Blood Levels of Endocannabinoids, Oxylipins, and Metabolites Are Altered in Hemodialysis Patients
Abstract
:1. Introduction
2. Results
2.1. Fatty Acid Analysis of Plasma and RBCs
2.2. Impact of PMSF on Endocannabinoid (eCB) and Oxylipin (OxL) Data
2.3. Endocannabinoids and Oxylipins
2.4. Global Metabolite Profiles
2.5. Thematic Changes for the Metabolites
Amino Acids
3. Discussion
3.1. Levels of Plasma PUFAs, eCBs, and OxLs in Female Controls and HDPs
3.2. HDPs Had Lower Plasma EPA Compared to Controls and Lower 14,15-DiHETE, 12-HEPE, and 5-HEPE
3.3. Amino Acid and Metabolite Differences between Healthy Controls and HDPs
3.4. Implications, Strengths, and Limitations
4. Materials and Methods
4.1. Subjects and Design
4.2. Fatty Acid Analysis of Plasma and RBCs
4.3. Measurement of Endocannabinoids (eCBs) and Oxylipins (OxLs)
4.4. Measurement of Metabolites
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1-AG | 1-arachidonoylglycerol |
1-LG | 1-linoleoyl glycerol |
1-OG | 1-oleoyl glycerol |
2-AG | 2-arachidonoylglycerol |
2-LG | 2-linoleoyl glycerol |
2-OG | 2-oleoyl glycerol |
5-HEPE | 5-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid; |
8,9-DiHETrE | 8,9-dihydroxy-5Z,11Z,14Z-eicosatrienoic acid; |
8(9)-EpETrE | 8(9)-epoxy-5Z,11Z,14Z-eicosatrienoic acid; |
9(10)-EpODE | 9(10)-epoxy-12Z,15Z-octadecadienoic acid; |
11,12-DiHETrE | 11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid; |
11(12)-EpETrE | 11(12)-epoxy-5Z,8Z,14Z-eicosatrienoic acid; |
12(13)-EpODE | 12(13)-epoxy-10E,15Z-octadecadienoic acid; |
12-HEPE | 12-hydroxy-5Z,8Z,10E,14Z,17Z-eicosapentaenoic acid; |
13-HODE | 13-hydroxy-9Z,11E-octadecadienoic acid; |
13-HpODE | 13-hydroperoxy-9Z,11E-octadecadienoic acid. |
14,15-DiHETE | 14,15-dihydroxy-5Z,8Z,11Z,17Z-eicosatetraenoic acid; |
14(15)-EpETrE | 14(15)-epoxy-5Z,8Z,11Z-eicosatrienoic acid; |
15(16)-EpODE | 15(16)-epoxy-9Z,12Z-octadecadienoic acid; |
17,18-DiHETE | 17,18-dihydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid; |
19(20)-EpDPE | 19(20)-epoxy-4Z,7Z,10Z,13Z,16Z-docosapentaenoic acid |
αL-EA | alpha-linolenoyl ethanolamide |
A-EA | arachidonoyl ethanolamide |
AEA | anandamide |
CKD | chronic kidney disease |
D-EA | docosatetraenoyl ethanolamide |
DAGL | diacylglycerol lipase |
DGLA | dihomo-gamma-linolenic aid |
DGLA-EA | dihomo-gamma-linolenoyl ethanolamide |
DH-EA | docosahexaenoyl ethanolamide |
DHA | docosahexaenoic acid |
ECS | endocannabinoid system |
EPA | eicosapentaenoic acid |
FAME | fatty acid methyl esters |
HDP | Hemodialysis patients |
L-EA | linoleoyl ethanolamide |
MAGL | monoacylglycerol lipase |
NAPE-PLD | N-arachidonoyl phosphatidylethanolamine phospholipase D |
O-EA | oleoyl ethanolamide |
P-EA | palmitoyl ethanolamide |
PMSF | phenylmethanesulfonylfluoride |
PUFA | polyunsaturated fatty acids |
S-EA | stearoyl ethanolamide |
References
- Bossola, M.; Leo, A.; Viola, A.; Carlomagno, G.; Monteburini, T.; Cenerelli, S.; Santarelli, S.; Boggi, R.; Miggiano, G.; Vulpio, C.; et al. Dietary intake of macronutrients and fiber in Mediterranean patients on chronic hemodialysis. J. Nephrol. 2012, 26, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, A.; Hylander, B.; Rossner, S. Energy intake in patients on continuous ambulatory peritoneal dialysis and haemodialysis. J. Intern. Med. 1996, 240, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Sea, M.M.; Ip, R.; Law, M.C.; Chow, K.M.; Lui, S.F.; Li, P.K.; Woo, J. Independent effects of residual renal function and dialysis adequacy on actual dietary protein, calorie, and other nutrient intake in patients on continuous ambulatory peritoneal dialysis. J. Am. Soc. Nephrol. 2001, 12, 2450–2457. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.-M.; Sea, M.M.-M.; Ng, K.; Kwan, M.; Lui, S.-F.; Woo, J. Nutrient Intake during Peritoneal Dialysis at the Prince of Wales Hospital in Hong Kong. Am. J. Kidney Dis. 2007, 49, 682–692. [Google Scholar] [CrossRef]
