Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction
Abstract
:1. Introduction
2. Proteomic Approach
3. Proteomics in Osteosarcoma
3.1. Osteosarcoma Cell Lines
3.2. Patient-Derived Cells
3.3. Blood Samples
3.4. Tissue Samples
3.5. Formalin-Fixed Paraffin-Embedded (FFPE) Tissues
3.6. Candidate Biomarkers
3.6.1. Ezrin
3.6.2. CRYAB
3.6.3. CD151
3.6.4. EPHA2
3.6.5. Cathepsin D
3.6.6. GRP78
3.6.7. HSP90
Sample Type | Techniques | Sample Information | Number of Proteins | Candidate Biomarker | References | |
---|---|---|---|---|---|---|
Control Group | Disease Group | |||||
Patient-derived cell and cell line | 2D-DIGE and LC-ESI-MS/MS (Q-TOF) | Osteoblastic cell | Primary OS tumor cell | 56 differential protein spots 16 proteins identified | Ezrin (EZR) ↑ and alpha Crystallin B chain (CRYAB) ↑ | [44] |
iTRAQ, LC-MS/MS (Q-TOF) | hFOB | MG-63 | 342 proteins identified 68 differentially expressed proteins | CD151 ↑ | [39] | |
2-DE and LC-ESI-MS/MS (HCT ion trap) | hFOB | MG-63 | 259 protein spots (hFOB) 222 protein spots (MG-63) 13 differentially expressed protein spots 7 protein spots identified | N-Myc Downstream Regulated 1 (NDRG1) ↑ | [38] | |
1D and LC-MS/MS (LTQ-FT) | Human primary osteoblast | OS cell lines | 2841 proteins identified 684 significant protein 151 surface proteins 43 selected proteins | Ephrin type-A receptor 2 (EPHA2) ↑ | [40] | |
2-DE and MALDI-TOF MS | Fetal osteoblastic cell | OS cell line and pulmonary metastases derived from OS | ~1114–1791 protein spots 34 differentially expressed protein spots 17 protein spots identified | Cathepsin D (CTSD) ↑ | [41] | |
2-DE and LC-MS/MS (ion trap) | Osteoblasts of cancellous bone | OS primary cell | ~415 protein spots (Osteoblast) ~348 protein spots (OS cells) 257 protein spots matched 33 differentially expressed protein spots 7 proteins identified | KH-type splicing regulatory protein (KSRP) ↑ | [45] | |
Plasma or serum | 2D-DIGE and MALDI-TOF MS | Healthy volunteer | Osteosarcoma patient | 1050–1100 protein spots 58 differentially expressed protein spots 43 protein spots identified | Serum amyloid protein A (SAA) ↑ | [47] |
SELDI-TOF MS | Healthy volunteer | Osteosarcoma patient | 96 differentially expressed protein peaks 6 significantly expressed protein peaks | Cytochrome C1 (CYC-1) ↑ | [51] | |
SELDI-TOF MS | Pre-chemotherapy (Good responders) Post-chemotherapy (Good responders) | Pre-chemotherapy (Poor responders) Post-chemotherapy (Poor responders) | 783 protein peaks identified 56 protein peaks identified in pre-treatment group 65 protein peaks identified in post-treatment group | Serum amyloid protein A (SAA) ↓ | [48] | |
2D-DIGE and MALDI-TOF MS | Healthy volunteer | Osteosarcoma patient | 1050–1100 protein spots 58 differentially expressed protein spots 43 protein spots identified | Gelsolin ↓ | [49] | |
iTRAQ, LC-MS/MS (Triple TOF 5600) | Pre-chemotherapy with metastatic OS patient | Post-chemotherapy with metastatic OS patient | 217 proteins identified and quantified 57 differentially expressed proteins | Gelsolin ↑ and vascular adhesion molecule-1 (VCAM-1) ↑ | [50] | |
Tissue | 2-DE and MALDI-TOF MS | Benign tumor of bone (osteoblastoma) | Osteosarcoma | ~1270 protein spots detected (Osteoblastoma) ~1386 protein spots detected (OS) 30 differential protein spots 18 proteins identified | Zinc finger protein 133 (ZNF 133) ↑ and tubulin-a1c (TUBA1C) ↑ | [52] |
2D-DIGE and LC-nanoES-MS/MS (LTQ linear ion trap) | Chemonaive biopsy; Good responder | Chemonaive biopsy; Poor responder | 2250 protein spots detected 55 differential protein spots identified | Peroxiredoxin 2 (PRDX2) ↑ | [53] | |
2D-DIGE and LC-nanoES-MS/MS (LTQ Oribitrap) | Chemonaive biopsy; Good responder | Chemonaive biopsy; Poor responder | 3494 protein spots detected 33 differential protein spots identified | Peroxiredoxin 2 (PRDX2) ↑ | [54] | |
2-DE and LC-ESI-MS/MS (Q-TOF) | Normal soft tissue callus | Osteosarcoma | 329 protein spots matched 32 differential protein spots identified | 78 kDa glucose-related protein (GRP78), endoplasmin (GRP94) ↑, calreticulin (ERp60) ↑ and prelamin-A/C ↑ | [55] | |
FFPE | LC-MS/MS (LTQ ion trap) | Desmoid tumor | Osteosarcoma | ~680 unique protein identified | Clusterin ↑ and heat shock protein 90 (HSP90) ↑ | [58] |
4. Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1D | One dimension |
2D-DIGE | Two-dimensional difference gel electrophoresis |
2-DE | Two-dimensional gel electrophoresis |
4E-BP1 | Eukaryotic translation initiation factor 4E-binding protein 1 |
Akt | AKT serine/threonine kinase |
ATF6 | Activating transcription factor 6 |
CAR T | Chimeric antigen receptor-modified T |
CHOP | C/EBP homologous protein (CHOP) |
c-Met | Mesenchymal-epithelial transition factor |
c-RAF1 | Proto-oncogene serine/threonine-protein kinase |
CRYAB | alpha-crystallin B chain |
CTCs | Circulating tumor cells |
CTSD | Cathepsin D |
CYC-1 | Cytochrome C1 |
CyTOF | Mass cytometry by time of flight |
