Sensitivity of the Transport of Plastic Nanoparticles to Typical Phosphates Associated with Ionic Strength and Solution pH
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of PNPs and Porous Media
2.2. Transport of PNPs in the Presence of Phosphate
2.3. Transport of PNPs in the Presence of Phosphate Mixed with NaCl
2.4. Transport of PNPs under Various Solution pH Levels and Electrolyte Compositions
3. Materials and Methods
3.1. Solution Chemistry and Porous Media
3.2. Plastic Nanoparticles
3.3. Transport and Release Experiment
3.4. Batch Experiments and Theory
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gigault, J.; Halle, A.T.; Baudrimont, M.; Pascal, P.Y.; Gauffre, F.; Phi, T.L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current opinion: What is a nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Awasthi, A.K.; Wei, F.; Tan, Q.; Li, J. Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 2021, 752, 141772. [Google Scholar] [CrossRef] [PubMed]
- Allouzi, M.M.A.; Tang, D.Y.Y.; Chew, K.W.; Rinklebe, J.; Bolan, N.; Allouzi, S.M.A.; Show, P.L. Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Sci. Total Environ. 2021, 788, 147815. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, E.; Nowack, B.; Mitrano, D.M. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing. Environ. Sci. Technol. 2017, 51, 7036–7046. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.K.; Fok, L. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China. Water Res. 2017, 122, 53–61. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Yousefi, N.; Tufenkji, N. Are There Nanoplastics in Your Personal Care Products? Environ. Sci. Technol. Lett. 2017, 4, 280–285. [Google Scholar] [CrossRef]
- Lei, K.; Qiao, F.; Liu, Q.; Wei, Z.; Qi, H.; Cui, S.; Yue, X.; Deng, Y.; An, L. Microplastics releasing from personal care and cosmetic products in China. Mar. Pollut. Bull. 2017, 123, 122–126. [Google Scholar] [CrossRef]
- Yang, T.; Luo, J.; Nowack, B. Characterization of Nanoplastics, Fibrils, and Microplastics Released during Washing and Abrasion of Polyester Textiles. Environ. Sci. Technol. 2021, 55, 15873–15881. [Google Scholar] [CrossRef]
- Ossmann, B.E.; Sarau, G.; Holtmannspotter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef]
- Schymanski, D.; Goldbeck, C.; Humpf, H.-U.; Fürst, P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef]
- Brewer, A.; Dror, I.; Berkowitz, B. The Mobility of Plastic Nanoparticles in Aqueous and Soil Environments: A Critical Review. ACS EST Water 2021, 1, 48–57. [Google Scholar] [CrossRef]
- Dong, Z.; Qiu, Y.; Zhang, W.; Yang, Z.; Wei, L. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater. Water Res. 2018, 143, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef] [PubMed]
- Nizzetto, L.; Langaas, S.; Futter, M. Pollution: Do microplastics spill on to farm soils? Nature 2016, 537, 488. [Google Scholar] [CrossRef]
- Rillig, M.C. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss Floodplain Soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef]
- Zhang, G.S.; Liu, Y.F. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef]
- Luo, T.; Zhang, Y.; Wang, C.; Wang, X.; Zhou, J.; Shen, M.; Zhao, Y.; Fu, Z.; Jin, Y. Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring. Environ. Pollut. 2019, 255, 113122. [Google Scholar] [CrossRef]
- Rodrigues, M.O.; Abrantes, N.; Gonçalves, F.J.M.; Nogueira, H.; Marques, J.C.; Gonçalves, A.M.M. Impacts of plastic products used in daily life on the environment and human health: What is known? Environ. Toxicol. Pharmacol. 2019, 72, 103239. [Google Scholar] [CrossRef]