- Wright, M.; Woodrow, G.; O’Brien, S.; King, N.; Dye, L.; Blundell, J.; Brownjohn, A.; Turney, J. Disturbed appetite patterns and nutrient intake in peritoneal dialysis patients. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2004, 23, 550–556. [Google Scholar] [CrossRef]
- Friedman, A.N.; Yu, Z.; Tabbey, R.; Denski, C.; Tamez, H.; Wenger, J.; Thadhani, R.; Li, Y.; Watkins, B.A. Inverse relationship between long-chain n-3 fatty acids and risk of sudden cardiac death in patients starting hemodialysis. Kidney Int. 2013, 83, 1130–1135. [Google Scholar] [CrossRef]
- Rhee, E.P.; Thadhani, R. New insights into uremia-induced alterations in metabolic pathways. Curr. Opin. Nephrol. Hypertens. 2011, 20, 593–598. [Google Scholar] [CrossRef]
- Gonzalez, C.A.; Pera, G.; Quiros, J.R.; Lasheras, C.; Tormo, M.J.; Rodriguez, M.; Navarro, C.; Martinez, C.; Dorronsoro, M.; Chirlaque, M.D.; et al. Types of fat intake and body mass index in a Mediterranean country. Public Health Nutr. 2000, 3, 329–336. [Google Scholar] [CrossRef]
- Williams, D.E.M.; Prevost, A.T.; Whichelow, M.J.; Cox, B.D.; Day, N.E.; Wareham, N.J. A cross-sectional study of dietary patterns with glucose intolerance and other features of the metabolic syndrome. Br. J. Nutr. 2000, 83, 257–266. [Google Scholar] [CrossRef]
- Brunner, E.; Wunsch, H.; Marmot, M. What is an optimal diet? Relationship of macronutrient intake to obesity, glucose tolerance, lipoprotein cholesterol levels and the metabolic syndrome in the Whitehall II study. Int. J. Obes. 2001, 25, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Madsen, L.; Petersen, R.K.; Kristiansen, K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim. Biophys. Acta Mol. Basis Dis. 2005, 1740, 266–286. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Rimm, E.B.; Merchant, A.; Rosner, B.A.; Stampfer, M.J.; Willett, W.C.; Ascherio, A. Fish Consumption and Risk of Stroke in Men. JAMA 2002, 288, 3130–3136. [Google Scholar] [CrossRef]
- Huang, X.-F.; Xin, X.; McLennan, P.; Storlien, L. Role of fat amount and type in ameliorating diet-induced obesity: Insights at the level of hypothalamic arcuate nucleus leptin receptor, neuropeptide Y and pro-opiomelanocortin mRNA expression. Diabetes Obes. Metab. 2003, 6, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, E.; Schnider, S.; Palmvig, B.; Tauber-Lassen, E.; Pedersen, O. Intake of a diet high in trans monounsaturated fatty acids or saturated fatty acids. Effects on postprandial insulinemia and glycemia in obese patients with NIDDM. Diabetes Care 1997, 20, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Coelho, S.B.; de Sales, R.L.; Iyer, S.S.; Bressan, J.; Costa, N.M.B.; Lokko, P.; Mattes, R. Effects of peanut oil load on energy expenditure, body composition, lipid profile, and appetite in lean and overweight adults. Nutrition 2006, 22, 585–592. [Google Scholar] [CrossRef]
