Genetic Variants of ABC and SLC Transporter Genes and Chronic Myeloid Leukaemia: Impact on Susceptibility and Prognosis
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Group
2.2. Allele and Genotype Distribution
2.3. Haplotype and Genotypic Profiles Analysis
2.4. Prognostic Value of Genetic Variants
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Genes and SNVs Selection
4.3. Genotyping
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fattah, S.; Shinde, A.B.; Matic, M.; Baes, M.; van Schaik, R.H.N.; Allegaert, K.; Parmentier, C.; Richert, L.; Augustijns, P.; Annaert, P. Inter-Subject Variability in OCT1 Activity in 27 Batches of Cryopreserved Human Hepatocytes and Association with OCT1 mRNA Expression and Genotype. Pharm. Res. 2017, 34, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, S.; Chen, L. The physiological role of drug transporters. Protein Cell 2015, 6, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Hochhaus, A.; Saussele, S.; Rosti, G.; Mahon, F.X.; Janssen, J.J.W.M.; Hjorth-Hansen, H.; Richter, J.; Buske, C. Chronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 2017, 28, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Ravegnini, G.; Sammarini, G.; Angelini, S.; Hrelia, P. Pharmacogenetics of tyrosine kinase inhibitors in gastrointestinal stromal tumor and chronic myeloid leukemia. Expert Opin. Drug Metab. Toxicol. 2016, 12, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Polillo, M.; Galimberti, S.; Baratè, C.; Petrini, M.; Danesi, R.; Di Paolo, A. Pharmacogenetics of BCR/ABL Inhibitors in Chronic Myeloid Leukemia. Int. J. Mol. Sci. 2015, 16, 22811–22829. [Google Scholar] [CrossRef]
- DeGorter, M.; Xia, C.; Yang, J.; Kim, R. Drug Transporters in Drug Efficacy and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 249–273. [Google Scholar] [CrossRef]
- Makhtar, S.M.; Husin, A.; Baba, A.A.; Ankathil, R. Genetic variations in influx transporter gene SLC22A1 are associated with clinical responses to imatinib mesylate among Malaysian chronic myeloid leukaemia patients. J. Genet. 2018, 97, 835–842. [Google Scholar] [CrossRef]
- Au, A.; Aziz Baba, A.; Goh, A.S.; Wahid Fadilah, S.A.; Teh, A.; Rosline, H.; Ankathil, R. Association of genotypes and haplotypes of multi-drug transporter genes ABCB1 and ABCG2 with clinical response to imatinib mesylate in chronic myeloid leukemia patients. Biomed. Pharmacother. 2014, 68, 343–349. [Google Scholar] [CrossRef]
- Hu, S.; Franke, R.M.; Filipski, K.K.; Hu, C.; Orwick, S.J.; de Bruijn, E.A.; Burger, H.; Baker, S.D.; Sparreboom, A. Interaction of Imatinib with Human Organic Ion Carriers. Clin. Cancer Res. 2008, 14, 3141–3148. [Google Scholar] [CrossRef]
- Engler, J.R.; Frede, A.; Saunders, V.A.; Zannettino, A.C.W.; Hughes, T.P.; White, D.L. Chronic Myeloid Leukemia CD34+ cells have reduced uptake of imatinib due to low OCT-1 Activity. Leukemia 2010, 24, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Singh, P.; Gupta, S.K.; Ali, V.; Verma, M. Transport and metabolism of tyrosine kinase inhibitors associated with chronic myeloid leukemia therapy: A review. Mol. Cell. Biochem. 2022, 477, 1261–1279. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Saunders, V.A.; Leclercq, T.M.; Hughes, T.P.; White, D.L. Ponatinib is not transported by ABCB1, ABCG2 or OCT-1 in CML cells. Leukemia 2015, 29, 1792–1794. [Google Scholar] [CrossRef] [PubMed]