DDA | Data-dependent acquisition |
DOX | Doxorubicin |
ELISA | Enzyme-linked immunosorbent assay |
EPHA2 | Ephrin type-A receptor 2 |
ERK | Extracellular signal-regulated kinase |
ERp60 | Calreticulin |
EZR1 | Ezrin |
FACS | Fluorescence-activated cell sorting |
FAK | Focal adhesion kinases |
FDA | Food and drug administration |
FFPE | Formalin-fixed paraffin-embedded |
GRP78 | 78 kDa glucose-related protein |
GRP94 | Endoplasmin |
GSK-3 | Glycogen synthase kinase 3 |
HCT | High-capacity ion trap |
HSP90 | Heat shock protein 90 |
IMAC | Immobilized metal affinity chromatography |
iTRAQ | Isobaric tags for relative and absolute quantification |
KLF4 | Krüppel-like factor 4 |
KSRP | KH-type splicing regulatory protein |
LC-MS/MS | Liquid chromatography-tandem mass spectrometry |
LTQ-FT | Linear trap quadrupole-Fourier transform |
m/z | Mass-to-charge |
MALDI-TOF | Matrix-assisted laser desorption ionization-time of flight |
MAPK | Mitogen-activated protein kinase |
MDR | Multidrug resistance |
MEK | Mitogen activated protein kinase kinase |
MiR | MicroRNA |
MMP9 | Matrix metallopeptidase 9 |
MOAC | Metal oxide affinity chromatography |
MRM | Multiple reaction monitoring |
MS | Mass spectrometry |
mTOR | Mammalian target of rapamycin |
NDRG1 | N-Myc downstream regulated 1 |
NF-κB | Nuclear factor kappa B |
OS | Osteosarcoma |
P-gp | P-glycoprotein |
PI3K | Phosphoinositide 3-kinase |
PMF | Peptide mass fingerprint |
PRDX2 | Peroxiredoxin 2 |
PRM | Parallel reaction monitoring |
PTMs | Posttranslational modifications |
Q-ToF | Quadrupole-time-of-flight |
RET | Rearranged during Transfection (known as receptor tyrosine kinase) |
RTK | Receptor tyrosine kinase |
RT-PCR | Reverse transcription polymerase chain reaction |
S6K1 | Ribosomal protein S6 kinase beta-1 |
SAA | Serum amyloid protein A |
SELDI-TOF MS | Surface-enhanced laser desorption/ionization-time of flight mass spectrometry |
SWATH | Sequential window acquisition of all theoretical fragment ions |
TIMS | Trapped ion mobility spectrometry |
TTK | Threonine and tyrosine protein kinase |
TUBA1C | Tubulin-a1c |
UPR | Unfolded protein response |
VCAM1 | Vascular adhesion molecule-1 |
ZNF 133 | Zinc finger protein 133 |
References
- Rejniak, K.; Lloyd, M.; Reed, D.; Bui, M. Diagnostic assessment of osteosarcoma chemoresistance based on Virtual Clinical Trials. Med. Hypotheses 2015, 85, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Durfee, R.A.; Mohammed, M.; Luu, H.H. Review of Osteosarcoma and Current Management. Rheumatol. Ther. 2016, 3, 221–243. [Google Scholar] [CrossRef] [PubMed]
- Lamplot, J.D.; Denduluri, S.; Qin, J.; Li, R.; Liu, X.; Zhang, H.; Chen, X.; Wang, N.; Pratt, A.; Shui, W.; et al. The Current and Future Therapies for Human Osteosarcoma. Curr. Cancer Ther. Rev. 2013, 9, 55–77. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Du, X.; Chen, K.; Dai, Y.; Wang, S.; Xiao, J.; Li, G. Gene signatures with predictive and prognostic survival values in human osteosarcoma. PeerJ 2021, 9, e10633. [Google Scholar] [CrossRef] [PubMed]
- Luetke, A.; Meyers, P.A.; Lewis, I.; Juergens, H. Osteosarcoma treatment—Where do we stand? A state of the art review. Cancer Treat. Rev. 2014, 40, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Taran, R.; Taran, S.; Malipatil, N. Pediatric osteosarcoma: An updated review. Indian J. Med. Paediatr. Oncol. 2017, 38, 33–43. [Google Scholar] [CrossRef]
- Wheeler, D.A.; Wang, L. From human genome to cancer genome: The first decade. Genome Res. 2013, 23, 1054–1062. [Google Scholar] [CrossRef]
- Burns, J.; Wilding, C.P.; Jones, R.L.; Huang, P.H. Proteomic research in sarcomas—Current status and future opportunities. Semin. Cancer Biol. 2020, 61, 56–70. [Google Scholar] [CrossRef]
- Alexovič, M.; Sabo, J.; Longuespée, R. Microproteomic sample preparation. Proteomics 2021, 21, e2000318. [Google Scholar] [CrossRef]
- Curreem, S.O.T.; Watt, R.M.; Lau, S.K.P.; Woo, P.C.Y. Two-dimensional gel electrophoresis in bacterial proteomics. Protein Cell 2012, 3, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Alexovič, M.; Sabo, J.; Longuespée, R. Automation of single-cell proteomic sample preparation. Proteomics 2021, 21, e2100198. [Google Scholar] [CrossRef] [PubMed]
- Carbonara, K.; Andonovski, M.; Coorssen, J.R. Proteomes Are of Proteoforms: Embracing the Complexity. Proteomes 2021, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Gondkar, K.; Sathe, G.; Joshi, N.; Nair, B.; Pandey, A.; Kumar, P. Integrated Proteomic and Phosphoproteomics Analysis of DKK3 Signaling Reveals Activated Kinase in the Most Aggressive Gallbladder Cancer. Cells 2021, 10, 511. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Daniel, L.-F.; Errol, W.R.; Ljiljana, P.-T. Proteomics. In Encyclopedia of Spectroscopy and Spectrometry, 2nd ed.; John, C.L., Ed.; Academic Press: Oxford, UK, 2010; pp. 2280–2288. [Google Scholar]