- Chua, J.T.; Argueta, D.A.; DiPatrizio, N.V.; Kovesdy, C.P.; Vaziri, N.D.; Kalantar-Zadeh, K.; Moradi, H. Endocannabinoid System and the Kidneys: From Renal Physiology to Injury and Disease. Cannabis Cannabinoid Res. 2019, 4, 10–20. [Google Scholar] [CrossRef]
- Moradi, H.; Park, C.; Igarashi, M.; Streja, E.; Argueta, D.A.; Soohoo, M.; Daglian, J.; You, A.S.; Rhee, C.M.; Kashyap, M.L.; et al. Serum Endocannabinoid Levels in Patients With End-Stage Renal Disease. J. Endocr. Soc. 2019, 3, 1869–1880. [Google Scholar] [CrossRef]
- Moradi, H.; Park, C.; Streja, E.; Argueta, D.A.; DiPatrizio, N.V.; You, A.S.; Rhee, C.M.; Vaziri, N.D.; Kalantar-Zadeh, K.; Piomelli, D. Circulating Endocannabinoids and Mortality in He-modialysis Patients. Am. J. Nephrol. 2020, 51, 86–95. [Google Scholar] [CrossRef]
- Balgoma, D.; Checa, A.; Sar, D.G.; Snowden, S.; Wheelock, C.E. Quantitative metabolic profiling of lipid mediators. Mol. Nutr. Food Res. 2013, 57, 1359–1377. [Google Scholar] [CrossRef]
- Luo, P.; Wang, M.H. Eicosanoids, beta-cell function, and diabetes. Prostaglandins Other Lipid Mediat. 2011, 95, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Shearer, G.C.; Newman, J.W. Impact of circulating esterified eicosanoids and other oxylipins on endothelial function. Curr. Atheroscler. Rep. 2009, 11, 403–410. [Google Scholar] [CrossRef]
- Luria, A.; Weldon, S.M.; Kabcenell, A.K.; Ingraham, R.H.; Matera, D.; Jiang, H.; Gill, R.; Morisseau, C.; Newman, J.; Hammock, B.D. Compensatory Mechanism for Homeostatic Blood Pressure Regulation in Ephx2 Gene-disrupted Mice. J. Biol. Chem. 2007, 282, 2891–2898. [Google Scholar] [CrossRef]
- Zivkovic, A.M.; Yang, J.; Georgi, K.; Hegedus, C.; Nording, M.L.; O’Sullivan, A.; German, J.B.; Hogg, R.J.; Weiss, R.H.; Bay, C.; et al. Serum oxylipin profiles in IgA nephropathy patients reflect kidney functional alterations. Metabolomics 2012, 8, 1102–1113. [Google Scholar] [CrossRef]
- Friedman, A.N. Omega-3 Fatty Acid Supplementation in Advanced Kidney Disease. Semin. Dial. 2010, 23, 396–400. [Google Scholar] [CrossRef]
- Friedman, A.N.; Yu, Z.; Tabbey, R.; Denski, C.; Tamez, H.; Wenger, J.; Thadhani, R.; Li, Y.; Watkins, B.A. Low Blood Levels of Long-Chain n–3 Polyunsaturated Fatty Acids in US Hemodialysis Patients: Clinical Implications. Am. J. Nephrol. 2012, 36, 451–458. [Google Scholar] [CrossRef]
- Lim, Y.J.; Sidor, N.A.; Tonial, N.C.; Che, A.; Urquhart, B.L. Uremic Toxins in the Progression of Chronic Kidney Disease and Cardi-ovascular Disease: Mechanisms and Therapeutic Targets. Toxins 2021, 13, 142. [Google Scholar] [CrossRef]
- Pawlak, D.; Pawlak, K.; Malyszko, J.; Mysliwiec, M.; Buczko, W. Accumulation of toxic products degradation of kynurenine in hemodialyzed patients. Int. Urol. Nephrol. 2001, 33, 399–404. [Google Scholar] [CrossRef]
- Varshney, A.; Rehan, M.; Subbarao, N.; Rabbani, G.; Khan, R.H. Elimination of Endogenous Toxin, Creatinine from Blood Plasma Depends on Albumin Conformation: Site Specific Uremic Toxicity & Impaired Drug Binding. PLoS ONE 2011, 6, e17230. [Google Scholar] [CrossRef]
- Shah, V.O.; Townsend, R.R.; Feldman, H.I.; Pappan, K.L.; Kensicki, E.; Vander Jagt, D.L. Plasma Metabolomic Profiles in Different Stages of CKD. Clin. J. Am. Soc. Nephrol. 2012, 8, 363–370. [Google Scholar] [CrossRef]