- Maia, R.C.; Vasconcelos, F.C.; Souza, P.S.; Rumjanek, V.M. Towards Comprehension of the ABCB1/P-Glycoprotein Role in Chronic Myeloid Leukemia. Molecules 2018, 23, 119. [Google Scholar] [CrossRef]
- Jiang, Z.-P.; Zhao, X.-L.; Takahashi, N.; Angelini, S.; Dubashi, B.; Sun, L.; Xu, P. Trough concentration and ABCG2 polymorphism are better to predict imatinib response in chronic myeloid leukemia: A meta-analysis. Pharmacogenomics 2016, 18, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.; Gonçalves, A.C.; Rutella, S.; Almeida, A.M.; De Las Rivas, J.; Trougakos, I.P.; Sarmento Ribeiro, A.B. Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia—From Molecular Mechanisms to Clinical Relevance. Cancers 2021, 13, 4820. [Google Scholar] [CrossRef]
- Yee, S.W.; Brackman, D.J.; Ennis, E.A.; Sugiyama, Y.; Kamdem, L.K.; Blanchard, R.; Galetin, A.; Zhang, L.; Giacomini, K.M. Influence of Transporter Polymorphisms on Drug Disposition and Response: A Perspective from the International Transporter Consortium. Clin. Pharmacol. Ther. 2018, 104, 803–817. [Google Scholar] [CrossRef]
- Nigam, S.K. The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 663–687. [Google Scholar] [CrossRef]
- Ripperger, A.; Benndorf, R.A. The C421A (Q141K) polymorphism enhances the 3′-untranslated region (3′-UTR)-dependent regulation of ATP-binding cassette transporter ABCG2. Biochem. Pharmacol. 2016, 104, 139–147. [Google Scholar] [CrossRef]
- Eechoute, K.; Sparreboom, A.; Burger, H.; Franke, R.M.; Schiavon, G.; Verweij, J.; Loos, W.J.; Wiemer, E.A.C.; Mathijssen, R.H.J. Drug Transporters and Imatinib Treatment: Implications for Clinical Practice. Clin. Cancer Res. 2011, 17, 406–415. [Google Scholar] [CrossRef]
- Kim, D.H.; Sriharsha, L.; Xu, W.; Kamel-Reid, S.; Liu, X.; Siminovitch, K.; Messner, H.A.; Lipton, J.H. Clinical Relevance of a Pharmacogenetic Approach Using Multiple Candidate Genes to Predict Response and Resistance to Imatinib Therapy in Chronic Myeloid Leukemia. Clin. Cancer Res. 2009, 15, 4750–4758. [Google Scholar] [CrossRef] [Green Version]
- Tamai, I. Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm. Drug Dispos. 2013, 34, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Xiong, B.; Chen, L.; Chen, Y.; Bu, F.; Liu, X.; Cheng, F. MDR1 C3435T polymorphism and childhood acute lymphoblastic leukemia susceptibility: An updated meta-analysis. Biomed. Pharmacother. 2015, 69, 76–81. [Google Scholar] [CrossRef]
- Li, J.; Yang, C.; Wanling, W.; Xiaolin, H.; Ling, S. Association of ABCB1 C3435T and C1236T gene polymorphisms with the susceptibility to acute myeloid leukemia in a Chinese population. Int. J. Clin. Exp. Pathol. 2016, 9, 8464–8470. [Google Scholar]
