Current Status and Future Perspectives of Genomics Research in the Rust Fungi
Abstract
:1. Introduction
2. Current Status of Rust Genomics
2.1. Overview of Rust Genomes
Species a | Strain | Genome Size | No. of Scaffolds | Scaffolds N50/Mb | GC (%) | Coding Genes | Secreted Proteins | Repeat (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
Hv | HvHybrid | 333 c | 302,466 d | 0.01 | 33 | 14,445 | 483 | 74.4 | [54] |
Hv | Hv33 | 549.56 | 118,162 d | 0.009 | 33.6 | 13,364 | 615 | 43.6 | [55] |
Ml | CH5 | 189.5 | 21,310 | 0.031 | 41 | 16,271 | 1085 | 45 | [56] |
Mlp | 98AG31 | 101.1 | 462 | 1.1 | 41 | 16,399 | 1184 | 45 | [28] |
Pca | 12SD80 | 99.2 | 603 d | 0.268 | 44.7 | 17,248 | 1532 | 52.76 | [57] |
Pca | 12NC29 | 105.2 | 777 d | 0.217 | 44.7 | 17,865 | 1548 | 53.66 | [57] |
Pca | 203 | 101.69 | 18 b | 5.8 | 44.64 | 17,877 | 1985 | 56.3 | [58] |
Pgt | CDL 75-36-700-3 | 88.6 | 392 | 0.97 | 43.3 | 17,773 | 1106 | 45 | [28] |
Pgt | 21-0 | 92.5 | 21,517 | -f | - | 22,391 | 1924 | - | [59] |
Pgt | PGTAus-pan | 94.54 | 26,417 | 0.030 | 43.42 | 21,874 | - | - | [59] |
Pgt | 59KS19 | 93.30 | 28,091 d | 0.007 | - | 18,166 | - | - | [60] |
Pgt | 99KS76A-1 | 107.31 | 28,502 d | 0.006 | - | 18,777 | - | - | [60] |
Ph | Ph560 | 206.91 | 838 d | 0.405 | 41.65 | 25,543 | 1450 | - | [61] |
Pn | Ard-01 | 99.93 | 11,088 | 0.013 | 44.9 | 16,622 | [16] | ||
Pp | 115012-Mr | 103–105 | - | - | - | >19,000 | - | 27 | [62] |
Ap | Au_3 | 1018.08 | 66 | 56.243 | 33.80 | 18,875 | - | 91.55 | [43] |
Ps | RO10H11247 | 99.62 | 15,722 | 0.019 | 43.14 | 21,087 | 1244 | 32.53 | [63] |
Pt | Race 77 | 102.20 | 2651 | 0.1 | 46.64 | 27,678 | 660 | 37.49 | [52] |
Pt | Race 106 | 93.99 | 7448 | 0.02 | 46.62 | 26,384 | 620 | 39.99 | [52] |
Pt | Race 1 | 135.34 | 14,818 | 0.5 | 46.72 | 14,880 | 1358 | 50.9 | [51] |
Pt | 77-1 | 95.12 | 49,980 d | 0.004 | 46.71 | 32,824 | - | - | [52] |
Pt | 77-2 | 97.25 | 64,740 d | 0.004 | 46.71 | 32,769 | - | - | [52] |
Pt | 77-3 | 97.33 | 64,499 d | 0.004 | 46.71 | 32,894 | - | - | [52] |
Pt | 77-4 | 97.22 | 64,739 d | 0.004 | 46.71 | 32,745 | - | - | [52] |
Pt | 77-5 | 97.25 | 64,735 d | 0.004 | 46.71 | 32,851 | - | - | [52] |
Pt | 77-6 | 97.22 | 64,853 d | 0.004 | 46.71 | 32,822 | - | - | [52] |
Pt | 77-7 | 97.26 | 64,534 d | 0.004 | 46.71 | 32,757 | - | - | [52] |
Pt | 77-8 | 96.41 | 65,595 d | 0.004 | 46.71 | 32,366 | - | - | [52] |
Pt | 77-9 | 96.14 | 67,081 d | 0.004 | 46.71 | 32,211 | - | - | [52] |
Pt | 77-10 | 93.66 | 49,962 d | 0.004 | 46.71 | 32,180 | - | - | [52] |
Pt | 77-11 | 93.54 | 50,331 d | 0.004 | 46.71 | 32,203 | - | - | [52] |
Pt | 77-a | 97.02 | 65,649 d | 0.004 | 46.69 | 32,772 | - | - | [52] |
Pt | 77-A1 | 97.25 | 64,580 d | 0.004 | 46.71 | 32,747 | - | - | [52] |
Pt | Pt76 | 123.91 e | 18 b | 1.9 d | 46.63 | - | - | - | [52] |
Psh | P3TX-2 | 77.36 e | 562 | 0.218 | 44.40 | 15,976 | 1624 | 34.20 | [64] |
Pst | 93-210 | 84.62 e | 493 | 0.295 | 44.39 | 16,513 | 1517 | 36.03 | [64] |
Pst | 104E137A- | 83.35 e | 156 | 1.3 d | 44.40 | 15,928 | 1069 | 37.28 | [65] |
Pst | CYR34 | 82.67 e | 18 b | 0.791 d | 44.35 | 17,095 | 1571 | 36.38 | [66] |
Pst | 93-210 | 83.95 e | 18 b | 0.517 | 44.39 | 17,946 | 1678 | 35.67 | [66] |
Pst | 104 E16 A+ 17+ 33+ | 80.45 e | 18 b | 4.77 | 16,272 | - | ~40 | [67] | |
Pst | PST-78 | 117.31 | 9715 | 0.5 | 44.43 | 19,542 | 2147 | 31.5 | [51] |
Pst | CY32 | 130 | 4283 | 0.125 | 44.77 | 25,288 | 2092 | 48.91 | [68] |
Pst | PST-130 | 64.8 | 29,178 d | - | - | 22,815 | 1088 | - | [39] |
Pst | 11-281 | 84.75 e | 427 d | 0.385 | 44.37 | 16,869 | 1829 | 35.81 | [69] |
2.2. Genomic Variation
2.3. Effectors in Rust Genomes
Effector | Species | Expression in Haustoria | Function | Localization | Reference |
---|---|---|---|---|---|
RTP1p | U. fabae; U. striatus | Yes | Protease inhibitor | Cytoplasm | [90] |
PpEC23 | P. pachyrhizi | Yes | Suppress HR and basal defense | Unknown | [91] |
PEC6 | P. striiformis f. sp. tritici | Yes | Hamper ROS accumulation and Callose deposition | Nucleus, cytoplasm | [92] |
PST02549 | P. striiformis f. sp. tritici | Yes | mRNA processing | P-bodies | [93] |
MLP124017 | M. larici-populina | Yes | Unknown | Nucleus, cytosol | [94] |
CTP1 | M. larici-populina | Yes | Unknown | Chloroplast, mitochondria | [93] |
MLP124266 | M. larici-populina | No | Unknown | Nucleus and cytosol | [95] |
MLP124499 | M. larici-populina | Yes | Unknown | Nucleus and cytosol | [95] |
AvrMlp7 a | M. larici-populina | Unknown | Avirulence | Unknown | [96] |
AvrM | M. lini | Yes | Avirulence | Plant cell | [97] |
AvrL567 | M. lini | Yes | Avirulence | Plant cell | [98] |
AvrP123 | M. lini | Yes | Avirulence | Plant cell | [97] |
AvrP4 | M. lini | Yes | Avirulence | Plant cell | [97] |
AvrL2 | M. lini | Unknown | Avirulence | Unknown | [99] |
AvrM14 | M. lini | Unknown | Avirulence | Unknown | [99] |
PGTAUSPE10-1 | P. graminis f. sp. tritici | Yes | Avirulence | Unknown | [100] |
AvrSr27 | P. graminis f. sp. tritici | Yes | Avirulence | Unknown | [101] |
AvrSr35 | P. graminis f. sp. tritici | Unknown | Avirulence | Unknown | [102] |
AvrSr50 | P. graminis f. sp. tritici | Yes | Avirulence | Unknown | [103] |
PSTha5a23 | P. striiformis f. sp. tritici | Yes | PTI suppression | Cytoplasm | [104] |
PstSCR1 | P. striiformis f. sp. tritici | Yes | Activate plant immunity | Apoplast | [105] |
Pst_12806 | P. striiformis f. sp. tritici | Yes | Suppress HR and basal immunity | Chloroplast | [106] |
PstGSRE1 | P. striiformis f. sp. tritici | Unknown | Suppress programmed cell death | Cytoplasm and nucleus | [107] |