- Portilla, D.; Schnackenberg, L.; Beger, R.D. Metabolomics as an Extension of Proteomic Analysis: Study of Acute Kidney Injury. Semin. Nephrol. 2007, 27, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Rhee, E.P.; Clish, C.B.; Ghorbani, A.; Larson, M.G.; Elmariah, S.; McCabe, E.; Yang, Q.; Cheng, S.; Pierce, K.; Deik, A.; et al. A Combined Epidemiologic and Metabolomic Approach Improves CKD Prediction. J. Am. Soc. Nephrol. 2013, 24, 1330–1338. [Google Scholar] [CrossRef]
- Toyohara, T.; Akiyama, Y.; Suzuki, T.; Takeuchi, Y.; Mishima, E.; Tanemoto, M.; Momose, A.; Toki, N.; Sato, H.; Nakayama, M.; et al. Metabolomic profiling of uremic solutes in CKD patients. Hypertens. Res. 2010, 33, 944–952. [Google Scholar] [CrossRef]
- Watkins, B.A.; Kim, J.; Kenny, A.; Pedersen, T.L.; Pappan, K.L.; Newman, J.W. Circulating levels of endocannabinoids and oxylipins altered by dietary lipids in older women are likely associated with previously identified gene targets. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2016, 1861, 1693–1704. [Google Scholar] [CrossRef]
- Watkins, B.A. Endocannabinoids, exercise, pain, and a path to health with aging. Mol. Asp. Med. 2018, 64, 68–78. [Google Scholar] [CrossRef]
- Watkins, B.A.; Kim, J.; Tamez, H.; Wenger, J.; Thadhani, R.; Friedman, A.N. Serum phospholipid fraction of polyunsaturated fatty acids is the preferred indicator for nutrition and health status in hemodialysis patients. J. Nutr. Biochem. 2016, 38, 18–24. [Google Scholar] [CrossRef]
- Friedman, A.N.; Kim, J.; Kaiser, S.; Pedersen, T.L.; Newman, J.W.; Watkins, B.A. Association between plasma endocannabinoids and appetite in hemodialysis patients: A pilot study. Nutr. Res. 2016, 36, 658–662. [Google Scholar] [CrossRef]
- Ishida, T.; Nishiumi, S.; Tanahashi, T.; Yamasaki, A.; Yamazaki, A.; Akashi, T.; Miki, I.; Kondo, Y.; Inoue, J.; Kawauchi, S.; et al. Linoleoyl ethanolamide reduces lipopolysac-charide-induced inflammation in macrophages and ameliorates 2,4-dinitrofluorobenzene-induced contact dermatitis in mice. Eur. J. Pharmacol. 2013, 699, 6–13. [Google Scholar] [CrossRef]
- Artmann, A.; Petersen, G.; Hellgren, L.I.; Boberg, J.; Skonberg, C.; Nellemann, C.; Hansen, S.H.; Hansen, H.S. Influence of dietary fatty acids on endocan-nabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochim. Biophys. Acta 2008, 1781, 200–212. [Google Scholar] [CrossRef]
- Fu, J.; Astarita, G.; Gaetani, S.; Kim, J.; Cravatt, B.F.; Mackie, K.; Piomelli, D. Food intake regulates oleoylethanolamide formation and deg-radation in the proximal small intestine. J. Biol. Chem. 2007, 282, 1518–1528. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health benefits of n-3 polyunsaturated fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Adv. Food Nutr. Res. 2012, 65, 211–222. [Google Scholar]
- Taccone-Gallucci, M.; Manca-di-Villahermosa, S.; Battistini, L.; Stuffler, R.G.; Tedesco, M.; Maccarrone, M. N-3 PUFAs reduce oxi-dative stress in ESRD patients on maintenance HD by inhibiting 5-lipoxygenase activity. Kidney Int. 2006, 69, 1450–1454. [Google Scholar] [CrossRef]
- Keenan, A.H.; Pedersen, T.L.; Fillaus, K.; Larson, M.K.; Shearer, G.C.; Newman, J.W. Basal omega-3 fatty acid status affects fatty acid and oxylipin responses to high-dose n3-HUFA in healthy volunteers. J. Lipid Res. 2012, 53, 1662–1669. [Google Scholar] [CrossRef]
- Grapov, D.; Adams, S.H.; Pedersen, T.L.; Garvey, W.T.; Newman, J.W. Type 2 Diabetes Associated Changes in the Plasma Non-Esterified Fatty Acids, Oxylipins and Endocannabinoids. PLoS ONE 2012, 7, e48852. [Google Scholar] [CrossRef]