- Ma, C.-X.; Sun, Y.-H.; Wang, H.-Y. ABCB1 polymorphisms correlate with susceptibility to adult acute leukemia and response to high-dose methotrexate. Tumor Biol. 2015, 36, 7599–7606. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Ruan, L.; Liu, H.; Yang, H.; Feng, Y. ABCB1 C3435T polymorphism is associated with leukemia susceptibility: Evidence from a meta-analysis. Onco Targets Ther. 2015, 8, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Salimizand, H.; Amini, S.; Abdi, M.; Ghaderi, B.; Azadi, N.-A. Concurrent effects of ABCB1 C3435T, ABCG2 C421A, and XRCC1 Arg194Trp genetic polymorphisms with risk of cancer, clinical output, and response to treatment with imatinib mesylate in patients with chronic myeloid leukemia. Tumor Biol. 2016, 37, 791–798. [Google Scholar] [CrossRef]
- Wu, H.; Kang, H.; Liu, Y.; Tong, W.; Liu, D.; Yang, X.; Lian, M.; Yao, W.; Zhao, H.; Huang, D.; et al. Roles of ABCB1 gene polymorphisms and haplotype in susceptibility to breast carcinoma risk and clinical outcomes. J. Cancer Res. Clin. Oncol. 2012, 138, 1449–1462. [Google Scholar] [CrossRef]
- Yaya, K.; Hind, D.; Meryem, Q.; Asma, Q.; Said, B.; Sellama, N. Single nucleotide polymorphisms of multidrug resistance gene 1 (MDR1) and risk of chronic myeloid leukemia. Tumor Biol. 2014, 35, 10969–10975. [Google Scholar] [CrossRef]
- Ma, L.; Liu, H.; Ruan, L.; Yang, X.; Yang, H.; Feng, Y. Multidrug resistance gene 1 C1236T polymorphism and susceptibility to leukemia: A meta-analysis. Biomed. Rep. 2015, 3, 83–87. [Google Scholar] [CrossRef]
- Potočnik, U.; Glavač, D.; Dean, M. Common germline MDR1/ABCB1 functional polymorphisms and haplotypes modify susceptibility to colorectal cancers with high microsatellite instability. Cancer Genet. Cytogenet. 2008, 183, 28–34. [Google Scholar] [CrossRef]
- Vivona, D.; Bueno, C.T.; Lima, L.T.; Hirata, R.D.C.; Hirata, M.H.; Luchessi, A.D.; Zanichelli, M.A.; Chiattone, C.S.; Guerra-Shinohara, E.M. ABCB1 haplotype is associated with major molecular response in chronic myeloid leukemia patients treated with standard-dose of imatinib. Blood Cells Mol. Dis. 2012, 48, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Schuetz, J.D.; Bunting, K.D.; Colapietro, A.-M.; Sampath, J.; Morris, J.J.; Lagutina, I.; Grosveld, G.C.; Osawa, M.; Nakauchi, H.; et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 2001, 7, 1028–1034. [Google Scholar] [CrossRef]
- Chen, L.; Manautou, J.E.; Rasmussen, T.P.; Zhong, X.-b. Development of precision medicine approaches based on inter-individual variability of BCRP/ABCG2. Acta Pharm. Sin. B 2019, 9, 659–674. [Google Scholar] [CrossRef] [PubMed]
- Campa, D.; Butterbach, K.; Slager, S.L.; Skibola, C.F.; de Sanjosé, S.; Benavente, Y.; Becker, N.; Foretova, L.; Maynadie, M.; Cocco, P.; et al. A comprehensive study of polymorphisms in the ABCB1, ABCC2, ABCG2, NR1I2 genes and lymphoma risk. Int. J. Cancer 2012, 131, 803–812. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Y.; Kang, H.; Xiao, Q.; Yao, W.; Zhao, H.; Wang, E.; Wei, M. Genetic Variations in ABCG2 Gene Predict Breast Carcinoma Susceptibility and Clinical Outcomes after Treatment with Anthracycline-Based Chemotherapy. BioMed Res. Int. 2015, 2015, 279109. [Google Scholar] [CrossRef] [PubMed]