- Yu, Y.; Flury, M. Current understanding of subsurface transport of micro- and nanoplastics in soil. Vadose Zone J. 2021, 20, e20108. [Google Scholar] [CrossRef]
- Iqbal, S.; Xu, J.; Allen, S.D.; Khan, S.; Nadir, S.; Arif, M.S.; Yasmeen, T. Unraveling consequences of soil micro- and nano-plastic pollution on soil-plant system: Implications for nitrogen (N) cycling and soil microbial activity. Chemosphere. 2020, 260, 127578. [Google Scholar] [CrossRef] [PubMed]
- .Shen, M.; Zhang, Y.; Zhu, Y.; Song, B.; Zeng, G.; Hu, D.; Wen, X.; Ren, X. Recent advances in toxicological research of nanoplastics in the environment: A review. Environ. Pollut. 2019, 252, 511–521. [Google Scholar] [CrossRef]
- Huang, D.; Chen, H.; Shen, M.; Tao, J.; Chen, S.; Yin, L.; Zhou, W.; Wang, X.; Xiao, R.; Li, R. Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. J. Hazard. Mater. 2022, 438, 129515. [Google Scholar] [CrossRef] [PubMed]
- Chai, B.; Wei, Q.; She, Y.; Lu, G.; Dang, Z.; Yin, H. Soil microplastic pollution in an e-waste dismantling zone of China. Waste Manag. 2020, 118, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Liu, X.; Qu, M. Nanoplastics and Human Health: Hazard Identification and Biointerface. J. Nanomater. 2022, 12, 1298. [Google Scholar] [CrossRef]
- Yu, S.; Shen, M.; Li, S.; Fu, Y.; Zhang, D.; Liu, H.; Liu, J. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes. Environ. Pollut. 2019, 255, 113302. [Google Scholar] [CrossRef]
- Pradel, A.; Hadri, H.E.; Desmet, C.; Ponti, J.; Reynaud, S.; Grassl, B.; Gigault, J. Deposition of environmentally relevant nanoplastic models in sand during transport experiments. Chemosphere 2020, 255, 126912. [Google Scholar] [CrossRef]
- Wagner, S.; Reemtsma, T. Things we know and don’t know about nanoplastic in the environment. Nat. Nanotechnol. 2019, 14, 300–301. [Google Scholar] [CrossRef]
- Reynaud, S.; Aynard, A.; Grassl, B.; Gigault, J. Nanoplastics: From model materials to colloidal fate. Curr. Opin. Colloid Interface Sci. 2022, 57, 101528. [Google Scholar] [CrossRef]
- Shaniv, D.; Dror, I.; Berkowitz, B. Effects of particle size and surface chemistry on plastic nanoparticle transport in saturated natural porous media. Chemosphere 2021, 262, 127854. [Google Scholar] [CrossRef]
- Wu, X.; Lyu, X.; Li, Z.; Gao, B.; Zeng, X.; Wu, J.; Sun, Y. Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type. Sci. Total Environ. 2020, 707, 136065. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yin, X.; Xi, X.; Guan, D.; Sun, H.; Wang, N. Effect of surfactants on the transport of polyethylene and polypropylene microplastics in porous media. Water Res. 2021, 196, 117016. [Google Scholar] [CrossRef]
- Zhou, D.; Cai, Y.; Yang, Z. Key factors controlling transport of micro- and nanoplastic in porous media and its effect on coexisting pollutants. Environ. Pollut. 2022, 293, 118503. [Google Scholar] [CrossRef] [PubMed]
- King, K.; Williams, M.; Macrae, M.; Fausey, N.R.; Frankenberger, J.; Smith, D.; Kleinman, P.; Brown, L. Phosphorus Transport in Agricultural Subsurface Drainage: A Review. J. Environ. Qual. 2015, 44, 467–485. [Google Scholar] [CrossRef] [PubMed]
- Mihelcic, J.R.; Fry, L.M.; Shaw, R. Global potential of phosphorus recovery from human urine and feces. Chemosphere 2011, 84, 832–839. [Google Scholar] [CrossRef]
- Bierman, P.M.; Rosen, C.J.; Bloom, P.R.; Nater, E.A. Soil Solution Chemistry of Sewage-Sludge Incinerator Ash and Phosphate Fertilizer Amended Soil. J. Environ. Qual. 1995, 24, 279–285. [Google Scholar] [CrossRef]
- Wang, L.; Xu, S.; Li, J. Effects of Phosphate on the Transport of Escherichia coli O157:H7 in Saturated Quartz Sand. Environ. Sci. Technol. 2011, 45, 9566–9573. [Google Scholar] [CrossRef]