- Stephensen, C.B.; Armstrong, P.; Newman, J.W.; Pedersen, T.L.; Legault, J.; Schuster, G.U.; Kelley, D.; Vikman, S.; Hartiala, J.; Nassir, R.; et al. ALOX5 gene variants affect eicosanoid production and response to fish oil supplementation. J. Lipid Res. 2011, 52, 991–1003. [Google Scholar] [CrossRef]
- Shearer, G.C.; Harris, W.S.; Pedersen, T.L.; Newman, J.W. Detection of omega-3 oxylipins in human plasma and response to treatment with omega-3 acid ethyl esters. J. Lipid Res. 2010, 51, 2074–2081. [Google Scholar] [CrossRef]
- Adas, F.; Berthou, F.; Picart, D.; Lozac’H, P.; Beaugé, F.; Amet, Y. Involvement of cytochrome P450 2E1 in the (omega-1)-hydroxylation of oleic acid in human and rat liver microsomes. J. Lipid Res. 1998, 39, 1210–1219. [Google Scholar] [CrossRef]
- Laethem, R.M.; Koop, D.R. Identification of rabbit cytochromes P450 2C1 and 2C2 as arachidonic acid epoxygenases. Mol. Pharmacol. 1992, 42, 958–963. [Google Scholar]
- Oliw, E.H. Oxygenation of polyunsaturated fatty acids by cytochrome P450 monooxygenases. Prog. Lipid Res. 1994, 33, 329–354. [Google Scholar] [CrossRef]
- Spector, A.A.; Fang, X.; Snyder, G.D.; Weintraub, N. Epoxyeicosatrienoic acids (EETs): Metabolism and biochemical function. Prog. Lipid Res. 2003, 43, 55–90. [Google Scholar] [CrossRef]
- Hasunuma, K.; Terano, T.; Tamura, Y.; Yoshida, S. Formation of epoxyeicosatrienoic acids from arachidonic acid by cultured rat aortic smooth muscle cell microsomes. Prostagland. Leukot. Essent. Fat. Acids 1991, 42, 171–175. [Google Scholar] [CrossRef]
- Miller, T.M.; Donnelly, M.K.; Crago, E.A.; Roman, D.M.; Sherwood, P.R.; Horowitz, M.B.; Poloyac, S.M. Rapid, simultaneous quantitation of mono and dioxygenated metabolites of arachidonic acid in human CSF and rat brain. J. Chromatogr. B 2009, 877, 3991–4000. [Google Scholar] [CrossRef]
- Kimmel, P.L.; Chawla, L.S.; Amarasinghe, A.; Peterson, R.A.; Weihs, K.L.; Simmens, S.J.; Alleyne, S.; Burke, H.B.; Cruz, I.; Veis, J.H. Anthropometric measures, cytokines and survival in haemodialysis patients. Nephrol. Dial. Transplant. 2003, 18, 326–332. [Google Scholar] [CrossRef] [Green Version]
- Noori, N.; Kovesdy, C.P.; Dukkipati, R.; Feroze, U.; Molnar, M.Z.; Bross, R.; Nissenson, A.R.; Kopple, J.D.; Norris, K.C.; Kalantar-Zadeh, K. Racial and ethnic differences in mortality of hemo-dialysis patients: Role of dietary and nutritional status and inflammation. Am. J. Nephrol. 2011, 33, 157–167. [Google Scholar] [CrossRef]
- Na, H.-Y.; Shim, J.-Y.; Lee, H.-R.; Jung, D.-H.; Kim, H.-B.; Park, B.-J.; Jung, R.-J.; Lee, Y.-J. Sex Differences in the Relationship between Leukocyte Count and Chronic Kidney Disease: The 2007 Korean National Health and Nutrition Examination Survey. J. Women’s Health 2011, 20, 99–105. [Google Scholar] [CrossRef]
- Newman, J.W.; Morisseau, C.; Hammock, B.D. Epoxide hydrolases: Their roles and interactions with lipid metabolism. Prog. Lipid Res. 2005, 44, 1–51. [Google Scholar] [CrossRef]
- Roman, R.J. P-450 Metabolites of Arachidonic Acid in the Control of Cardiovascular Function. Physiol. Rev. 2002, 82, 131–185. [Google Scholar] [CrossRef]
- Chuang, C.-K.; Lin, S.-P.; Chen, H.-H.; Chen, Y.-C.; Wang, T.-J.; Shieh, W.-H.; Wu, C.-J. Plasma free amino acids and their metabolites in Taiwanese patients on hemodialysis and continuous ambulatory peritoneal dialysis. Clin. Chim. Acta 2006, 364, 209–216. [Google Scholar] [CrossRef]