- Arimany-Nardi, C.; Koepsell, H.; Pastor-Anglada, M. Role of SLC22A1 polymorphic variants in drug disposition, therapeutic responses, and drug–drug interactions. Pharm. J. 2015, 15, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Hsueh, Y.-S.; Cheng, Y.W.; Ou, H.-T.; Wu, M.-H. Association between Polymorphisms of OCT1 and Metabolic Response to Metformin in Women with Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2019, 20, 1720. [Google Scholar] [CrossRef]
- Park, H.J.; Jung, E.S.; Kong, K.A.; Park, E.-M.; Cheon, J.H.; Choi, J.H. Identification of OCTN2 variants and their association with phenotypes of Crohn’s disease in a Korean population. Sci. Rep. 2016, 6, 22887. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, S.; Zhang, W.; Shi, Z. Polymorphisms of ABCG2 and its impact on clinical relevance. Biochem. Biophys. Res. Commun. 2018, 503, 408–413. [Google Scholar] [CrossRef]
- Neul, C.; Schaeffeler, E.; Sparreboom, A.; Laufer, S.; Schwab, M.; Nies, A.T. Impact of Membrane Drug Transporters on Resistance to Small-Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol. Sci. 2016, 37, 904–932. [Google Scholar] [CrossRef]
- Rajamani, B.M.; Benjamin, E.S.B.; Abraham, A.; Ganesan, S.; Lakshmi, K.M.; Anandan, S.; Karathedath, S.; Varatharajan, S.; Mohanan, E.; Janet, N.B.; et al. Plasma imatinib levels and ABCB1 polymorphism influences early molecular response and failure-free survival in newly diagnosed chronic phase CML patients. Sci. Rep. 2020, 10, 20640. [Google Scholar] [CrossRef]
- Ieiri, I.; Takane, H.; Hirota, T.; Otsubo, K.; Higuchi, S. Genetic polymorphisms of drug transporters: Pharmacokinetic and pharmacodynamic consequences in pharmacotherapy. Expert Opin. Drug Metab. Toxicol. 2006, 2, 651–674. [Google Scholar] [CrossRef] [PubMed]
- Louati, N.; Turki, F.; Mnif, H.; Frikha, R. MDR1 gene polymorphisms and imatinib response in chronic myeloid leukemia: A meta-analysis. J. Oncol. Pharm. Pract. 2022, 28, 39–48. [Google Scholar] [CrossRef]
- Ben Hassine, I.; Gharbi, H.; Soltani, I.; Ben Hadj Othman, H.; Farrah, A.; Amouri, H.; Teber, M.; Ghedira, H.; Ben Youssef, Y.; Safra, I.; et al. Molecular study of ABCB1 gene and its correlation with imatinib response in chronic myeloid leukemia. Cancer Chemother. Pharmacol. 2017, 80, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Megías-Vericat, J.E.; Montesinos, P.; Herrero, M.J.; Moscardó, F.; Bosó, V.; Rojas, L.; Martínez-Cuadrón, D.; Hervás, D.; Boluda, B.; García-Robles, A.; et al. Impact of ABC single nucleotide polymorphisms upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk. Lymphoma 2017, 58, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Heyes, N.; Kapoor, P.; Kerr, I.D. Polymorphisms of the multidrug pump ABCG2: A systematic review of their effect on protein expression, function and drug pharmacokinetics. Drug Metab. Dispos. 2018, 46, 1886–1899. [Google Scholar] [CrossRef]