- Schubert, O.T.; Röst, H.L.; Collins, B.C.; Rosenberger, G.; Aebersold, R. Quantitative proteomics: Challenges and opportunities in basic and applied research. Nat. Protoc. 2017, 12, 1289–1294. [Google Scholar] [CrossRef]
- Alexovič, M.; Urban, P.L.; Tabani, H.; Sabo, J. Recent advances in robotic protein sample preparation for clinical analysis and other biomedical applications. Clin. Chim. Acta 2020, 507, 104–116. [Google Scholar] [CrossRef]
- Chutipongtanate, S.; Changtong, C.; Weeraphan, C.; Hongeng, S.; Srisomsap, C.; Svasti, J. Syringe-push membrane absorption as a simple rapid method of urine preparation for clinical proteomics. Clin. Proteom. 2015, 12, 15. [Google Scholar] [CrossRef]
- Saengow, V.E.; Chiangjong, W.; Khongkhatithum, C.; Changtong, C.; Chokchaichamnankit, D.; Weeraphan, C.; Kaewboonruang, P.; Thampratankul, L.; Manuyakorn, W.; Hongeng, S.; et al. Proteomic analysis reveals plasma haptoglobin, interferon-γ, and interleukin-1β as potential biomarkers of pediatric refractory epilepsy. Brain Dev. 2021, 43, 431–439. [Google Scholar] [CrossRef]
- Chutipongtanate, S.; Dwivedi, P. Proteomics: Moving Toward Precision Medicine. In Recent Advances in Molecular and Translational Medicine: Updates in Precision Medicine; Chutipongtanate, S., Hongeng, S., Eds.; Bentham Science: Sharjah, United Arab Emirates, 2021; pp. 93–117. [Google Scholar]
- Robotti, E.; Marengo, E. 2D-DIGE and Fluorescence Image Analysis. Methods Mol. Biol. 2018, 1664, 25–39. [Google Scholar] [CrossRef]
- Rabilloud, T.; Chevallet, M.; Luche, S.; Lelong, C. Two-dimensional gel electrophoresis in proteomics: Past, present and future. J. Proteom. 2010, 73, 2064–2077. [Google Scholar] [CrossRef] [Green Version]
- Marcus, K.; Lelong, C.; Rabilloud, T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes 2020, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chu, S.; Tan, S.; Yin, X.; Jiang, Y.; Dai, X.; Gong, X.; Fang, X.; Tian, D. Towards Higher Sensitivity of Mass Spectrometry: A Perspective From the Mass Analyzers. Front. Chem. 2021, 9, 813359. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, J.; Gevaert, K. Mass spectrometry-based clinical proteomics—A revival. Expert Rev. Proteom. 2021, 18, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Meier, F.; Geyer, P.E.; Winter, S.V.; Cox, J.; Mann, M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat. Methods 2018, 15, 440–448. [Google Scholar] [CrossRef]
- Li, J.; Van Vranken, J.G.; Vaites, L.P.; Schweppe, D.K.; Huttlin, E.L.; Etienne, C.; Nandhikonda, P.; Viner, R.; Robitaille, A.M.; Thompson, A.H.; et al. TMTpro reagents: A set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 2020, 17, 399–404. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
- Frederick, K.; Ciborowski, P. 9-SWATH-MS: Data Acquisition and Analysis. In Proteomic Profiling and Analytical Chemistry, 2nd ed.; Ciborowski, P., Silberring, J., Eds.; Elsevier: Boston, MA, USA, 2016; pp. 161–173. [Google Scholar]
- Chutipongtanate, S.; Greis, K.D. Multiplex Biomarker Screening Assay for Urinary Extracellular Vesicles Study: A Targeted Label-Free Proteomic Approach. Sci. Rep. 2018, 8, 15039. [Google Scholar] [CrossRef]
- Dwivedi, P.; Chutipongtanate, S.; Muench, D.E.; Azam, M.; Grimes, H.L.; Greis, K.D. SWATH-Proteomics of Ibrutinib’s Action in Myeloid Leukemia Initiating Mutated G-CSFR Signaling. Proteom.–Clin. Appl. 2020, 14, e1900144. [Google Scholar] [CrossRef]
- Chutipongtanate, S.; Chatchen, S.; Svasti, J. Plasma prefractionation methods for proteomic analysis and perspectives in clinical applications. Proteom.–Clin. Appl. 2017, 11, 7–8. [Google Scholar] [CrossRef]
- Dwivedi, P.; Muench, D.; Wagner, M.; Azam, M.; Grimes, H.L.; Greis, K.D. Time resolved quantitative phospho-tyrosine analysis reveals Bruton’s Tyrosine kinase mediated signaling downstream of the mutated granulocyte-colony stimulating factor receptors. Leukemia 2019, 33, 75–87. [Google Scholar] [CrossRef]
- Barreyro, L.; Sampson, A.M.; Ishikawa, C.; Hueneman, K.M.; Choi, K.; Pujato, M.A.; Chutipongtanate, S.; Wyder, M.; Haffey, W.D.; O’Brien, E.; et al. Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Sci. Transl. Med. 2022, 14, eabb7695. [Google Scholar] [CrossRef] [PubMed]
- Jonathan, S.M. Chapter 6–Two-Dimensional Difference Gel Electrophoresis (2D DIGE). In Laboratory Methods in Cell Biology; Conn, P.M., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 112, pp. 111–141. [Google Scholar]
- Lenaerts, K.; Bouwman, F.G.; Lamers, W.H.; Renes, J.; Mariman, E.C. Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium. BMC Genom. 2007, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Czekanska, E.; Stoddart, M.; Richards, R.; Hayes, J. In search of an osteoblast cell model for in vitro research. Eur. Cells Mater. 2012, 24, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Jia, X.; Sun, M.; Zheng, L.; Yin, L.; Zhang, L.; Cai, Z. Plasma membrane proteomic analysis of human osteosarcoma and osteoblastic cells: Revealing NDRG1 as a marker for osteosarcoma. Tumor Biol. 2011, 32, 1013–1021. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Hua, Y.; Jia, X.; Li, J.; Hu, S.; Peng, X.; Yang, P.; Sun, M.; Ma, F.; et al. Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines. BMC Cancer 2010, 10, 206. [Google Scholar] [CrossRef] [PubMed]