PstGSRE4 | P. striiformis f. sp. tritici | Yes | Suppress HR | Cytoplasm | [108] |
AvrRppK | P. polysora | Unknown | Avirulence/PTI suppression | Unknown | [109] |
PSTG_01766 | P. striiformis f. sp. tritici | Unknown | Suppress high-temperature seedling resistance | Nucleus, cytoplasm, and membrane | [110] |
2.4. Avr Gene Identification
2.5. Pathogenomics
3. Future Perspectives
3.1. Complete Reference Genome
3.2. Pan-Genomics
3.3. Genome Evolution
3.4. Multi-Omics in Rust–Host Interactions
3.5. Population Genomics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Abbreviations
DNA | deoxyribonucleic acid |
RNA | ribonucleic acid |
Mb | megabase |
RIP | repeat induced point mutation |
SNPs | single nuclear polymorphisms |
InDels | insertions and deletions |
CYR | Chinese yellow rust |
Pst | Puccinia striiformis f. sp. tritici |
Pt | Puccinia triticina |
Pgt | Puccinia graminis f. sp. tritici |
Pca | Puccinia coronate f. sp. avenae |
Mlp | Melampsora larici-populina |
GWAS | genome-wide association study |
QTL | quantitative trait locus |
Avr | Avirulence |
Sr | Stem rust |
Yr | Yellow rust |
PAV | presence/absence variation |
Hi-C | high-throughput sequencing coupled with chromosome conformation capture |
RADseq | restriction site associated DNA sequencing |
References
- Staples, R.C. Research on the rust fungi during the twentieth century. Annu. Rev. Phytopathol. 2000, 38, 49–69. [Google Scholar] [CrossRef]
- Biffen, R.H. Mendel’s laws of inheritance and wheat breeding. J. Agric. Sci. 2005, 1, 4–48. [Google Scholar] [CrossRef]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Roelfs, A.P. Effects of barberry eradication on stem rust in the United States. Plant Dis. 1982, 66, 177–181. [Google Scholar] [CrossRef]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Bhavani, S.; Njau, P.; Herrera-Foessel, S.; Singh, P.K.; Singh, S.; Govindan, V. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 2011, 49, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Battacharya, S. Deadly new wheat disease threatens Europe’s crops. Nature 2017, 542, 145–146. [Google Scholar] [CrossRef]
- Talhinhas, P.; Batista, D.; Diniz, I.; Vieira, A.; Silva, D.N.; Loureiro, A.; Tavares, S.; Pereira, A.P.; Azinheira, H.G.; Guerra-Guimaraes, L.; et al. The coffee leaf rust pathogen Hemileia vastatrix: One and a half centuries around the tropics. Mol. Plant Pathol. 2017, 18, 1039–1051. [Google Scholar] [CrossRef]
- Agrios, G.N. Plant disease caused by fungi. In Plant Pathology; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; pp. 562–582. [Google Scholar]
- Zhao, J.; Wang, M.; Chen, X.; Kang, Z. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annu. Rev. Phytopathol. 2016, 54, 207–228. [Google Scholar] [CrossRef]
- Lawrence, G.J.; Dodds, P.N.; Ellis, J.G. Rust of flax and linseed caused by Melampsora lini. Mol. Plant Pathol. 2007, 8, 349–364. [Google Scholar] [CrossRef]
- Hacquard, S.; Petre, B.; Frey, P.; Hecker, A.; Rouhier, N.; Duplessis, S. The poplar-poplar rust interaction: Insights from genomics and transcriptomics. J. Pathog. 2011, 2011, 716041. [Google Scholar] [CrossRef] [Green Version]
- Nazareno, E.S.; Li, F.; Smith, M.; Park, R.F.; Kianian, S.F.; Figueroa, M. Puccinia coronata f. sp. avenae: A threat to global oat production. Mol. Plant Pathol. 2018, 19, 1047–1060. [Google Scholar] [PubMed]
- Leonard, K.J.; Szabo, L.J. Stem rust of small grains and grasses caused by Puccinia graminis. Mol. Plant Pathol. 2005, 6, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Bolton, M.D.; Kolmer, J.A.; Garvin, D.F. Wheat leaf rust caused by Puccinia triticina. Mol. Plant Pathol. 2008, 9, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Clifford, B.C. Barley leaf rust. In The Cereal Rusts II; Roelfs, A.P., Bushnell, W.R., Eds.; Academic Press: New York, NY, USA, 1985; pp. 173–205. [Google Scholar]
- Gill, U.S.; Nandety, R.S.; Krom, N.; Dai, X.; Zhuang, Z.; Tang, Y.; Zhao, P.X.; Mysore, K.S. Draft genome sequence resource of switchgrass rust pathogen, Puccinia novopanici isolate Ard-01. Phytopathology 2019, 109, 1513–1515. [Google Scholar] [CrossRef]
- Chen, W.; Wellings, C.; Chen, X.; Kang, Z.; Liu, T. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant Pathol. 2014, 15, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.M., Jr.; Hill, J.P.; Velasco, V.R. Barley yellow rust in North America. Annu. Rev. Phytopathol. 2001, 39, 367–384. [Google Scholar] [CrossRef]
- Beenken, L. Austropuccinia: A new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa 2017, 297, 53–61. [Google Scholar] [CrossRef]
- Coffey, M.D.; Bose, A.; Shaw, M. In vitro culture of the flax rust, Melampsora lini. Can. J. Bot. 1970, 48, 773–776. [Google Scholar] [CrossRef]
- Williams, P.G. Obligate parasitism and axenic culture. In The Cereal Rusts; Bushnell, W.R., Roelfs, A.J., Eds.; Academic Press: New York, NY, USA, 1984; Volume 1, pp. 399–430. [Google Scholar]
- Anikster, Y. The Formae Speciales. In The Cereal Rusts; Bushnell, W.R., Roelfs, A.J., Eds.; Academic Press: New York, NY, USA, 1984; pp. 115–130. [Google Scholar]
- Roelfs, A.P. Race specificity and methods of study. In The Cereal Rusts; Bushnell, W.R., Roelfs, A.J., Eds.; Academic Press: New York, NY, USA, 1984; Volume 1, pp. 131–164. [Google Scholar]
- Dean, R.A.; Talbot, N.J.; Ebbole, D.J.; Farman, M.L.; Mitchell, T.K.; Orbach, M.J.; Thon, M.; Kulkarni, R.; Xu, J.-R.; Pan, H.; et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 2005, 434, 980. [Google Scholar] [CrossRef]