- Metcoff, J.; Furst, P.; Scharer, K.; Distler, G.; Weber, R.; Mangold, J.; Graser, T.A.; Pfaff, G.; Schonberg, D. Energy production, intracellular amino acid pools, and protein synthesis in chronic renal disease. J. Am. Coll. Nutr. 1989, 8, 271–284. [Google Scholar] [CrossRef]
- Qi, S.; Ouyang, X.; Wang, L.; Peng, W.; Wen, J.; Dai, Y. A pilot metabolic profiling study in serum of patients with chronic kidney disease based on (1) H-NMR-spectroscopy. Clin. Transl. Sci. 2012, 5, 379–385. [Google Scholar] [CrossRef]
- Sun, J.; Shannon, M.; Ando, Y.; Schnackenberg, L.K.; Khan, N.A.; Portilla, D.; Beger, R.D. Serum metabolomic profiles from patients with acute kidney injury: A pilot study. J. Chromatogr. B 2012, 893–894, 107–113. [Google Scholar] [CrossRef]
- Adams, S.H.; Hoppel, C.L.; Lok, K.H.; Zhao, L.; Wong, S.W.; Minkler, P.E.; Hwang, D.H.; Newman, J.W.; Garvey, W.T. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J. Nutr. 2009, 139, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Ling, X.; Meng, P.; Liang, Y.; Shen, K.; Wu, Q.; Zhang, Y.; Chen, Q.; Chen, S.; Liu, Y.; et al. Cannabinoid receptor 2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. J. Cell. Mol. Med. 2021, 25, 8957–8972. [Google Scholar] [CrossRef] [PubMed]
- Dharnidharka, V.R.; Kwon, C.; Stevens, G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: A meta-analysis. Am. J. Kidney Dis. 2002, 40, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Cruz, D.N.; De Geus, H.R.; Bagshaw, S.M. Biomarker Strategies to Predict Need for Renal Replacement Therapy in Acute Kidney Injury. Semin. Dial. 2011, 24, 124–131. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, P.; Yang, J.; Niu, J. Plasma Metabolomics Profiling in Maintenance Hemodialysis Patients Based on Liquid Chro-matography Quadrupole Time-of-Flight Mass Spectrometry. Kidney Dis. 2020, 6, 125–134. [Google Scholar] [CrossRef]
- Buckner, T.; Vanderlinden, L.A.; Johnson, R.K.; DeFelice, B.C.; Carry, P.M.; Seifert, J.; Waugh, K.; Dong, F.; Fiehn, O.; Clare-Salzler, M.; et al. Predictors of oxylipins in a healthy pediatric population. Pediatr. Res. 2020, 89, 1530–1540. [Google Scholar] [CrossRef]
- Gamaleddin, I.H.; Trigo, J.M.; Gueye, A.B.; Zvonok, A.; Makriyannis, A.; Goldberg, S.R.; Le Foll, B. Role of the endogenous cannabinoid system in nicotine addiction: Novel insights. Front. Psychiatry 2015, 6, 41. [Google Scholar] [CrossRef]
- Li, Y.; Seifert, M.F.; Lim, S.-Y.; Salem, N.; Watkins, B.A. Bone mineral content is positively correlated to n-3 fatty acids in the femur of growing rats. Br. J. Nutr. 2010, 104, 674–685. [Google Scholar] [CrossRef]
- Fiehn, O.; Wohlgemuth, G.; Scholz, M.; Kind, T.; Lee, D.Y.; Lu, Y.; Moon, S.; Nikolau, B. Quality control for plant metabolomics: Reporting MSI-compliant studies. Plant J. 2008, 53, 691–704. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236. [Google Scholar] [CrossRef]
- Van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Im-proving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worth, H.; O’Hara, D.V.; Agarwal, N.; Collister, D.; Brennan, F.; Smyth, B. Cannabinoids for Symptom Management in Patients with Kidney Failure: A Narrative Review. Clin. J. Am. Soc. Nephrol. 2022, 17, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Sikorska-Wiśniewska, M.; Mika, A.; Sledzinski, T.; Małgorzewicz, S.; Stepnowski, P.; Rutkowski, B.; Chmielewski, M. Disorders of serum omega-3 fatty acid composition in dialyzed patients, and their associations with fat mass. Ren. Fail. 2017, 39, 406–412. [Google Scholar] [CrossRef] [Green Version]