- Omran, M.M.; Abdelfattah, R.; Moussa, H.S.; Alieldin, N.; Shouman, S.A. Association of the Trough, Peak/Trough Ratio of Imatinib, Pyridine–N-Oxide Imatinib and ABCG2 SNPs 34 G>A and SLCO1B3 334 T>G With Imatinib Response in Egyptian Chronic Myeloid Leukemia Patients. Front. Oncol. 2020, 10, 1348. [Google Scholar] [CrossRef]
- Cargnin, S.; Ravegnini, G.; Soverini, S.; Angelini, S.; Terrazzino, S. Impact of SLC22A1 and CYP3A5 genotypes on imatinib response in chronic myeloid leukemia: A systematic review and meta-analysis. Pharmacol. Res. 2018, 131, 244–254. [Google Scholar] [CrossRef]
- Angelini, S.; Pantaleo, M.A.; Ravegnini, G.; Zenesini, C.; Cavrini, G.; Nannini, M.; Fumagalli, E.; Palassini, E.; Saponara, M.; Di Battista, M.; et al. Polymorphisms in OCTN1 and OCTN2 transporters genes are associated with prolonged time to progression in unresectable gastrointestinal stromal tumours treated with imatinib therapy. Pharmacol. Res. 2013, 68, 1–6. [Google Scholar] [CrossRef]
- Qiu, H.B.; Zhuang, W.; Wu, T.; Xin, S.; Lin, C.Z.; Ruan, H.L.; Zhu, X.; Huang, M.; Li, J.L.; Hou, X.Y.; et al. Imatinib-induced ophthalmological side-effects in GIST patients are associated with the variations of EGFR, SLC22A1, SLC22A5 and ABCB1. Pharm. J. 2017, 18, 460–466. [Google Scholar] [CrossRef]
- Vaidya, S.; Ghosh, K.; Shanmukhaiah, C.; Vundinti, B.R. Genetic variations of hOCT1 gene and CYP3A4/A5 genes and their association with imatinib response in Chronic Myeloid Leukemia. Eur. J. Pharmacol. 2015, 765, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Koren-Michowitz, M.; Buzaglo, Z.; Ribakovsky, E.; Schwarz, M.; Pessach, I.; Shimoni, A.; Beider, K.; Amariglio, N.; Ie Coutre, P.; Nagler, A. OCT1 genetic variants are associated with long term outcomes in imatinib treated chronic myeloid leukemia patients. Eur. J. Haematol. 2014, 92, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; O’Hare, T.; Deininger, M.W. Mechanisms of Resistance to ABL Kinase Inhibition in Chronic Myeloid Leukemia and the Development of Next Generation ABL Kinase Inhibitors. Hematol. Oncol. Clin. North Am. 2017, 31, 589–612. [Google Scholar] [CrossRef] [PubMed]
- Baccarani, M.; Castagnetti, F.; Gugliotta, G.; Rosti, G. A review of the European LeukemiaNet recommendations for the management of CML. Ann. Hematol. 2015, 94, 141–147. [Google Scholar] [CrossRef]
- You, F.M.; Huo, N.; Gu, Y.Q.; Luo, M.-c.; Ma, Y.; Hane, D.; Lazo, G.R.; Dvorak, J.; Anderson, O.D. BatchPrimer3: A high throughput web application for PCR and sequencing primer design. BMC Bioinform. 2008, 9, 253. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
Characteristics | CML | Controls (n = 404) | ||||||
---|---|---|---|---|---|---|---|---|
All Patients (n = 198) | TKI Responder (n = 142) | TKI Resistant (n = 49) | ||||||
Demographic features | ||||||||
Gender (%) | ||||||||
Male | 118 | (59.6) | 80 | (56.3) | 32 | (65.3) | 236 | (58.4) |
Female | 80 | (40.4) | 62 | (43.7) | 17 | (34.7) | 168 | (41.6) |