- Aylward, J.; Steenkamp, E.T.; Dreyer, L.L.; Roets, F.; Wingfield, B.D.; Wingfield, M.J. A plant pathology perspective of fungal genome sequencing. IMA Fungus 2017, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.-J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464, 367. [Google Scholar] [CrossRef]
- Duplessis, S.; Cuomo, C.A.; Lin, Y.-C.; Aerts, A.; Tisserant, E.; Veneault-Fourrey, C.; Joly, D.L.; Hacquard, S.; Amselem, J.; Cantarel, B.L.; et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc. Natl. Acad. Sci. USA 2011, 108, 9166. [Google Scholar] [CrossRef] [PubMed]
- Kemen, E.; Jones, J.D. Obligate biotroph parasitism: Can we link genomes to lifestyles? Trends Plant Sci. 2012, 17, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Spanu, P.D.; Abbott, J.C.; Amselem, J.; Burgis, T.A.; Soanes, D.M.; Stuber, K.; Ver Loren van Themaat, E.; Brown, J.K.; Butcher, S.A.; Gurr, S.J.; et al. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 2010, 330, 1543–1546. [Google Scholar] [CrossRef]
- Amselem, J.; Cuomo, C.A.; van Kan, J.A.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; de Vries, R.P.; Dyer, P.S.; Fillinger, S.; et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011, 7, e1002230. [Google Scholar] [CrossRef]
- Fouche, S.; Plissonneau, C.; Croll, D. The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Curr. Opin. Microbiol. 2018, 46, 34–42. [Google Scholar] [CrossRef]
- Haas, B.J.; Kamoun, S.; Zody, M.C.; Jiang, R.H.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T.; et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 2009, 461, 393–398. [Google Scholar] [CrossRef]
- Menardo, F.; Praz, C.R.; Wyder, S.; Ben-David, R.; Bourras, S.; Matsumae, H.; McNally, K.E.; Parlange, F.; Riba, A.; Roffler, S.; et al. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat. Genet. 2016, 48, 201–205. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, R.; Bolton, M.D.; Kombrink, A.; van den Berg, G.C.; Yadeta, K.A.; Thomma, B.P. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 2013, 23, 1271–1282. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.D.; Cappellini, E.; Samaniego, J.A.; Zepeda, M.L.; Campos, P.F.; Seguin-Orlando, A.; Wales, N.; Orlando, L.; Ho, S.Y.; Dietrich, F.S.; et al. Reconstructing genome evolution in historic samples of the Irish potato famine pathogen. Nat. Commun. 2013, 4, 2172. [Google Scholar] [CrossRef] [PubMed]
- Aime, M.C.; McTaggart, A.R.; Mondo, S.J.; Duplessis, S. Phylogenetics and phylogenomics of rust fungi. Adv. Genet. 2017, 100, 267–307. [Google Scholar] [PubMed]
- Tavares, S.; Ramos, A.P.; Pires, A.S.; Azinheira, H.G.; Caldeirinha, P.; Link, T.; Abranches, R.; Silva Mdo, C.; Voegele, R.T.; Loureiro, J.; et al. Genome size analyses of Pucciniales reveal the largest fungal genomes. Front. Plant Sci. 2014, 5, 422. [Google Scholar] [CrossRef] [PubMed]
- Cantu, D.; Segovia, V.; MacLean, D.; Bayles, R.; Chen, X.; Kamoun, S.; Dubcovsky, J.; Saunders, D.G.O.; Uauy, C. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genom. 2013, 14, 270. [Google Scholar]
- Tobias, P.A.; Schwessinger, B.; Deng, C.H.; Wu, C.; Dong, C.; Sperschneider, J.; Jones, A.; Lou, Z.; Zhang, P.; Sandhu, K.; et al. Austropuccinia psidii, causing myrtle rust, has a gigabase-sized genome shaped by transposable elements. G3 (Bethesda) 2021, 11, jkaa015. [Google Scholar] [CrossRef]
- Kamper, J.; Kahmann, R.; Bolker, M.; Ma, L.J.; Brefort, T.; Saville, B.J.; Banuett, F.; Kronstad, J.W.; Gold, S.E.; Muller, O.; et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 2006, 444, 97–101. [Google Scholar] [CrossRef]
- Laurie, J.D.; Ali, S.; Linning, R.; Mannhaupt, G.; Wong, P.; Guldener, U.; Munsterkotter, M.; Moore, R.; Kahmann, R.; Bakkeren, G.; et al. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 2012, 24, 1733–1745. [Google Scholar] [CrossRef]
- Wicker, T.; Oberhaensli, S.; Parlange, F.; Buchmann, J.P.; Shatalina, M.; Roffler, S.; Ben-David, R.; Dolezel, J.; Simkova, H.; Schulze-Lefert, P.; et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat. Genet. 2013, 45, 1092–1096. [Google Scholar] [CrossRef]
- Baxter, L.; Tripathy, S.; Ishaque, N.; Boot, N.; Cabral, A.; Kemen, E.; Thines, M.; Ah-Fong, A.; Anderson, R.; Badejoko, W.; et al. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 2010, 330, 1549. [Google Scholar] [CrossRef]
- Coleman, J.J.; Rounsley, S.D.; Rodriguez-Carres, M.; Kuo, A.; Wasmann, C.C.; Grimwood, J.; Schmutz, J.; Taga, M.; White, G.J.; Zhou, S.; et al. The genome of Nectria haematococca: Contribution of supernumerary chromosomes to gene expansion. PLoS Genet. 2009, 5, e1000618. [Google Scholar] [CrossRef]
- Cuomo, C.A.; Güldener, U.; Xu, J.-R.; Trail, F.; Turgeon, B.G.; Di Pietro, A.; Walton, J.D.; Ma, L.-J.; Baker, S.E.; Rep, M.; et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 2007, 317, 1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hane, J.K.; Lowe, R.G.; Solomon, P.S.; Tan, K.C.; Schoch, C.L.; Spatafora, J.W.; Crous, P.W.; Kodira, C.; Birren, B.W.; Galagan, J.E.; et al. Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell 2007, 19, 3347–3368. [Google Scholar] [CrossRef]
- Schirawski, J.; Mannhaupt, G.; Münch, K.; Brefort, T.; Schipper, K.; Doehlemann, G.; Di Stasio, M.; Rössel, N.; Mendoza-Mendoza, A.; Pester, D.; et al. Pathogenicity determinants in smut fungi revealed by genome comparison. Science 2010, 330, 1546. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, C.A.; Brouwer, H.; Cano, L.; Hamilton, J.P.; Holt, C.; Huitema, E.; Raffaele, S.; Robideau, G.P.; Thines, M.; Win, J.; et al. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 2010, 11, R73. [Google Scholar] [CrossRef] [PubMed]
