Scholar] [CrossRef]
- Veevers, R.; Hayward, S. Movements in Large Biomolecular Complexes. Biophys. Phys. 2019, 16, 328–336. [Google Scholar] [CrossRef]
- Rabe von Pappenheim, F.; Wensien, M.; Ye, J.; Uranga, J.; Irisarri, I.; de Vries, J.; Funk, L.M.; Mata, R.A.; Tittmann, K. Widespread Occurrence of Covalent Lysine–Cysteine Redox Switches in Proteins. Nat. Chem. Biol. 2022, 18, 368–375. [Google Scholar] [CrossRef]
- Barthels, F.; Schirmeister, T.; Kersten, C. BANΔIT: B’-Factor Analysis for Drug Design and Structural Biology. Mol. Inform. 2021, 40, 2000144. [Google Scholar] [CrossRef]
- Waterman, D.G.; Winter, G.; Gildea, R.J.; Parkhurst, J.M.; Brewster, A.S.; Sauter, N.K.; Evans, G. Diffraction-Geometry Refinement in the DIALS Framework. Acta Crystallogr. Sect. D Struct. Biol. 2016, 72, 558–575. [Google Scholar] [CrossRef]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.W.; McCoy, A.; et al. Overview of the CCP4 Suite and Current Developments. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 235–242. [Google Scholar] [CrossRef]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser Crystallographic Software. J. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef]
- Murshudov, G.N.; Skubák, P.; Lebedev, A.A.; Pannu, N.S.; Steiner, R.A.; Nicholls, R.A.; Winn, M.D.; Long, F.; Vagin, A.A. REFMAC5 for the Refinement of Macromolecular Crystal Structures. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 355–367. [Google Scholar] [CrossRef]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkoczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular Structure Determination Using X-Rays, Neutrons and Electrons: Recent Developments in Phenix. Acta Crystallogr. Sect. D Struct. Biol. 2019, 75, 861–877. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and Development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and Better Reference Data for Improved All-Atom Structure Validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef]
- McNicholas, S.; Potterton, E.; Wilson, K.S.; Noble, M.E.M. Presenting Your Structures: The CCP4mg Molecular-Graphics Software. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 386–394. [Google Scholar] [CrossRef] [Green Version]
Beamline | I04 | I04 |
---|---|---|
Wavelength | 0.9795 Å | 0.9795 Å |
Protein | HC/A6:GD1a | HC/A6 (crystal form II) |
Crystallographic statistics | ||
Space group | P21 | P212121 |
Unit cell dimensions a, b, c (Å) α, β, γ (°) | 44.31, 83.64, 58.13 90.00, 98.66, 90.00 | 39.55, 78.94, 118.55 90.00, 90.00, 90.00 |
Resolution range (Å) | 57.65–1.50 (1.53–1.50) | 118.55–1.50 (1.53–1.50) |
Rmerge | 0.225 (8.03) | 0.119 (5.61) |
Rpim | 0.063 (2.24) | 0.023 (1.13) |
<I/σ(I)> | 7.2 (0.3) | 12.0 (0.7) |
CC1/2 | 0.998 (0.991) | 1.00 (0.33) |
Completeness (%) | 100.0 (100.0) | 99.6 (97.5) |
No. observed reflections | 914,657 (45,756) | 1,580,456 (75,049) |
No. unique reflections | 67,218 (3357) | 60,147 (2894) |
Multiplicity | 13.6 (13.6) | 26.3 (25.9) |
Refinement Statistics | ||
Rwork/Rfree | 0.204/0.235 | 0.248/0.289 |
RMSD bond lengths (Å) | 0.010 | 0.0098 |
RMSD bond angles (°) | 1.542 | 1.546 |
Ramachandran plot statistics (%) Favoured Allowed Outliers | 96.00 4.00 0.00 | 93.00 7.00 0.00 |
Average B-Factors (Å2) Protein atoms Solvent atoms GD1a ligand | 28.10 32.00 52.30 | 38.87 38.05 N/A |
No. Atoms Protein Solvent GD1a | 3734 3423 244 68 | 3286 3127 159 N/A |
PDB code | 8AGK | 8ALP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregory, K.S.; Newell, A.R.; Mojanaga, O.O.; Liu, S.M.; Acharya, K.R. Crystal Structures of the Clostridium botulinum Neurotoxin A6 Cell Binding Domain Alone and in Complex with GD1a Reveal Significant Conformational Flexibility. Int. J. Mol. Sci. 2022, 23, 9620. https://doi.org/10.3390/ijms23179620
Gregory KS, Newell AR, Mojanaga OO, Liu SM, Acharya KR. Crystal Structures of the Clostridium botulinum Neurotoxin A6 Cell Binding Domain Alone and in Complex with GD1a Reveal Significant Conformational Flexibility. International Journal of Molecular Sciences. 2022; 23(17):9620. https://doi.org/10.3390/ijms23179620
Chicago/Turabian StyleGregory, Kyle S., Anna R. Newell, Otsile O. Mojanaga, Sai Man Liu, and K. Ravi Acharya. 2022. "Crystal Structures of the Clostridium botulinum Neurotoxin A6 Cell Binding Domain Alone and in Complex with GD1a Reveal Significant Conformational Flexibility" International Journal of Molecular Sciences 23, no. 17: 9620. https://doi.org/10.3390/ijms23179620
APA StyleGregory, K. S., Newell, A. R., Mojanaga, O. O., Liu, S. M., & Acharya, K. R. (2022). Crystal Structures of the Clostridium botulinum Neurotoxin A6 Cell Binding Domain Alone and in Complex with GD1a Reveal Significant Conformational Flexibility. International Journal of Molecular Sciences, 23(17), 9620. https://doi.org/10.3390/ijms23179620