- Li, L.; Schuster, M. Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand. Sci. Total Environ. 2014, 472, 971–978. [Google Scholar] [CrossRef]
- Mu, Y.; Ai, Z.; Zhang, L. Phosphate Shifted Oxygen Reduction Pathway on Fe@Fe2O3 Core–Shell Nanowires for Enhanced Reactive Oxygen Species Generation and Aerobic 4-Chlorophenol Degradation. Environ. Sci. Technol. 2017, 51, 8101–8109. [Google Scholar] [CrossRef]
- Gérard, F. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma 2016, 262, 213–226. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W.; Lu, T.; Song, Y.; Zhang, H.; Wang, M.; Wang, X.; Qi, Z.; Lu, M. Effects of phosphate on the transport of graphene oxide nanoparticles in saturated clean and iron oxide-coated sand columns. J Env. Sci. 2021, 103, 80–92. [Google Scholar] [CrossRef]
- Guo, P.; Xu, N.; Li, D.; Huangfu, X.; Li, Z. Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand. Chemosphere 2018, 204, 327–334. [Google Scholar] [CrossRef]
- Derjaguin, B.; Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 1993, 43, 30–59. [Google Scholar] [CrossRef]
- Verwey, E.J.W.; Overbeek, J.T.G. Theory of the Stability of Lyophobic Colloids. Nature 1948, 162, 315–316. [Google Scholar] [CrossRef]
- Morris, J.H.; Perkins, P.G.; Rose, A.E.A.; Smith, W.E. Interaction between aluminium dihydrogen phosphate and quartz. J. Appl. Chem. Biotechnol. 1976, 26, 385–390. [Google Scholar] [CrossRef]
- Li Wang, Z.B.; Rong, R.D.; Huang, Y.Q.; Wen, L.J. The adsorption behavior of phosphorus in microplastics in water and soil. Nong Ye Huan Jing Ke Xue Xue Bao 2021, 40, 1758–1764. [Google Scholar] [CrossRef]
- Lu, S.; Zhu, K.; Song, W.; Song, G.; Chen, D.; Hayat, T.; Alharbi, N.S.; Chen, C.; Sun, Y. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions. Sci. Total Environ. 2018, 630, 951–959. [Google Scholar] [CrossRef]
- Liang, Y.; Luo, Y.; Lu, Z.; Klumpp, E.; Shen, C.; Bradford, S.A. Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modification of grain surface morphology and co-transport. Environ. Pollut. 2021, 276, 116661. [Google Scholar] [CrossRef]
- Chen, M.; Xu, N.; Cao, X.; Zhou, K.; Chen, Z.; Wang, Y.; Liu, C. Facilitated transport of anatase titanium dioxides nanoparticles in the presence of phosphate in saturated sands. J. Colloid Interface Sci. 2015, 451, 134–143. [Google Scholar] [CrossRef]
- Wang, S.; Li, D.; Zhang, M.; Chen, M.; Xu, N.; Yang, L.; Chen, J. Competition between fulvic acid and phosphate-mediated surface properties and transport of titanium dioxide nanoparticles in sand porous media. J. Soils Sediments 2020, 20, 3681–3687. [Google Scholar] [CrossRef]
- Bendersky, M.; Davis, J.M. DLVO interaction of colloidal particles with topographically and chemically heterogeneous surfaces. J. Colloid Interface Sci. 2011, 353, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Bradford, S.A.; Torkzaban, S. Colloid Interaction Energies for Physically and Chemically Heterogeneous Porous Media. Langmuir 2013, 29, 3668–3676. [Google Scholar] [CrossRef]
- Shen, C.; Lazouskaya, V.; Zhang, H.; Li, B.; Jin, Y.; Huang, Y. Influence of surface chemical heterogeneity on attachment and detachment of microparticles. Colloids Surf. A Physicochem. Eng. Asp. 2013, 433, 14–29. [Google Scholar] [CrossRef]
- Liang, Y.; Bradford, S.A.; Šimůnek, J.; Klumpp, E. Mechanisms of graphene oxide aggregation, retention, and release in quartz sand. Sci. Total Environ. 2019, 656, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Torkzaban, S.; Bradford, S.A. Critical role of surface roughness on colloid retention and release in porous media. Water Res. 2016, 88, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Yin, H.W.; Chen, Z.G.; Chen, M.; Liu, S.Q. Mechanisms of Phosphate Removal by Synthesized Calcite. Mater. Sci. Forum 2013, 743–744, 597–602. [Google Scholar] [CrossRef]