- PosthumaDeBoer, J.; Piersma, S.R.; Pham, T.V.; Van Egmond, P.W.; Knol, J.C.; Cleton-Jansen, A.M.; Van Geer, M.A.; Van Beusechem, V.W.; Kaspers, G.J.L.; Van Royen, B.J.; et al. Surface proteomic analysis of osteosarcoma identifies EPHA2 as receptor for targeted drug delivery. Br. J. Cancer 2013, 109, 2142–2154. [Google Scholar] [CrossRef]
- Gemoll, T.; Epping, F.; Heinrich, L.; Fritzsche, B.; Roblick, U.J.; Szymczak, S.; Hartwig, S.; Depping, R.; Bruch, H.-P.; Thorns, C.; et al. Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies. Oncotarget 2015, 6, 16517–16526. [Google Scholar] [CrossRef]
- Friedman, A.A.; Letai, A.; Fisher, D.E.; Flaherty, K.T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 2015, 15, 747–756. [Google Scholar] [CrossRef]
- Klangjorhor, J.; Phanphaisarn, A.; Teeyakasem, P.; Chaiyawat, P.; Phinyo, P.; Settakorn, J.; Theera-Umpon, N.; Pruksakorn, D. In vitro drug sensitivity (IDS) of patient-derived primary osteosarcoma cells as an early predictor of the clinical outcomes of osteosarcoma patients. Cancer Chemother. Pharmacol. 2020, 85, 1165–1176. [Google Scholar] [CrossRef]
- Folio, C.; Mora, M.I.; Zalacain, M.; Corrales, F.J.; Segura, V.; Sierrasesúmaga, L.; Toledo, G.; San-Julián, M.; Patiño-García, A. Proteomic Analysis of Chemonaïve Pediatric Osteosarcomas and Corresponding Normal Bone Reveals Multiple Altered Molecular Targets. J. Proteome Res. 2009, 8, 3882–3888. [Google Scholar] [CrossRef]
- Pruksakorn, D.; Teeyakasem, P.; Klangjorhor, J.; Chaiyawat, P.; Settakorn, J.; Diskul-Na-Ayudthaya, P.; Chokchaichamnankit, D.; Pothacharoen, P.; Srisomsap, C. Overexpression of KH-type splicing regulatory protein regulates proliferation, migration, and implantation ability of osteosarcoma. Int. J. Oncol. 2016, 49, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Ignjatovic, V.; Geyer, P.E.; Palaniappan, K.K.; Chaaban, J.E.; Omenn, G.S.; Baker, M.S.; Deutsch, E.W.; Schwenk, J.M. Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. J. Proteome Res. 2019, 18, 4085–4097. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Shen, J.-N.; Guo, Q.-C.; Zhou, J.-G.; Wang, J.; Huang, G.; Zou, C.-Y.; Yin, J.-Q.; Liu, S.-J.; Liu, W.; et al. 2-D DIGE and MALDI-TOF-MS analysis of the serum proteome in human osteosarcoma. Proteom.–Clin. Appl. 2007, 1, 272–285. [Google Scholar] [CrossRef]
- Man, T.-K.; Li, Y.; Dang, T.A.; Shen, J.; Hicks, J.; Chintagumpala, M.; Lau, C.C. Plasma proteome predicts chemotherapy response in osteosarcoma patients. Oncol. Rep. 2011, 25, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Shen, J.-N.; Peng, J.-Q.; Wang, J.; Huang, G.; Li, M.-T. Increased expression of serum gelsolin in patients with osteosarcoma. Chin. Med J. 2012, 125, 262–269. [Google Scholar] [PubMed]
- Ab Rahim, S.; Mansor, A.; Roslan, Z.; Omar, E.; Zahari, K.M.; Muhamad, M.; Kamarul, T. Proteome Comparisons between Pre-Chemotherapy and Post-Chemotherapy Serum of Metastatic Osteosarcoma Patients Reveals Potential Novel Biomarker. Biochem. Mol. Biol. J. 2015, 1. [Google Scholar] [CrossRef]
- Li, G.; Zhang, W.; Zeng, H.; Chen, L.; Wang, W.; Liu, J.; Zhang, Z.; Cai, Z. An integrative multi-platform analysis for discovering biomarkers of osteosarcoma. BMC Cancer 2009, 9, 150. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Q.; Wen, Y.-Q.; Chen, L.-L.; Wang, L.-T.; Liu, Y.-L.; Luo, C.-Q.; Liang, H.-Z.; Li, M.-T.; Li, Z. Comparative proteomics analysis of human osteosarcomas and benign tumor of bone. Cancer Genet. Cytogenet. 2010, 198, 97–106. [Google Scholar] [CrossRef]
- Kikuta, K.; Tochigi, N.; Saito, S.; Shimoda, T.; Morioka, H.; Toyama, Y.; Hosono, A.; Suehara, Y.; Beppu, Y.; Kawai, A.; et al. Peroxiredoxin 2 as a chemotherapy responsiveness biomarker candidate in osteosarcoma revealed by proteomics. Proteom.–Clin. Appl. 2010, 4, 560–567. [Google Scholar] [CrossRef]
- Kubota, D.; Mukaihara, K.; Yoshida, A.; Tsuda, H.; Kawai, A.; Kondo, T. Proteomics study of open biopsy samples identifies peroxiredoxin 2 as a predictive biomarker of response to induction chemotherapy in osteosarcoma. J. Proteom. 2013, 91, 393–404. [Google Scholar] [CrossRef]
- Chaiyawat, P.; Sungngam, P.; Teeyakasem, P.; Sirikaew, N.; Klangjorhor, J.; Settakorn, J.; Diskul-Na-Ayudthaya, P.; Chokchaichamnankit, D.; Srisomsap, C.; Svasti, J.; et al. Protein profiling of osteosarcoma tissue and soft callus unveils activation of the unfolded protein response pathway. Int. J. Oncol. 2019, 54, 1704–1718. [Google Scholar] [CrossRef] [PubMed]