- Faino, L.; Seidl, M.F.; Shi-Kunne, X.; Pauper, M.; van den Berg, G.C.; Wittenberg, A.H.; Thomma, B.P. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res. 2016, 26, 1091–1100. [Google Scholar] [CrossRef]
- Cuomo, C.A.; Bakkeren, G.; Khalil, H.B.; Panwar, V.; Joly, D.; Linning, R.; Sakthikumar, S.; Song, X.; Adiconis, X.; Fan, L.; et al. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. G3 (Bethesda) 2017, 7, 361–376. [Google Scholar] [CrossRef]
- Kiran, K.; Rawal, H.C.; Dubey, H.; Jaswal, R.; Devanna, B.N.; Gupta, D.K.; Bhardwaj, S.C.; Prasad, P.; Pal, D.; Chhuneja, P.; et al. Draft genome of the wheat rust pathogen (Puccinia triticina) unravels genome-wide structural variations during evolution. Genome Biol. Evol. 2016, 8, 2702–2721. [Google Scholar] [CrossRef]
- Xia, C.; Wang, M.; Cornejo, O.E.; Jiwan, D.A.; See, D.R.; Chen, X. Secretome characterization and correlation analysis reveal putative pathogenicity mechanisms and identify candidate avirulence genes in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Front. Microbiol. 2017, 8, 2394. [Google Scholar] [CrossRef]
- Cristancho, M.A.; Botero-Rozo, D.O.; Giraldo, W.; Tabima, J.; Riano-Pachon, D.M.; Escobar, C.; Rozo, Y.; Rivera, L.F.; Duran, A.; Restrepo, S.; et al. Annotation of a hybrid partial genome of the coffee rust (Hemileia vastatrix) contributes to the gene repertoire catalog of the Pucciniales. Front. Plant Sci. 2014, 5, 594. [Google Scholar] [CrossRef]
- Porto, B.N.; Caixeta, E.T.; Mathioni, S.M.; Vidigal, P.M.P.; Zambolim, L.; Zambolim, E.M.; Donofrio, N.; Polson, S.W.; Maia, T.A.; Chen, C.; et al. Genome sequencing and transcript analysis of Hemileia vastatrix reveal expression dynamics of candidate effectors dependent on host compatibility. PLoS ONE 2019, 14, e0215598. [Google Scholar] [CrossRef] [PubMed]
- Nemri, A.; Saunders, D.G.; Anderson, C.; Upadhyaya, N.M.; Win, J.; Lawrence, G.J.; Jones, D.A.; Kamoun, S.; Ellis, J.G.; Dodds, P.N. The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Front. Plant Sci. 2014, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.E.; Nazareno, E.S.; Rottschaefer, S.M.; Riddle, J.; Dos Santos Pereira, D.; Li, F.; Nguyen-Phuc, H.; Henningsen, E.C.; Persoons, A.; Saunders, D.G.O.; et al. Increased virulence of Puccinia coronata f. sp. avenae populations through allele frequency changes at multiple putative Avr loci. PLoS Genet. 2020, 16, e1009291. [Google Scholar]
- Henningsen, E.C.; Hewitt, T.; Dugyala, S.; Nazareno, E.S.; Gilbert, E.; Li, F.; Kianian, S.F.; Steffenson, B.J.; Dodds, P.N.; Sperschneider, J.; et al. A chromosome-level, fully phased genome assembly of the oat crown rust fungus Puccinia coronata f. sp. avenae: A resource to enable comparative genomics in the cereal rusts. G3 (Bethesda) 2022, 22, 149. [Google Scholar]
- Upadhyaya, N.M.; Garnica, D.P.; Karaoglu, H.; Sperschneider, J.; Nemri, A.; Xu, B.; Mago, R.; Cuomo, C.A.; Rathjen, J.P.; Park, R.F.; et al. Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes. Front. Plant Sci. 2015, 5, 759. [Google Scholar]
- Rutter, W.B.; Salcedo, A.; Akhunova, A.; He, F.; Wang, S.; Liang, H.; Bowden, R.L.; Akhunov, E. Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses. BMC Genom. 2017, 18, 291. [Google Scholar]
- Chen, J.; Wu, J.; Zhang, P.; Dong, C.; Upadhyaya, N.M.; Zhou, Q.; Dodds, P.; Park, R.F. De novo genome assembly and comparative genomics of the barley leaf rust pathogen Puccinia hordei identifies candidates for three avirulence genes. G3 (Bethesda) 2019, 9, 3263–3271. [Google Scholar] [CrossRef]
- Tan, M.K.; Collins, D.; Chen, Z.; Englezou, A.; Wilkins, M.R. A brief overview of the size and composition of the myrtle rust genome and its taxonomic status. Mycology 2014, 5, 52–63. [Google Scholar] [CrossRef]
- Rochi, L.; Diéguez, M.J.; Burguener, G.; Darino, M.A.; Pergolesi, M.F.; Ingala, L.R.; Cuyeu, A.R.; Turjanski, A.; Kreff, E.D.; Sacco, F. Characterization and comparative analysis of the genome of Puccinia sorghi Schwein, the causal agent of maize common rust. Fungal Genet. Biol. 2018, 112, 31–39. [Google Scholar] [CrossRef]
- Xia, C.; Wang, M.; Yin, C.; Cornejo, O.E.; Hulbert, S.H.; Chen, X. Genome sequence resources for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei). Mol. Plant-Microbe Interact. 2018, 31, 1117–1120. [Google Scholar]
- Schwessinger, B.; Sperschneider, J.; Cuddy, W.S.; Garnica, D.P.; Miller, M.E.; Taylor, J.M.; Dodds, P.N.; Figueroa, M.; Park, R.F.; Rathjen, J.P. A near-complete haplotype-phased genome of the dikaryotic wheat stripe rust fungus Puccinia striiformis f. sp. tritici reveals high Interhaplotype diversity. mBio 2018, 9, e02275-17. [Google Scholar]
- Xia, C.J.; Huang, L.; Huang, J.; Zhang, H.; Huang, Y.; Benhamed, M.; Wang, M.; Chen, X.M.; Zhang, M.; Chen, W.Q.; et al. Folding features and dynamics of 3D genome architecture in plant fungal pathogens. Microbiol. Spectr. 2022. in revision. [Google Scholar]
- Schwessinger, B.; Jones, A.; Albekaa, M.; Hu, Y.; Mackenzie, A.; Tam, R.; Nagar, R.; Milgate, A.; Rathjen, J.P.; Periyannan, S. A chromosome scale assembly of an Australian Puccinia striiformis f. sp. tritici isolate of the PstS1 lineage. Mol. Plant-Microbe Interact. 2022, 35, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Huang, L.; Huang, J.; Wang, X.; Chen, X.; Zhao, J.; Guo, J.; Zhuang, H.; Qiu, C.; Liu, J.; et al. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat. Commun. 2013, 4, 2673. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xia, C.; Wang, M.; Yin, C.; Chen, X. Genome sequence resource of a Puccinia striiformis isolate infecting wheatgrass. Phytopathology 2019, 109, 1509–1512. [Google Scholar] [CrossRef]