Fatty Acids | Plasma Polar Lipid Fatty Acids | RBC Fatty Acids | ||||
---|---|---|---|---|---|---|
Controls (n = 10) | HDPs (n = 9) | p-Values | Controls (n = 10) | HDPs (n = 9) | p-Values | |
14:0 | 1.23 ± 0.76 | 1.28 ± 0.63 | 0.9 | 0.17 ± 0.18 | 0.06 ± 0.13 | 0.14 |
15:0 | 0.09 ± 0.07 | ND | - | ND | ND | - |
16:0 | 24.15 ± 1.34 | 21.86 ± 1.44 | 0.0022 | 18.71 ± 1.17 | 18.37 ± 1.14 | 0.83 |
t16:1n-7 | 0.15 ± 0.06 | 0.10 ± 0.09 | 0.2 | 0.03 ± 0.02 | 0.04 ± 0.03 | 0.53 |
16:1n-7 | 0.67 ± 0.36 | 0.40 ± 0.26 | 0.08 | 0.03 ± 0.05 | ND | - |
17:0 | 0.34 ± 0.05 | 0.33 ± 0.04 | 0.6 | 0.32 ± 0.26 | 0.06 ± 0.12 | 0.014 |
18:0 | 18.59 ± 1.45 | 20.47 ± 1.61 | 0.016 | 12.95 ± 1.27 | 12.91 ± 0.88 | 0.50 |
18:1n-9 | 10.82 ± 1.56 | 10.95 ± 2.23 | 0.9 | 16.78 ± 1.79 | 15.69 ± 1.85 | 0.46 |
18:1n-7 | 1.42 ± 0.23 | 1.66 ± 0.28 | 0.06 | 1.32 ± 0.17 | 1.47 ± 0.19 | 0.05 |
18:2n-6 | 18.16 ± 3.29 | 18.40 ± 2.28 | 0.9 | 11.25 ± 1.48 | 11.31 ± 1.73 | 0.93 |
18:3n-6 | 0.15 ± 0.11 | 0.05 ± 0.08 | 0.042 | 0.03 ± 0.06 | ND | - |
18:3n-3 | 0.34 ± 0.12 | 0.35 ± 0.10 | 0.8 | 0.04 ± 0.07 | ND | - |
20:0 | 0.16 ± 0.02 | 0.18 ± 0.04 | 0.2 | 0.04 ± 0.06 | 0.06 ± 0.13 | 0.71 |
20:1n-9 | 0.15 ± 0.06 | 0.19 ± 0.03 | 0.05 | 0.09 ± 0.11 | 0.18 ± 0.28 | 0.36 |
20:2n-6 | 0.34 ± 0.07 | 0.32 ± 0.06 | 0.5 | 0.26 ± 0.10 | 0.19 ± 0.19 | 0.34 |
20:3n-6 | 3.14 ± 0.82 | 2.15 ± 0.81 | 0.017 | 1.74 ± 0.28 | 1.27 ± 0.45 | 0.013 |
20:4n-6 | 11.47 ± 1.71 | 13.61 ± 1.87 | 0.019 | 15.98 ± 1.40 | 15.71 ± 3.49 | 0.83 |
20:5n-3 | 0.71 ± 0.28 | 0.38 ± 0.09 | 0.005 | 0.49 ± 0.13 | 0.11 ± 0.17 | 0.001 |
22:0 | 0.08 ± 0.06 | 0.04 ± 0.08 | 0.2 | 0.33 ± 0.12 | 0.41 ± 0.33 | 0.47 |
22:1n-9 | 0.18 ± 0.10 | 0.31 ± 0.14 | 0.032 | ND | 0.03 ± 0.08 | - |
22:4n-6 | 0.55 ± 0.15 | 0.52 ± 0.06 | 0.5 | 3.73 ± 0.71 | 4.04 ± 0.95 | 0.44 |
22:5n-6 | 0.43 ± 0.21 | 0.35 ± 0.10 | 0.3 | 0.84 ± 0.23 | 0.68 ± 0.30 | 0.22 |
22:5n-3 | 0.88 ± 0.11 | 0.71 ± 0.08 | 0.0013 | 1.98 ± 0.28 | 1.77 ± 0.47 | 0.25 |
22:6n-3 | 3.11 ± 1.57 | 2.68 ± 0.78 | 0.5 | 4.06 ± 1.40 | 3.63 ± 1.45 | 0.52 |
24:0 | 0.06 ± 0.05 | 0.03 ± 0.07 | 0.4 | 0.95 ± 0.15 | 0.93 ± 0.73 | 0.94 |
24:1n-9 | 0.09 ± 0.08 | 0.13 ± 0.08 | 0.3 | 0.91 ± 0.14 | 1.10 ± 0.90 | 0.54 |
Total SFA | 44.71 ± 1.33 | 44.19 ± 2.13 | 0.5 | 36.11 ± 0.86 | 36.83 ± 3.87 | 0.54 |
Total MUFA | 13.33 ± 1.77 | 13.65 ± 2.52 | 0.8 | 15.76 ± 1.30 | 16.32 ± 2.05 | 0.38 |
Total PUFA | 39.29 ± 1.83 | 39.51 ± 1.87 | 0.8 | 40.39 ± 1.45 | 38.90 ± 7.83 | 0.50 |
Total n-6 PUFA | 34.25 ± 1.88 | 35.40 ± 1.74 | 0.2 | 33.82 ± 1.93 | 33.19 ± 5.43 | 0.75 |
Total n-3 PUFA | 5.04 ± 1.66 | 4.11 ± 0.91 | 0.15 | 6.56 ± 1.29 | 5.51 ± 1.93 | 0.18 |
LC n-6 PUFA | 15.94 ± 2.13 | 16.94 ± 1.58 | 0.26 | 22.5 ± 0.93 | 21.88 ± 4.34 | 0.68 |
LC n-3 PUFA | 4.71 ± 1.67 | 3.77 ± 0.85 | 0.15 | 6.52 ± 1.30 | 5.51 ± 1.93 | 0.19 |
LC n-6/n-3 Ratio | 3.72 ± 1.29 | 4.65 ± 0.86 | 0.087 | 3.61 ± 0.88 | 4.79 ± 2.73 | 0.24 |
Compound | Parent Fatty Acid | Units | Control | HDP | VIP | p-Value |
---|---|---|---|---|---|---|
Monoacylglycerols | ||||||
2-OG | OA | nM | 38.3 ± 13 | 65.8 ± 38 | 1.3 | 0.1 |
1-LG | LA | nM | 6.25 ± 6 | 10.6 ± 5.9 | 1.4 | 0.033 |
2-LG | ““ | nM | 30.5 ± 15 | 67 ± 42 | 1.6 | 0.026 |
N-Acylethanolamides | ||||||
O-EA | OA | nM | 14.1 ± 5.1 | 24.5 ± 9.7 | 1.8 | 0.0086 |
L-EA | LA | nM | 5.8 ± 1.5 | 10.4 ± 4.1 | 1.9 | 0.0017 b |
αL-EA | αLEA | nM | 0.082 ± 0.03 | 0.154 ± 0.091 | 1.5 | 0.024 |