Age (years) | ||||||||
Median | 54 | 54 | 51 | 54 | ||||
Range | 15–86 | 15–86 | 18–79 | 19–88 | ||||
Clinical features | ||||||||
Phase of Disease | ||||||||
Chronic Phase (%) | 188 | (95.0) | 135 | (95.1) | 46 | (93.9) | ||
Accelerate Phase (%) | 5 | (2.5) | 5 | (3.5) | – | – | ||
Blast Crisis (%) | 5 | (2.5) | 2 | (1.4) | 3 | (6.1) | ||
Scoring Systems | ||||||||
Sokal Score | (n = 144) | (n = 107) | (n = 33) | |||||
Low Risk (%) | 79 | (54.9) | 61 | (57.0) | 16 | (48.5) | ||
Intermediate Risk (%) | 47 | (32.6) | 33 | (30.8) | 12 | (36.4) | ||
High Risk (%) | 18 | (12.5) | 13 | (12.2) | 5 | (15.1) | ||
Euro Score | (n = 144) | (n = 107) | (n = 33) | |||||
Low Risk (%) | 106 | (73.6) | 81 | (75.7) | 21 | (63.7) | ||
Intermediate Risk (%) | 32 | (22.2) | 21 | (19.6) | 11 | (33.3) | ||
High Risk (%) | 6 | (4.2) | 6 | (4.7) | 1 | (3.0) | ||
EUTOS Score | (n = 142) | (n = 106) | (n = 32) | |||||
Low Risk (%) | 125 | (88.0) | 94 | (88.7) | 27 | (84.4) | ||
High Risk (%) | 17 | (12.0) | 12 | (11.3) | 5 | (15.6) | ||
Treatment | (n = 198) | (n = 142) | (n = 49) | |||||
TKI (%) | 191 | (88.0) | 142 | (100.0) | 49 | (100.0) | ||
Other (%) | 7 | (12.0) | – | – | – | – | ||
First-line TKI | (n = 191) | (n = 142) | (n = 49) | |||||
Imatinib (%) | 182 | (95.3) | 133 | (93.7) | 49 | (100.0) | ||
Other TKI (%) | 9 | (4.7) | 9 | (6.3) | – | – | ||
Number of TKIs during treatment | (n = 191) | (n = 142) | (n = 49) | |||||
1 TKI (%) | 142 | (74.3) | 142 | (100.0) | – | – | ||
2 TKIs (%) | 37 | (19.4) | – | – | 37 | (75.5) | ||
≥3 TKIs (%) | 12 | (6.3) | – | – | 12 | (24.5) | ||
Mutations on BCR-ABL1 | (n = 104) | (n = 69) | (n = 35) | |||||
Present (%) | 22 | (21.2) | 11 | (15.9) | 11 | (31.4) | ||
Absence (%) | 82 | (78.8) | 58 | (84.1) | 24 | (68.6) |
Gene | dbSNP | Minor Allele ‡ | CML | Controls | ||
---|---|---|---|---|---|---|
MAF | OR (95% CI) | p-Value | MAF | |||
ABCB1 | rs1045642 | T | 0.396 | 1.483 (1.154–1.906) | 0.002 | 0.307 |
rs1128503 | T | 0.432 | 0.873 (0.685–1.113) | 0.295 | 0.465 | |
rs2032582 | T | 0.402 | 1.034 (0.809–1.322) | 0.802 | 0.394 | |
ABCG2 | rs2231142 | A | 0.081 | 0.589 (0.388–0.892) | 0.012 | 0.130 |
rs2231137 | A | 0.043 | 0.639 (0.365–1.190) | 0.149 | 0.066 | |
SLC22A1 | rs628031 | A | 0.348 | 1.187 (0.919–1.532) | 0.190 | 0.311 |
rs683369 | G | 0.225 | 0.751 (0.567–0.996) | 0.050 | 0.278 | |
rs1867351 | C | 0.328 | 1.206 (0.931–1.563) | 0.161 | 0.288 | |
SLC22A5 | rs274558 | G | 0.422 | 0.598 (0.469–0.762) | <0.001 | 0.450 (A) |
rs2631365 | C | 0.407 | 0.682 (0.534–0.869) | 0.002 | 0.499 |
Gene: dbSNP | CML | Controls | ||||
---|---|---|---|---|---|---|
n | % | OR (95% CI) | p-Value | n | % | |
ABCB1: rs1045642 | ||||||
CC | 70 | 35.4 | Ref. | 189 | 46.8 | |
CT | 99 | 50.0 | 1.469 (1.017–2.121) | 0.040 | 182 | 45.0 |
TT | 29 | 14.6 | 2.373 (1.343–4.193) | 0.003 | 33 | 8.2 |
CC (MD) | 0.622 (0.438–0.884) | 0.008 | ||||
TT (MR) | 1.929 (1.134–3.281) | 0.015 | ||||
CT (MOD) | 1.220 (0.868–1.715) | 0.253 | ||||
ABCB1: rs1128503 | ||||||