- Xia, C.; Wang, M.N.; Yin, C.; Cornejo, E.O.; Hulbert, C.H.; Chen, X. Genomic insights into host adaptation between the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei). BMC Genom. 2018, 19, 664. [Google Scholar]
- Miller, M.E.; Zhang, Y.; Omidvar, V.; Sperschneider, J.; Schwessinger, B.; Raley, C.; Palmer, J.M.; Garnica, D.; Upadhyaya, N.; Rathjen, J.; et al. De novo assembly and phasing of dikaryotic genomes from two isolates of Puccinia coronata f. sp. avenae, the causal agent of oat crown rust. mBio 2018, 9, e01650-17. [Google Scholar]
- Kiran, K.; Rawal, H.C.; Dubey, H.; Jaswal, R.; Bhardwaj, S.C.; Prasad, P.; Pal, D.; Devanna, B.N.; Sharma, T.R. Dissection of genomic features and variations of three pathotypes of Puccinia striiformis through whole genome sequencing. Sci. Rep. 2017, 7, 42419. [Google Scholar] [CrossRef]
- Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef]
- Giraldo, M.C.; Valent, B. Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 2013, 11, 800–814. [Google Scholar] [CrossRef]
- Lo Presti, L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef]
- Sharpee, W.C.; Dean, R.A. Form and function of fungal and oomycete effectors. Fungal Biol. Rev. 2016, 30, 62–73. [Google Scholar] [CrossRef]
- Garnica, D.P.; Nemri, A.; Upadhyaya, N.M.; Rathjen, J.P.; Dodds, P.N. The ins and outs of rust Haustoria. PLoS Pathog. 2014, 10, e1004329. [Google Scholar] [CrossRef] [PubMed]
- Garnica, D.P.; Upadhyaya, N.M.; Dodds, P.N.; Rathjen, J.P. Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. PLoS ONE 2013, 8, e67150. [Google Scholar]
- Lowe, R.G.T.; Howlett, B.J. Indifferent, Affectionate, or deceitful: Lifestyles and secretomes of fungi. PLoS Pathog. 2012, 8, e1002515. [Google Scholar] [CrossRef] [PubMed]
- Sperschneider, J.; Dodds, P.N.; Gardiner, D.M.; Singh, K.B.; Taylor, J.M. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Mol. Plant Pathol. 2018, 19, 2094–2110. [Google Scholar] [CrossRef]
- Kanja, C.; Hammond-Kosack, K.E. Proteinaceous effector discovery and characterization in filamentous plant pathogens. Mol. Plant Pathol. 2020, 21, 1353–1376. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.G.; Win, J.; Cano, L.M.; Szabo, L.J.; Kamoun, S.; Raffaele, S. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS ONE 2012, 7, e29847. [Google Scholar] [CrossRef] [PubMed]
- Sperschneider, J.; Dodds, P.N.; Singh, K.B.; Taylor, J.M. ApoplastP: Prediction of effectors and plant proteins in the apoplast using machine learning. New Phytol. 2018, 217, 1764–1778. [Google Scholar] [CrossRef]
- Tyler, B.M.; Tripathy, S.; Zhang, X.; Dehal, P.; Jiang, R.H.Y.; Aerts, A.; Arredondo, F.D.; Baxter, L.; Bensasson, D.; Beynon, J.L.; et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 2006, 313, 1261. [Google Scholar] [CrossRef]
- Thordal-Christensen, H.; Birch, P.R.J.; Spanu, P.D.; Panstruga, R. Why did filamentous plant pathogens evolve the potential to secrete hundreds of effectors to enable disease? Mol. Plant Pathol. 2018, 19, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Lorrain, C.; Marchal, C.; Hacquard, S.; Delaruelle, C.; Petrowski, J.; Petre, B.; Hecker, A.; Frey, P.; Duplessis, S. The rust fungus Melampsora larici-populina expresses a conserved genetic program and distinct sets of secreted protein genes during infection of its two host plants, larch and poplar. Mol. Plant Microbe Interact. 2018, 31, 695–706. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F.; Damm, U.; Buiate, E.A.; Epstein, L.; Alkan, N.; et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 2012, 44, 1060–1065. [Google Scholar] [CrossRef]
- Dobon, A.; Bunting, D.C.; Cabrera-Quio, L.E.; Uauy, C.; Saunders, D.G. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genom. 2016, 17, 380. [Google Scholar] [CrossRef]
- Lanver, D.; Tollot, M.; Schweizer, G.; Lo Presti, L.; Reissmann, S.; Ma, L.S.; Schuster, M.; Tanaka, S.; Liang, L.; Ludwig, N.; et al. Ustilago maydis effectors and their impact on virulence. Nat. Rev. Microbiol. 2017, 15, 409–421. [Google Scholar] [CrossRef]
- Pretsch, K.; Kemen, A.; Kemen, E.; Geiger, M.; Mendgen, K.; Voegele, R. The rust transferred proteins-a new family of effector proteins exhibiting protease inhibitor function. Mol. Plant Pathol. 2013, 14, 96–107. [Google Scholar] [CrossRef]
- Qi, M.; Link, T.I.; Müller, M.; Hirschburger, D.; Pudake, R.N.; Pedley, K.F.; Braun, E.; Voegele, R.T.; Baum, T.J.; Whitham, S.A. A small cysteine-rich protein from the Asian soybean rust fungus, Phakopsora pachyrhizi, suppresses plant immunity. PLoS Pathog. 2016, 12, e1005827. [Google Scholar] [CrossRef]
- Liu, C.; Pedersen, C.; Schultz-Larsen, T.; Aguilar, G.B.; Madriz-Ordeñana, K.; Hovmøller, M.S.; Thordal-Christensen, H. The stripe rust fungal effector PEC6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases. New Phytol. 2016. Online ahead of print. [Google Scholar] [CrossRef]
- Petre, B.; Saunders, D.G.; Sklenar, J.; Lorrain, C.; Krasileva, K.V.; Win, J.; Duplessis, S.; Kamoun, S. Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat yellow rust pathogen that associates with processing bodies. PLoS ONE 2016, 11, e0149035. [Google Scholar] [CrossRef]
- Petre, B.; Saunders, D.G.; Sklenar, J.; Lorrain, C.; Win, J.; Duplessis, S.; Kamoun, S. Candidate effector proteins of the rust pathogen Melampsora larici-populina target diverse plant cell compartments. Mol. Plant-Microbe Interact. 2015, 28, 689–700. [Google Scholar] [CrossRef]