A-EA | AA | nM | 1.59 ± 0.3 | 1.88 ± 0.71 | 1.0 | 0.5 |
D-EA | AdA | nM | 0.734 ± 0.19 | 1.06 ± 0.32 | 1.6 | 0.023 |
Prostanoids | ||||||
6-ketoPGF1a | AA | nM | 0.177 ± 0.078 | 0.377 ± 0.34 | 1.1 | 0.1 |
PGD2 | ““ | 0.0938 ± 0.046 | 0.196 ± 0.2 | 1.1 | 0.2 | |
Triols | ||||||
9,12,13-TriHOME | LA | nM | 2.51 ± 1.3 | 1.59 ± 0.6 | 1.2 | 0.063 |
9,10-13-TriHOME | ““ | nM | 3.9 ± 1.9 | 2.35 ± 0.89 | 1.4 | 0.019 |
Alcohols | ||||||
15-HETE | AA | nM | 1.66 ± 0.68 | 1.19 ± 0.51 | 1.1 | 0.1 |
12-HETE | ““ | nM | 15.6 ± 10 | 9.68 ± 8.4 | 1.0 | 0.1 |
11-HETE | ““ | nM | 0.318 ± 0.13 | 0.221 ± 0.12 | 1.0 | 0.1 |
9-HETE | ““ | nM | 0.46 ± 0.15 | 0.316 ± 0.17 | 1.2 | 0.070 |
12-HEPE | EPA | nM | 1.92 ± 1.4 | 0.76 ± 0.67 | 1.3 | 0.037 |
5-HEPE | ““ | nM | 0.295 ± 0.16 | 0.147 ± 0.077 | 1.4 | 0.026 |
Hydroperoxides | ||||||
12-HpETE | AA | Fold-C | 1.0 ± 1.3 | 0.35 ± 0.35 | 1.1 | 0.087 |
5-HpETE | AA | Fold C | 1.0 ± 1.0 | 0.42 ± 0.33 | 1.1 | 0.1 |
Epoxides | ||||||
14(15)-EpETrE | AA | nM | 0.437 ± 0.28 | 0.203 ± 0.11 | 1.5 | 0.014 |
11(12)-EpETrE | ““ | nM | 0.551 ± 0.32 | 0.309 ± 0.17 | 1.3 | 0.06 |
8(9)-EpETrE | ““ | nM | 0.195 ± 0.13 | 0.0822 ± 0.068 | 1.0 | 0.1 |
17(18)-EpETE | EPA | nM | 0.124 ± 0.11 | 0.0478 ± 0.019 | 1.0 | 0.1 |
19(20)-EpDPE | DHA | nM | 0.484 ± 0.38 | 0.212 ± 0.09 | 1.4 | 0.019 |
Diols | ||||||
11,12-DiHETrE | AA | nM | 0.372 ± 0.084 | 0.287 ± 0.089 | 1.3 | 0.031 |
17,18-DiHETE | EPA | nM | 2.5 ± 1.1 | 1.79 ± 0.66 | 1.0 | 0.1 |
14,15-DiHETE | ““ | nM | 0.378 ± 0.16 | 0.247 ± 0.15 | 1.2 | 0.057 |
Characteristics | Units | Controls (n = 10) | Hemodialysis Patients (n = 9) |
---|---|---|---|
Diabetes mellitus | # positive | 2 | 2 |
NSAID | # positive | 4 | 5 |
Age | yr | 54.82 ± 4.99 | 59.31 ± 12.81 |
Medical review | |||
Time on dialysis | yr | 0 | 10.00 ± 10.52 |
Age | yr | 54.43 ± 4.90 | 58.02 ± 15.06 |
Weight | kg | 84.01 ± 11.5 | 82.71 ± 23.68 |
Height | m | 1.65 ± 0.08 | 1.63 ± 0.06 |
BMI | kg/m2 | 31.08 ± 5.43 | 31.03 ± 9.26 |
3 mo. weight change | kg | No value | 0.84 ± 1.82 |
6 mo. weight change | kg | No value | 0.67 ± 1.26 |
Tobacco | # positive | 0 | 4 |
ETOH | # positive | 5 | 1 |
Marijuana | # positive | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watkins, B.A.; Friedman, A.N.; Kim, J.; Borkowski, K.; Kaiser, S.; Fiehn, O.; Newman, J.W. Blood Levels of Endocannabinoids, Oxylipins, and Metabolites Are Altered in Hemodialysis Patients. Int. J. Mol. Sci. 2022, 23, 9781. https://doi.org/10.3390/ijms23179781
Watkins BA, Friedman AN, Kim J, Borkowski K, Kaiser S, Fiehn O, Newman JW. Blood Levels of Endocannabinoids, Oxylipins, and Metabolites Are Altered in Hemodialysis Patients. International Journal of Molecular Sciences. 2022; 23(17):9781. https://doi.org/10.3390/ijms23179781
Chicago/Turabian StyleWatkins, Bruce A., Allon N. Friedman, Jeffrey Kim, Kamil Borkowski, Shaun Kaiser, Oliver Fiehn, and John W. Newman. 2022. "Blood Levels of Endocannabinoids, Oxylipins, and Metabolites Are Altered in Hemodialysis Patients" International Journal of Molecular Sciences 23, no. 17: 9781. https://doi.org/10.3390/ijms23179781
APA StyleWatkins, B. A., Friedman, A. N., Kim, J., Borkowski, K., Kaiser, S., Fiehn, O., & Newman, J. W. (2022). Blood Levels of Endocannabinoids, Oxylipins, and Metabolites Are Altered in Hemodialysis Patients. International Journal of Molecular Sciences, 23(17), 9781. https://doi.org/10.3390/ijms23179781