- Mantsiou, A.; Makridakis, M.; Fasoulakis, K.; Katafigiotis, I.; Constantinides, C.A.; Zoidakis, J.; Roubelakis, M.G.; Vlahou, A.; Lygirou, V. Proteomics Analysis of Formalin Fixed Paraffin Embedded Tissues in the Investigation of Prostate Cancer. J. Proteome Res. 2020, 19, 2631–2642. [Google Scholar] [CrossRef] [PubMed]
- García-Vence, M.; Chantada-Vazquez, M.D.P.; Sosa-Fajardo, A.; Agra, R.; de la Iglesia, A.B.; Otero-Glez, A.; García-González, M.; Cameselle-Teijeiro, J.M.; Nuñez, C.; Bravo, J.J.; et al. Protein Extraction From FFPE Kidney Tissue Samples: A Review of the Literature and Characterization of Techniques. Front. Med. 2021, 8, 657313. [Google Scholar] [CrossRef] [PubMed]
- Rao, U.N.; Hood, B.L.; Jones-Laughner, J.M.; Sun, M.; Conrads, T.P. Distinct profiles of oxidative stress–related and matrix proteins in adult bone and soft tissue osteosarcoma and desmoid tumors: A proteomics study. Hum. Pathol. 2013, 44, 725–733. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Asano, S. Pathophysiological Roles of Actin-Binding Scaffold Protein, Ezrin. Int. J. Mol. Sci. 2022, 23, 3246. [Google Scholar] [CrossRef]
- Song, Y.; Ma, X.; Zhang, M.; Wang, M.; Wang, G.; Ye, Y.; Xia, W. Ezrin Mediates Invasion and Metastasis in Tumorigenesis: A Review. Front. Cell Dev. Biol. 2020, 8, 588801. [Google Scholar] [CrossRef]
- Pignochino, Y.; Grignani, G.; Cavalloni, G.; Motta, M.; Tapparo, M.; Bruno, S.; Bottos, A.; Gammaitoni, L.; Migliardi, G.; Camussi, G.; et al. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol. Cancer 2009, 8, 118. [Google Scholar] [CrossRef]
- Ren, L.; Hong, S.H.; Cassavaugh, J.; Osborne, T.; Chou, A.J.; Kim, S.Y.; Gorlick, R.; Hewitt, S.M.; Khanna, C. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene 2009, 28, 792–802. [Google Scholar] [CrossRef]
- Paige, M.; Kosturko, G.; Bulut, G.; Miessau, M.; Rahim, S.; Toretsky, J.A.; Brown, M.L.; Üren, A. Design, synthesis and biological evaluation of ezrin inhibitors targeting metastatic osteosarcoma. Bioorg. Med. Chem. 2014, 22, 478–487. [Google Scholar] [CrossRef]
- Çelik, H.; Bulut, G.; Han, J.; Graham, G.T.; Minas, T.Z.; Conn, E.J.; Hong, S.-H.; Pauly, G.T.; Hayran, M.; Li, X.; et al. Ezrin Inhibition Up-regulates Stress Response Gene Expression. J. Biol. Chem. 2016, 291, 13257–13270. [Google Scholar] [CrossRef] [Green Version]
- Khanna, C.; Wan, X.; Bose, S.M.; Cassaday, R.D.; Olomu, O.; Mendoza, A.; Yeung, C.; Gorlick, R.; Hewitt, S.; Helman, L.J. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat. Med. 2004, 10, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Song, W.S.; Cho, W.H.; Lee, S.-Y.; Jeon, D.-G. Ezrin Expression Predicts Survival in Stage IIB Osteosarcomas. Clin. Orthop. Relat. Res. 2007, 459, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Shin, E.; Hong, S.; Chon, H.J.; Kim, H.R.; Ahn, J.R.; Hong, M.H.; Yang, W.I.; Roh, J.K.; Rha, S.Y. Clinical Value of Ezrin Expression in Primary Osteosarcoma. Cancer Res. Treat. 2009, 41, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.-H.; Zhu, J.; Wang, W.-B.; Dong, F.; Zhang, Q.; Fan, H.-W.; Zhang, J.-Z.; Wang, Y.-M. Correlations of Ezrin Expression with Pathological Characteristics and Prognosis of Osteosarcoma: A Meta-Analysis. Sci. World J. 2014, 2014, 837543. [Google Scholar] [CrossRef]
- Li, J.; Wei, K.; Yu, H.; Jin, D.; Wang, G.; Yu, B. Prognostic Value of Ezrin in Various Cancers: A Systematic Review and Updated Meta-analysis. Sci. Rep. 2015, 5, 17903. [Google Scholar] [CrossRef]
- Zhong, G.-X.; Feng, S.-D.; Shen, R.; Wu, Z.-Y.; Chen, F.; Zhu, X. The clinical significance of the Ezrin gene and circulating tumor cells in osteosarcoma. OncoTargets Ther. 2017, 10, 527–533. [Google Scholar] [CrossRef]
- Wan, X.; Mendoza, A.; Khanna, C.; Helman, L.J. Rapamycin Inhibits Ezrin-Mediated Metastatic Behavior in a Murine Model of Osteosarcoma. Cancer Res. 2005, 65, 2406–2411. [Google Scholar] [CrossRef]
- Yao, Q.; Pei, Y.; Zhang, X.; Xie, B. microRNA-96 acts as a tumor suppressor gene in human osteosarcoma via target regulation of EZRIN. Life Sci. 2018, 203, 1–11. [Google Scholar] [CrossRef]
- Cui, S.-Q.; Wang, H. MicroRNA-144 inhibits the proliferation, apoptosis, invasion, and migration of osteosarcoma cell line F5M2. Tumor Biol. 2015, 36, 6949–6958. [Google Scholar] [CrossRef]
- Zhan, C.; Li, C.; Zhang, H.; Tang, H.; Ji, F.; Qiao, S.-C.; Xu, W.-D.; Wang, Z.-W. MicroRNA-150 upregulation reduces osteosarcoma cell invasion and metastasis by downregulating Ezrin. Oncol. Lett. 2016, 12, 3457–3462. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Feng, Y.; Ke, Z.; Yang, Z.; Zhou, J.; Huang, X.; Wang, L. Down-Regulation of miR-183 Promotes Migration and Invasion of Osteosarcoma by Targeting Ezrin. Am. J. Pathol. 2012, 180, 2440–2451. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Yao, Q.; Li, Y.; Zhang, X.; Xie, B. microRNA-211 regulates cell proliferation, apoptosis and migration/invasion in human osteosarcoma via targeting EZRIN. Cell. Mol. Biol. Lett. 2019, 24, 48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, W.; Zhou, Y.; Xiang, Y.; Wang, L.; Hu, W.; Wang, W. Baicalein inhibits osteosarcoma cell proliferation and invasion through the miR-183/Ezrin pathway. Mol. Med. Rep. 2018, 18, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.-M.; Luo, J.; Wu, K.; Yin, M.; Gu, Y.-R.; Cheng, X.-G. High level of αB-crystallin contributes to the progression of osteosarcoma. Oncotarget 2016, 7, 9007–9016. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Xia, X.; He, S.; He, H.; Zhao, W. Krüppel-like factor 4 promotes human osteosarcoma growth and metastasis via regulating CRYAB expression. Oncotarget 2016, 7, 30990–31000. [Google Scholar] [CrossRef]