- De Guillen, K.; Lorrain, C.; Tsan, P.; Barthe, P.; Petre, B.; Saveleva, N.; Rouhier, N.; Duplessis, S.; Padilla, A.; Hecker, A. Structural genomics applied to the rust fungus Melampsora larici-populina reveals two candidate effector proteins adopting cystine knot and NTF2-like protein folds. Sci. Rep. 2019, 9, 18084. [Google Scholar]
- Louet, C.; Saubin, M.; Andrieux, A.; Persoons, A.; Gorse, M.; Pétrowski, J.; Fabre, B.; De Mita, S.; Duplessis, S.; Frey, P.; et al. A point mutation and large deletion at the candidate avirulence locus AvrMlp7 in the poplar rust fungus correlate with poplar RMlp7 resistance breakdown. Mol. Ecol. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Catanzariti, A.M.; Dodds, P.N.; Lawrence, G.J.; Ayliffe, M.A.; Ellis, J.G. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 2006, 18, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Dodds, P.N.; Lawrence, G.J.; Catanzariti, A.M.; Ayliffe, M.A.; Ellis, J.G. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 2004, 16, 755–768. [Google Scholar] [CrossRef]
- Anderson, C.; Khan, M.A.; Catanzariti, A.M.; Jack, C.A.; Nemri, A.; Lawrence, G.J.; Upadhyaya, N.M.; Hardham, A.R.; Ellis, J.G.; Dodds, P.N.; et al. Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genom. 2016, 17, 667. [Google Scholar] [CrossRef]
- Upadhyaya, N.M.; Ellis, J.G.; Dodds, P.N. A bacterial type III secretion-based delivery system for functional assays of fungal effectors in cereals. Methods Mol. Biol. 2014, 1127, 277–290. [Google Scholar]
- Upadhyaya, N.M.; Mago, R.; Panwar, V.; Hewitt, T.; Luo, M.; Chen, J.; Sperschneider, J.; Nguyen-Phuc, H.; Wang, A.; Ortiz, D.; et al. Genomics accelerated isolation of a new stem rust avirulence gene-wheat resistance gene pair. Nat. Plants 2021, 7, 1220–1228. [Google Scholar] [CrossRef]
- Salcedo, A.; Rutter, W.; Wang, S.; Akhunova, A.; Bolus, S.; Chao, S.; Anderson, N.; De Soto, M.F.; Rouse, M.; Szabo, L.; et al. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 2017, 358, 1604. [Google Scholar] [CrossRef]
- Chen, J.; Upadhyaya, N.M.; Ortiz, D.; Sperschneider, J.; Li, F.; Bouton, C.; Breen, S.; Dong, C.; Xu, B.; Zhang, X.; et al. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 2017, 358, 1607. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, K.; Yao, J.; Li, S.; Wang, X.; Huang, L.; Kang, Z. PSTha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity. Environ. Microbiol. 2017, 19, 1717–1729. [Google Scholar]
- Dagvadorj, B.; Ozketen, A.C.; Andac, A.; Duggan, C.; Bozkurt, T.O.; Akkaya, M.S. A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface. Sci. Rep. 2017, 7, 1141. [Google Scholar]
- Xu, Q.; Tang, C.; Wang, X.; Sun, S.; Zhao, J.; Kang, Z.; Wang, X. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nat. Commun. 2019, 10, 5571. [Google Scholar] [CrossRef]
- Qi, T.; Guo, J.; Liu, P.; He, F.; Wan, C.; Islam, M.A.; Tyler, B.M.; Kang, Z.; Guo, J. Stripe rust effector PstGSRE1 disrupts nuclear localization of ROS-promoting transcription factor TaLOL2 to defeat ROS-induced defense in wheat. Mol. Plant 2019, 12, 1624–1638. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Wang, Y.; Du, Y.; Song, C.; Song, P.; Yang, Q.; He, F.; Bai, X.; Huang, L.; et al. Glycine-serine-rich effector PstGSRE4 in Puccinia striiformis f. sp. tritici inhibits the activity of copper zinc superoxide dismutase to modulate immunity in wheat. PLoS Pathog. 2022, 18, e1010702. [Google Scholar]
- Chen, G.; Zhang, B.; Ding, J.; Wang, H.; Deng, C.; Wang, J.; Yang, Q.; Pi, Q.; Zhang, R.; Zhai, H.; et al. Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nat. Commun. 2022, 13, 4392. [Google Scholar] [CrossRef]
- Hu, Y.; Su, C.; Zhang, Y.; Li, Y.; Chen, X.; Shang, H.; Hu, X. A Puccinia striiformis f. sp. tritici effector inhibits the high-temperature seedling-plant resistance in wheat. Plant J. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Rouxel, T.; Balesdent, M.H. Life, death and rebirth of avirulence effectors in a fungal pathogen of Brassica crops, Leptosphaeria maculans. New Phytol. 2017, 214, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Lei, Y.; Wang, M.; Chen, W.; Chen, X. An avirulence gene cluster in the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) identified through genetic mapping and whole-genome sequencing of a sexual population. mSphere 2020, 5, e00128-20. [Google Scholar]
- Pernaci, M.; De Mita, S.; Andrieux, A.; Petrowski, J.; Halkett, F.; Duplessis, S.; Frey, P. Genome-wide patterns of segregation and linkage disequilibrium: The construction of a linkage genetic map of the poplar rust fungus Melampsora larici-populina. Front. Plant Sci. 2014, 5, 454. [Google Scholar] [CrossRef]
- Wu, J.Q.; Sakthikumar, S.; Dong, C.; Zhang, P.; Cuomo, C.A.; Park, R.F. Comparative genomics integrated with association analysis identifies candidate effector genes corresponding to Lr20 in phenotype-paired Puccinia triticina isolates from Australia. Front. Plant Sci. 2017, 8, 148. [Google Scholar] [CrossRef]
- Wang, J.; Zhan, G.; Tian, Y.; Zhang, Y.; Xu, Y.; Kang, Z.; Zhao, J. Role of sexual reproduction in the evolution of the wheat stripe rust fungus races in China. Phytopathology 2022, 112, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhan, G.; Chen, X.; Tungruentragoon, A.; Lu, X.; Zhao, J.; Huang, L.; Kang, Z. Virulence and simple sequence repeat marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensiana. Phytopathology 2016, 106, 185–191. [Google Scholar] [PubMed]