CC | 67 | 33.8 | Ref. | 106 | 26.2 | |
CT | 89 | 45.0 | 0.640 (0.432–0.948) | 0.026 | 220 | 54.5 |
TT | 42 | 21.2 | 0.852 (0.525–1.382) | 0.516 | 78 | 19.3 |
CC (MD) | 1.438 (0.995–2.079) | 0.053 | ||||
TT (MR) | 1.125 (0.739–1.714) | 0.583 | ||||
CT (MOD) | 0.683 (0.485–0.961) | 0.029 | ||||
ABCG2: rs2231142 | ||||||
CC | 165 | 83.3 | Ref. | 306 | 75.7 | |
CA | 33 | 16.7 | 0.680 (0.437–1.057) | 0.087 | 90 | 22.3 |
AA | 0 | 0.0 | – | – | 8 | 2.0 |
CC (MD) | 1.601 (1.034–2.480) | 0.035 | ||||
AA (MR) | – | – | ||||
CA (MOD) | 0.698 (0.449–1.085) | 0.110 | ||||
SLC22A5: rs274558 | ||||||
AA | 64 | 32.3 | Ref. | 83 | 20.5 | |
AG | 101 | 51.0 | 0.668 (0.446–1.002) | 0.051 | 196 | 48.5 |
GG | 33 | 16.7 | 0.342 (0.207–0.566) | <0.001 | 125 | 30.9 |
AA (MD) | 1.847 (1.259–2.710) | 0.002 | ||||
GG (MR) | 0.446 (0.291–0.686) | <0.001 | ||||
AG (MOD) | 1.105 (0.786–1.553) | 0.565 | ||||
SLC22A5: rs2631365 | ||||||
TT | 67 | 33.8 | Ref. | 92 | 22.8 | |
TC | 101 | 51.0 | 0.630 (0.425–0.934) | 0.021 | 220 | 54.4 |
CC | 30 | 15.2 | 0.448 (0.267–0.752) | 0.002 | 92 | 22.8 |
TT (MD) | 1.734 (1.192–2.524) | 0.004 | ||||
CC (MR) | 0.606 (0.385–0.952) | 0.030 | ||||
TC (MOD) | 0.871 (0.620–1.224) | 0.426 | ||||
Number of risk genotypes | ||||||
0 | 12 | 6.1 | Ref. | 56 | 13.9 | |
1 | 89 | 44.9 | 2.006 (1.025–3.926) | 0.042 | 207 | 51.2 |
2 | 58 | 29.3 | 2.256 (1.122–4.533) | 0.022 | 120 | 29.7 |
3 or more | 39 | 19.7 | 8.667 (3.822–19.650) | <0.001 | 21 | 5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, R.; Gonçalves, A.C.; Jorge, J.; Marques, G.; Ribeiro, A.B.; Tenreiro, R.; Coucelo, M.; Diamond, J.; Oliveiros, B.; Pereira, A.; et al. Genetic Variants of ABC and SLC Transporter Genes and Chronic Myeloid Leukaemia: Impact on Susceptibility and Prognosis. Int. J. Mol. Sci. 2022, 23, 9815. https://doi.org/10.3390/ijms23179815
Alves R, Gonçalves AC, Jorge J, Marques G, Ribeiro AB, Tenreiro R, Coucelo M, Diamond J, Oliveiros B, Pereira A, et al. Genetic Variants of ABC and SLC Transporter Genes and Chronic Myeloid Leukaemia: Impact on Susceptibility and Prognosis. International Journal of Molecular Sciences. 2022; 23(17):9815. https://doi.org/10.3390/ijms23179815
Chicago/Turabian StyleAlves, Raquel, Ana Cristina Gonçalves, Joana Jorge, Gilberto Marques, André B. Ribeiro, Rita Tenreiro, Margarida Coucelo, Joana Diamond, Bárbara Oliveiros, Amélia Pereira, and et al. 2022. "Genetic Variants of ABC and SLC Transporter Genes and Chronic Myeloid Leukaemia: Impact on Susceptibility and Prognosis" International Journal of Molecular Sciences 23, no. 17: 9815. https://doi.org/10.3390/ijms23179815
APA StyleAlves, R., Gonçalves, A. C., Jorge, J., Marques, G., Ribeiro, A. B., Tenreiro, R., Coucelo, M., Diamond, J., Oliveiros, B., Pereira, A., Freitas-Tavares, P., Almeida, A. M., & Sarmento-Ribeiro, A. B. (2022). Genetic Variants of ABC and SLC Transporter Genes and Chronic Myeloid Leukaemia: Impact on Susceptibility and Prognosis. International Journal of Molecular Sciences, 23(17), 9815. https://doi.org/10.3390/ijms23179815