- Wang, S.-N.; Luo, S.; Liu, C.; Piao, Z.; Gou, W.; Wang, Y.; Guan, W.; Li, Q.; Zou, H.; Yang, Z.-Z.; et al. miR-491 Inhibits Osteosarcoma Lung Metastasis and Chemoresistance by Targeting αB-crystallin. Mol. Ther. 2017, 25, 2140–2149. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Zhou, Z.; Sun, M.; Zhou, C.; Chen, J.; Yin, F.; Wang, H.; Lin, B.; Zuo, D.; et al. CD151-mediated adhesion is crucial to osteosarcoma pulmonary metastasis. Oncotarget 2016, 7, 60623–60638. [Google Scholar] [CrossRef]
- Sadej, R.; Grudowska, A.; Turczyk, L.; Kordek, R.; Romanska, H.M. CD151 in cancer progression and metastasis: A complex scenario. Lab. Investig. 2014, 94, 41–51. [Google Scholar] [CrossRef]
- Chin, Y.R.; Toker, A. Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell. Signal. 2009, 21, 470–476. [Google Scholar] [CrossRef]
- Pua, L.J.W.; Mai, C.-W.; Chung, F.F.-L.; Khoo, A.S.-B.; Leong, C.-O.; Lim, W.-M.; Hii, L.-W. Functional Roles of JNK and p38 MAPK Signaling in Nasopharyngeal Carcinoma. Int. J. Mol. Sci. 2022, 23, 1108. [Google Scholar] [CrossRef]
- Giordano, G.; Merlini, A.; Ferrero, G.; Mesiano, G.; Fiorino, E.; Brusco, S.; Centomo, M.L.; Leuci, V.; D’Ambrosio, L.; Aglietta, M.; et al. EphA2 Expression in Bone Sarcomas: Bioinformatic Analyses and Preclinical Characterization in Patient-Derived Models of Osteosarcoma, Ewing’s Sarcoma and Chondrosarcoma. Cells 2021, 10, 2893. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.; Middlemiss, S.; Saletta, F.; Gottschalk, S.; McCowage, G.B.; Kramer, B. Chimeric Antigen Receptor-modified T cells targeting EphA2 for the immunotherapy of paediatric bone tumours. Cancer Gene Ther. 2021, 28, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Chiabotto, G.; Grignani, G.; Todorovic, M.; Martin, V.; Centomo, M.L.; Prola, E.; Giordano, G.; Merlini, A.; Miglio, U.; Berrino, E.; et al. Pazopanib and Trametinib as a Synergistic Strategy against Osteosarcoma: Preclinical Activity and Molecular Insights. Cancers 2020, 12, 1519. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, N.; Maurer, A.; Nieke, S.; Kalbacher, H. Cathepsin D: A cellular roadmap. Biochem. Biophys. Res. Commun. 2008, 376, 5–9. [Google Scholar] [CrossRef]
- Pranjol, Z.I.; Gutowski, N.J.; Hannemann, M.; Whatmore, J.L. Cathepsin D non-proteolytically induces proliferation and migration in human omental microvascular endothelial cells via activation of the ERK1/2 and PI3K/AKT pathways. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 25–33. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Song, S. Cathepsin D enhances breast cancer invasion and metastasis through promoting hepsin ubiquitin-proteasome degradation. Cancer Lett. 2018, 438, 105–115. [Google Scholar] [CrossRef]
- Husmann, K.; Muff, R.; Bolander, M.E.; Sarkar, G.; Born, W.; Fuchs, B. Cathepsins and osteosarcoma: Expression analysis identifies cathepsin K as an indicator of metastasis. Mol. Carcinog. 2008, 47, 66–73. [Google Scholar] [CrossRef]
- Arai, K.; Sakamoto, R.; Kubota, D.; Kondo, T. Proteomic approach toward molecular backgrounds of drug resistance of osteosarcoma cells in spheroid culture system. Proteomics 2013, 13, 2351–2360. [Google Scholar] [CrossRef]
- Chaiyawat, P.; Settakorn, J.; Sangsin, A.; Teeyakasem, P.; Klangjorhor, J.; Soongkhaw, A.; Pruksakorn, D. Exploring targeted therapy of osteosarcoma using proteomics data. OncoTargets Ther. 2017, 10, 565–577. [Google Scholar] [CrossRef]
- Lee, A.S. Glucose-regulated proteins in cancer: Molecular mechanisms and therapeutic potential. Nat. Rev. Cancer 2014, 14, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, N.; Wang, D.; Chen, Y.; Li, G. Expression and significance of glucose-regulated protein 78 in human osteosarcoma. Oncol. Lett. 2015, 9, 2268–2274. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.-Z.; Yang, L.; Xue, G.-M.; Zhang, C.; Guo, C.; Yang, Y.-W.; Li, S.-S.; Zhang, L.-Y.; Guo, Q.-L.; Kong, L.-Y. Combining GRP78 suppression and MK2206-induced Akt inhibition decreases doxorubicin-induced P-glycoprotein expression and mitigates chemoresistance in human osteosarcoma. Oncotarget 2016, 7, 56371–56382. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Ni, J.; Song, D.; Ding, M.; Huang, J. Activation of unfolded protein response protects osteosarcoma cells from cisplatin-induced apoptosis through NF-kappaB pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 10204–10215. [Google Scholar] [PubMed]