- Wang, L.; Zheng, D.; Zuo, S.; Chen, X.; Zhuang, H.; Huang, L.; Kang, Z.; Zhao, J. Inheritance and linkage of virulence genes in Chinese predominant race CYR32 of the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici. Front. Plant Sci. 2018, 9, 120. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wang, M.; Skinner, D.Z.; See, D.R.; Xia, C.; Guo, X.; Chen, X. Inheritance of virulence, construction of a linkage map, and mapping dominant virulence genes in Puccinia striiformis f. sp. tritici through characterization of a sexual population with genotyping-by-sequencing. Phytopathology 2018, 108, 133–141. [Google Scholar] [PubMed]
- Raffaele, S.; Kamoun, S. Genome evolution in filamentous plant pathogens: Why bigger can be better. Nat. Rev. Microbiol. 2012, 10, 417–430. [Google Scholar] [CrossRef]
- Hubbard, A.; Lewis, C.M.; Yoshida, K.; Ramirez-Gonzalez, R.H.; de Vallavieille-Pope, C.; Thomas, J.; Kamoun, S.; Bayles, R.; Uauy, C.; Saunders, D.G. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol. 2015, 16, 23. [Google Scholar] [CrossRef]
- Bueno-Sancho, V.; Persoons, A.; Hubbard, A.; Cabrera-Quio, L.E.; Lewis, C.M.; Corredor-Moreno, P.; Bunting, D.C.E.; Ali, S.; Chng, S.; Hodson, D.P.; et al. Pathogenomic analysis of wheat yellow rust lineages detects seasonal variation and host specificity. Genome Biol. Evol. 2017, 9, 3282–3296. [Google Scholar] [CrossRef]
- Faino, L.; Seidl, M.F.; Datema, E.; van den Berg, G.C.; Janssen, A.; Wittenberg, A.H.; Thomma, B.P. Single-molecule real-time sequencing combined with optical mapping yields completely finished fungal genome. MBio 2015, 6, e00936-15. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, S.B.; M’Barek, S.B.; Dhillon, B.; Wittenberg, A.H.; Crane, C.F.; Hane, J.K.; Foster, A.J.; Van der Lee, T.A.; Grimwood, J.; Aerts, A.; et al. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 2011, 7, e1002070. [Google Scholar] [CrossRef]
- King, R.; Urban, M.; Hammond-Kosack, M.C.; Hassani-Pak, K.; Hammond-Kosack, K.E. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genom. 2015, 16, 544. [Google Scholar] [CrossRef]
- Van Kan, J.A.; Stassen, J.H.; Mosbach, A.; Van Der Lee, T.A.; Faino, L.; Farmer, A.D.; Papasotiriou, D.G.; Zhou, S.; Seidl, M.F.; Cottam, E.; et al. A gapless genome sequence of the fungus Botrytis cinerea. Mol. Plant Pathol. 2017, 18, 75–89. [Google Scholar] [CrossRef]
- Wolters, P.J.; Faino, L.; van den Bosch, T.B.M.; Evenhuis, B.; Visser, R.G.F.; Seidl, M.F.; Vleeshouwers, V.G.A.A. Gapless genome assembly of the potato and tomato early blight pathogen Alternaria solani. Mol. Plant-Microbe Interact. 2018, 31, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Thomma, B.; Seidl, M.F.; Shi-Kunne, X.; Cook, D.E.; Bolton, M.D.; van Kan, J.A.L.; Faino, L. Mind the gap; seven reasons to close fragmented genome assemblies. Fungal Genet. Biol. 2016, 90, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Jones, A.W.; Hewitt, T.; Mackenzie, A.; Hu, Y.; Sharp, A.; Lewis, D.; Mago, R.; Upadhyaya, N.M.; Rathjen, J.P.; et al. Physical separation of haplotypes in dikaryons allows benchmarking of phasing accuracy in nanopore and HiFi assemblies with Hi-C data. Genome Biol. 2022, 23, 84. [Google Scholar] [CrossRef]
- Duplessis, S.; Lorrain, C.; Petre, B.; Figueroa, M.; Dodds, P.N.; Aime, M.C. Host adaptation and virulence in heteroecious rust fungi. Annu. Rev. Phytopathol. 2021, 59, 403–422. [Google Scholar] [CrossRef] [PubMed]
- Hessenauer, P.; Fijarczyk, A.; Martin, H.; Prunier, J.; Charron, G.; Chapuis, J.; Bernier, L.; Tanguay, P.; Hamelin, R.C.; Landry, C.R. Hybridization and introgression drive genome evolution of Dutch elm disease pathogens. Nat. Ecol. Evol. 2020, 4, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Amir, R.; Sani, Q.A.; Maqsood, W.; Munir, F.; Fatima, N.; Siddiqa, A.; Ahmad, J. Pan-genomics of plant pathogens and its applications. In Pan-Genomics: Applications, Challenges, and Future Prospects; Academic Press: Cambridge, MA, USA, 2020; pp. 121–145. [Google Scholar]
- Tettelin, H.; Masignani, V.; Cieslewicz, M.J.; Donati, C.; Medini, D.; Ward, N.L.; Angiuoli, S.V.; Crabtree, J.; Jones, A.L.; Durkin, A.S.; et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. USA 2005, 102, 13950–13955. [Google Scholar] [CrossRef]
- Croll, D.; Zala, M.; McDonald, B.A. Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen. PLoS Genet. 2013, 9, e1003567. [Google Scholar] [CrossRef] [Green Version]
- Vernikos, G.; Medini, D.; Riley, D.R.; Tettelin, H. Ten years of pan-genome analyses. Curr. Opin. Microbiol. 2015, 23, 148–154. [Google Scholar] [CrossRef]
- Milus, E.A.; Kristensen, K.; Hovmøller, M.S. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 2008, 99, 89–94. [Google Scholar]
- Wan, A.M.; Wang, M.N.; Chen, X.M. Variation in telial formation of Puccinia striiformis in the United States. Am. J. Plant Sci. 2019, 10, 826–849. [Google Scholar] [CrossRef]
- Park, R.F.; Wellings, C.R. Somatic hybridization in the Uredinales. Annu. Rev. Phytopathol. 2012, 5, 219–239. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Wang, M.N.; Wan, A.M.; Xia, C.J.; See, D.R.; Zhang, M.; Chen, X.M. Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination. Phytopathology 2017, 107, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Stukenbrock, E.H. The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology 2016, 106, 104–112. [Google Scholar] [CrossRef] [PubMed]
- McTaggart, A.R.; James, T.Y.; Idnurm, A.; Park, R.F.; Shuey, L.S.; Demers, M.N.K.; Aime, M.C. Sexual reproduction is the null hypothesis for life cycles of rust fungi. PLoS Pathog. 2022, 26, e1010439. [Google Scholar] [CrossRef] [PubMed]