- Luo, J.; Xia, Y.; Yin, Y.; Luo, J.; Liu, M.; Zhang, C.; Zhao, Y.; Yang, L.; Kong, L. ATF4 destabilizes RET through nonclassical GRP78 inhibition to enhance chemosensitivity to bortezomib in human osteosarcoma. Theranostics 2019, 9, 6334–6353. [Google Scholar] [CrossRef]
- Machihara, K.; Namba, T. Kuanoniamine C stimulates bortezomib-induced cell death via suppression of glucose-regulated protein 78 in osteosarcoma. Biochem. Biophys. Res. Commun. 2020, 527, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 2017, 18, 345–360. [Google Scholar] [CrossRef]
- Ory, B.; Baud’Huin, M.; Verrecchia, F.; Royer, B.B.-L.; Quillard, T.; Amiaud, J.; Battaglia, S.; Heymann, D.; Redini, F.; Lamoureux, F. Blocking HSP90 Addiction Inhibits Tumor Cell Proliferation, Metastasis Development, and Synergistically Acts with Zoledronic Acid to Delay Osteosarcoma Progression. Clin. Cancer Res. 2016, 22, 2520–2533. [Google Scholar] [CrossRef]
- Mori, M.; Hitora, T.; Nakamura, O.; Yamagami, Y.; Horie, R.; Nishimura, H.; Yamamoto, T. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int. J. Oncol. 2015, 46, 47–54. [Google Scholar] [CrossRef]
- Liang, G.; Liu, N.; He, M.; Yang, J.; Liang, Z.; Gao, X.; Rahhal, A.H.; He, Q.-Y.; Zhang, H.; Zha, Z. Transcriptional regulation of Runx2 by HSP90 controls osteosarcoma apoptosis via the AKT/GSK-3β/β-catenin signaling. J. Cell. Biochem. 2018, 119, 948–959. [Google Scholar] [CrossRef]
- Yao, Z.; Zhu, H.; Shen, F.; Gong, D. Hsp90 regulates the tumorigenic function of tyrosine protein kinase in osteosarcoma. Clin. Exp. Pharmacol. Physiol. 2021, 49, 380–390. [Google Scholar] [CrossRef]
- Gazitt, Y.; Kolaparthi, V.; Moncada, K.; Thomas, C.; Freeman, J. Targeted therapy of human osteosarcoma with 17AAG or rapamycin: Characterization of induced apoptosis and inhibition of mTOR and Akt/MAPK/Wnt pathways. Int. J. Oncol. 2009, 34, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Talaei, S.; Mellatyar, H.; Asadi, A.; Akbarzadeh, A.; Sheervalilou, R.; Zarghami, N. Spotlight on 17-AAGas an Hsp90 inhibitor for molecular targeted cancer treatment. Chem. Biol. Drug Des. 2019, 93, 760–786. [Google Scholar] [CrossRef] [PubMed]
- Sidera, K.; Patsavoudi, E. HSP90 inhibitors: Current development and potential in cancer therapy. Recent Pat. Anticancer Drug Discov. 2014, 9, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Ambati, S.R.; Lopes, E.C.; Kosugi, K.; Mony, U.; Zehir, A.; Shah, S.K.; Taldone, T.; Moreira, A.L.; Meyers, P.A.; Chiosis, G.; et al. Pre-clinical efficacy of PU-H71, a novel HSP90 inhibitor, alone and in combination with bortezomib in Ewing sarcoma. Mol. Oncol. 2014, 8, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Bagatell, R.; Gore, L.; Egorin, M.J.; Ho, R.; Heller, G.; Boucher, N.; Zuhowski, E.G.; Whitlock, J.A.; Hunger, S.P.; Narendran, A.; et al. Phase I Pharmacokinetic and Pharmacodynamic Study of 17-N-Allylamino-17-Demethoxygeldanamycin in Pediatric Patients with Recurrent or Refractory Solid Tumors: A Pediatric Oncology Experimental Therapeutics Investigators Consortium Study. Clin. Cancer Res. 2007, 13, 1783–1788. [Google Scholar] [CrossRef] [PubMed]
- Lilienthal, I.; Herold, N. Targeting Molecular Mechanisms Underlying Treatment Efficacy and Resistance in Osteosarcoma: A Review of Current and Future Strategies. Int. J. Mol. Sci. 2020, 21, 6885. [Google Scholar] [CrossRef] [PubMed]
- Von Eggeling, F.; Hoffmann, F. Microdissection—An Essential Prerequisite for Spatial Cancer Omics. Proteomics 2020, 20, e2000077. [Google Scholar] [CrossRef]
- Meier, F.; Brunner, A.-D.; Frank, M.; Ha, A.; Bludau, I.; Voytik, E.; Kaspar-Schoenefeld, S.; Lubeck, M.; Raether, O.; Bache, N.; et al. diaPASEF: Parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat. Methods 2020, 17, 1229–1236. [Google Scholar] [CrossRef]
- Tellez-Gabriel, M.; Heymann, M.-F.; Heymann, D. Circulating Tumor Cells as a Tool for Assessing Tumor Heterogeneity. Theranostics 2019, 9, 4580–4594. [Google Scholar] [CrossRef]
- Andree, K.C.; Van Dalum, G.; Terstappen, L.W.M.M. Challenges in circulating tumor cell detection by the CellSearch system. Mol. Oncol. 2016, 10, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Pantel, K.; Alix-Panabières, C. Liquid biopsy and minimal residual disease—Latest advances and implications for cure. Nat. Rev. Clin. Oncol. 2019, 16, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Holland, R.D.; Wilkes, J.G.; Rafii, F.; Sutherland, J.B.; Persons, C.C.; Voorhees, K.J.; Lay, J. Rapid Identification of Intact Whole Bacteria Based on Spectral Patterns using Matrix-assisted Laser Desorption/Ionization with Time-of-flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1227–1232. [Google Scholar] [CrossRef]