- Steensels, J.; Gallone, B.; Verstrepen, K.J. Interspecific hybridization as a driver of fungal evolution and adaptation. Nat. Rev. Microbiol. 2021, 19, 485–500. [Google Scholar] [CrossRef]
- Li, F.; Upadhyaya, N.M.; Sperschneider, J.; Matny, O.; Nguyen-Phuc, H.; Mago, R.; Raley, C.; Miller, M.E.; Silverstein, K.A.T.; Henningsen, E.; et al. Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation. Nat. Commun. 2019, 10, 5068. [Google Scholar] [CrossRef]
- Grünwald, N.J.; McDonald, B.A.; Milgroom, M.G. Population genomics of fungal and Oomycete pathogens. Annu. Rev. Phytopathol. 2016, 54, 323–346. [Google Scholar] [CrossRef]
- Brar, G.S.; Ali, S.; Qutob, D.; Ambrose, S.; Lou, K.; Maclachlan, R.; Pozniak, C.J.; Fu, Y.B.; Sharpe, A.G.; Kutcher, H.R. Genome re-sequencing and simple sequence repeat markers reveal the existence of divergent lineages in the Canadian Puccinia striiformis f. sp. tritici population with extensive DNA methylation. Environ. Microbiol. 2018, 20, 1498–1515. [Google Scholar]
- Silva, D.N.; Varzea, V.; Paulo, O.S.; Batista, D. Population genomic footprints of host adaptation, introgression and recombination in coffee leaf rust. Mol Plant Pathol. 2018, 19, 1742–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, C.M.; Persoons, A.; Bebber, D.P.; Kigathi, R.N.; Maintz, J.; Findlay, K.; Bueno-Sancho, V.; Corredor-Moreno, P.; Harrington, S.A.; Kangara, N.; et al. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun. Biol. 2018, 1, 13. [Google Scholar] [CrossRef]
- Ding, Y.; Cuddy, W.S.; Wellings, C.R.; Zhang, P.; Thach, T.; Hovmøller, M.S.; Qutob, D.; Brar, G.S.; Kutcher, H.R.; Park, R.F. Incursions of divergent genotypes, evolution of virulence and host jumps shape a continental clonal population of the stripe rust pathogen Puccinia striiformis. Mol. Ecol. 2021, 30, 6566–6584. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Xia, C.J.; Chen, W.Q.; Liu, T.G. Population genomic analyses reveal extensive genomic regions within selective sweeps associated with adaptation and demographic history of a wheat fungal pathogen. Mol. Ecol. 2022; submitted. [Google Scholar]
- Payseur, B.A.; Rieseberg, L.H. A genomic perspective on hybridization and speciation. Mol. Ecol. 2016, 25, 2337–2360. [Google Scholar] [CrossRef] [PubMed]
- Gladieux, P.; Ropars, J.; Badouin, H.; Branca, A.; Aguileta, G.; de Vienne, D.M.; Rodriguez de la Vega, R.C.; Branco, S.; Giraud, T. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol. Ecol. 2014, 23, 753–773. [Google Scholar] [CrossRef]
- Inoue, Y.; Vy, T.T.P.; Yoshida, K.; Asano, H.; Mitsuoka, C.; Asuke, S.; Anh, V.L.; Cumagun, C.J.R.; Chuma, I.; Terauchi, R.; et al. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 2017, 357, 80. [Google Scholar] [CrossRef]
- Vleeshouwers, V.G.; Oliver, R.P. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol. Plant Microbe Interact. 2014, 27, 196–206. [Google Scholar] [CrossRef] [Green Version]
Species 1 | Disease | Primary Host | Alternate Host | Life Cycle | Reference |
---|---|---|---|---|---|
Hv | Leaf rust | Coffee | Unknown | Hemicyclic | [7] |
Ml | Flax rust | Flax, linseed | NA | Macrocyclic, Autoecious | [10] |
Mlp | Leaf rust | Poplar | Larch | Macrocyclic, Heteroecious | [11] |
Pca | Crown rust | Oat | Buckthorn | Macrocyclic, Heteroecious | [12] |
Pgt | Stem rust | Wheat, barley | Barberry | Macrocyclic, Heteroecious | [13] |
Pt | Leaf rust | Wheat | T. speciosissimum, I. fumaroides | Macrocyclic, Heteroecious | [14] |
Ph | Leaf rust | Barley | Ornithogalum, Leopoldia, and Dipcadi spp. | Macrocyclic, Heteroecious | [15] |
Pn | Switchgrass rust | Switchgrass | Euphorbia spp. | Macrocyclic, Heteroecious | [16] |
Pst | Stripe rust | Wheat | Barberry, Oregon grape | Macrocyclic, Heteroecious | [17] |
Psh | Stripe rust | Barley | Barberry | Macrocyclic, Heteroecious | [18] |
Ap | Myrtle rust | Myrtaceae | Myrtaceae | Macrocyclic, Autoecious 2 | [19] |
Research Field | Features | Approaches |
---|---|---|
Rust fungal biology |
| Multi-omics, transcriptomics, gene regulatory networks |
Rust–host interactions |
| Effectoromics, epigenomics, ATAC-seq, GWAS, genetic mapping, Single-cell RNA-seq, single-nuclear RNA-seq |
Genome evolution |
| Whole-genome sequencing, genotyping-by-sequencing, next-generation sequencing, long-reads sequencing, comparative genomics |
Epidemiology and disease management |
| Pan-genomics, population genomics; field pathogenomics |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, C.; Qiu, A.; Wang, M.; Liu, T.; Chen, W.; Chen, X. Current Status and Future Perspectives of Genomics Research in the Rust Fungi. Int. J. Mol. Sci. 2022, 23, 9629. https://doi.org/10.3390/ijms23179629
Xia C, Qiu A, Wang M, Liu T, Chen W, Chen X. Current Status and Future Perspectives of Genomics Research in the Rust Fungi. International Journal of Molecular Sciences. 2022; 23(17):9629. https://doi.org/10.3390/ijms23179629
Chicago/Turabian StyleXia, Chongjing, Age Qiu, Meinan Wang, Taiguo Liu, Wanquan Chen, and Xianming Chen. 2022. "Current Status and Future Perspectives of Genomics Research in the Rust Fungi" International Journal of Molecular Sciences 23, no. 17: 9629. https://doi.org/10.3390/ijms23179629
APA StyleXia, C., Qiu, A., Wang, M., Liu, T., Chen, W., & Chen, X. (2022). Current Status and Future Perspectives of Genomics Research in the Rust Fungi. International Journal of Molecular Sciences, 23(17), 9629. https://doi.org/10.3390/ijms23179629