- Welker, M. Proteomics for routine identification of microorganisms. Proteomics 2011, 11, 3143–3153. [Google Scholar] [CrossRef] [PubMed]
- Hanrieder, J.; Wicher, G.; Bergquist, J.; Andersson, M.; Fex-Svenningsen, Å. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue. Anal. Bioanal. Chem. 2011, 401, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Povey, J.F.; Saintas, E.; Aderemi, A.V.; Rothweiler, F.; Zehner, R.; Dirks, W.G.; Cinatl, J.J.; Racher, A.J.; Wass, M.N.; Smales, C.M.; et al. Intact-Cell MALDI-ToF Mass Spectrometry for the Authentication of Drug-Adapted Cancer Cell Lines. Cells 2019, 8, 1194. [Google Scholar] [CrossRef] [PubMed]
- Chiangjong, W.; Bhakdi, S.; Woramongkolchai, N.; Vanichapol, T.; Pongsakul, N.; Hongeng, S.; Chutipongtanate, S. Cell-Main Spectra Profile Screening Technique in Simulation of Circulating Tumour Cells Using MALDI-TOF Mass Spectrometry. Cancers 2021, 13, 3775. [Google Scholar] [CrossRef]
- Boulos, J.C.; Idres, M.R.Y.; Efferth, T. Investigation of cancer drug resistance mechanisms by phosphoproteomics. Pharmacol. Res. 2020, 160, 105091. [Google Scholar] [CrossRef]
- Sharma, K.; D’Souza, R.C.J.; Tyanova, S.; Schaab, C.; Wiśniewski, J.R.; Cox, J.; Mann, M. Ultradeep Human Phosphoproteome Reveals a Distinct Regulatory Nature of Tyr and Ser/Thr-Based Signaling. Cell Rep. 2014, 8, 1583–1594. [Google Scholar] [CrossRef]
- Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer 2018, 17, 48. [Google Scholar] [CrossRef]
- Labots, M.; van der Mijn, J.C.; Beekhof, R.; Piersma, S.R.; Haas, R.R.D.G.-D.; Pham, T.V.; Knol, J.C.; Dekker, H.; van Grieken, N.C.; Verheul, H.M.; et al. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection. J. Proteom. 2017, 162, 99–107. [Google Scholar] [CrossRef]
- Doll, S.; Gnad, F.; Mann, M. The Case for Proteomics and Phospho-Proteomics in Personalized Cancer Medicine. Proteom.–Clin. Appl. 2019, 13, e1800113. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, E.L.; Giansanti, P.; Altelaar, A.F.M.; Heck, A.J.R. Single-step Enrichment by Ti4+-IMAC and Label-free Quantitation Enables In-depth Monitoring of Phosphorylation Dynamics with High Reproducibility and Temporal Resolution. Mol. Cell. Proteom. 2014, 13, 2426–2434. [Google Scholar] [CrossRef] [PubMed]
- Kweon, H.K.; Håkansson, K. Selective Zirconium Dioxide-Based Enrichment of Phosphorylated Peptides for Mass Spectrometric Analysis. Anal. Chem. 2006, 78, 1743–1749. [Google Scholar] [CrossRef]
- Rush, J.; Moritz, A.; Lee, K.A.; Guo, A.; Goss, V.L.; Spek, E.J.; Zhang, H.; Zha, X.; Polakiewicz, R.D.; Comb, M.J. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 2005, 23, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xing, X.; Dowlut, D.; Zeng, Y.; Liu, J.; Liu, X. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine. J. Proteom. 2018, 191, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.-K.; Zhang, G.; Lawlor, K.; Nazarian, A.; Philip, J.; Tempst, P.; Dephoure, N.; Neubert, T.A. Deep Coverage of Global Protein Expression and Phosphorylation in Breast Tumor Cell Lines Using TMT 10-plex Isobaric Labeling. J. Proteome Res. 2017, 16, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Shamsaei, B.; Chojnacki, S.; Pilarczyk, M.; Najafabadi, M.; Niu, W.; Chen, C.; Ross, K.; Matlock, A.; Muhlich, J.; Chutipongtanate, S.; et al. piNET: A versatile web platform for downstream analysis and visualization of proteomics data. Nucleic Acids Res. 2020, 48, W85–W93. [Google Scholar] [CrossRef]
- Corre, I.; Verrecchia, F.; Crenn, V.; Redini, F.; Trichet, V. The Osteosarcoma Microenvironment: A Complex but Targetable Ecosystem. Cells 2020, 9, 976. [Google Scholar] [CrossRef] [PubMed]
- Cersosimo, F.; Lonardi, S.; Bernardini, G.; Telfer, B.; Mandelli, G.; Santucci, A.; Vermi, W.; Giurisato, E. Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. Int. J. Mol. Sci. 2020, 21, 5207. [Google Scholar] [CrossRef]
- Iyer, A.; Hamers, A.A.J.; Pillai, A.B. CyTOF® for the Masses. Front. Immunol. 2022, 13, 815828. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirikaew, N.; Pruksakorn, D.; Chaiyawat, P.; Chutipongtanate, S. Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction. Int. J. Mol. Sci. 2022, 23, 9741. https://doi.org/10.3390/ijms23179741
Sirikaew N, Pruksakorn D, Chaiyawat P, Chutipongtanate S. Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction. International Journal of Molecular Sciences. 2022; 23(17):9741. https://doi.org/10.3390/ijms23179741
Chicago/Turabian StyleSirikaew, Nutnicha, Dumnoensun Pruksakorn, Parunya Chaiyawat, and Somchai Chutipongtanate. 2022. "Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction" International Journal of Molecular Sciences 23, no. 17: 9741. https://doi.org/10.3390/ijms23179741
APA StyleSirikaew, N., Pruksakorn, D., Chaiyawat, P., & Chutipongtanate, S. (2022). Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction. International Journal of Molecular Sciences, 23(17), 9741. https://doi.org/10.3390/ijms23179741