- Tejedor-Tejedor, M.I.; Anderson, M.A. Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir 1990, 6, 602–611. [Google Scholar] [CrossRef]
- Xu, N.; Cheng, X.; Wang, D.; Xu, X.; Huangfu, X.; Li, Z. Effects of Escherichia coli and phosphate on the transport of titanium dioxide nanoparticles in heterogeneous porous media. Water Res. 2018, 146, 264–274. [Google Scholar] [CrossRef]
- Das, J.; Patra, B.S.; Baliarsingh, N.; Parida, K.M. Adsorption of phosphate by layered double hydroxides in aqueous solutions. Appl. Clay Sci. 2006, 32, 252–260. [Google Scholar] [CrossRef]
- Gisbert, R.; García, G.; Koper, M.T.M. Adsorption of phosphate species on poly-oriented Pt and Pt(111) electrodes over a wide range of pH. Electrochim. Acta 2010, 55, 7961–7968. [Google Scholar] [CrossRef]
- Weng, L.; Elliott, G.D. Distinctly Different Glass Transition Behaviors of Trehalose Mixed with Na2HPO4 or NaH2PO4: Evidence for its Molecular Origin. Pharm. Res. 2015, 32, 2217–2228. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.B.; Dzombak, D.A. Colloid release and transport processes in natural and model porous media. Colloids Surf. A Physicochem. Eng. Asp. 1996, 107, 245–262. [Google Scholar] [CrossRef]
- Grosberg, A.Y.; Nguyen, T.T.; Shklovskii, B.I. Colloquium: The physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 2002, 74, 329–345. [Google Scholar] [CrossRef]
- Bradford, S.A.; Kim, H.N.; Haznedaroglu, B.Z.; Torkzaban, S.; Walker, S.L. Coupled Factors Influencing Concentration-Dependent Colloid Transport and Retention in Saturated Porous Media. Environ. Sci. Technol. 2009, 43, 6996–7002. [Google Scholar] [CrossRef]
- Chu, X.; Li, T.; Li, Z.; Yan, A.; Shen, C. Transport of Microplastic Particles in Saturated Porous Media. Water 2019, 11, 2474. [Google Scholar] [CrossRef]
- Li, T.; Shen, C.; Wu, S.; Jin, C.; Bradford, S.A. Synergies of surface roughness and hydration on colloid detachment in saturated porous media: Column and atomic force microscopy studies. Water Res. 2020, 183, 116068. [Google Scholar] [CrossRef]
- Tong, M.; He, L.; Rong, H.; Li, M.; Kim, H. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment. Water Res. 2020, 169, 115284. [Google Scholar] [CrossRef]
- Liang, Y.; Zhou, J.; Dong, Y.; Klumpp, E.; Šimůnek, J.; Bradford, S.A. Evidence for the critical role of nanoscale surface roughness on the retention and release of silver nanoparticles in porous media. Environ. Pollut. 2020, 258, 113803. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Liu, G.; Zhang, Z.; Wu, H.; Cui, B.; Bai, J.; Zhang, W. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicol. Environ. Saf. 2019, 173, 331–338. [Google Scholar] [CrossRef]
- Qi, T.; Su, Z.; Jin, Y.; Ge, Y.; Guo, H.; Zhao, H.; Xu, J.; Jin, Q.; Zhao, J. Electrochemical oxidizing digestion using PbO2 electrode for total phosphorus determination in a water sample. RSC Adv. 2018, 8, 6206–6211. [Google Scholar] [CrossRef] [Green Version]
- Hogg, R.; Healy, T.W.; Fuerstenau, D.W. Mutual coagulation of colloidal dispersions. Phys. Chem. Chem. Phys. 1966, 62, 1638–1651. [Google Scholar] [CrossRef]
- Gregory, J. Approximate expressions for retarded van der waals interaction. J. Colloid Interface Sci. 1981, 83, 138–145. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Development and applications of the hydrus and stanmod software packages and related codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef]
- Umamaheswari, S.; Margandan, M.M. FTIR Spectroscopic Study of Fungal Degradation of Poly(ethylene terephthalate) and Polystyrene Foam. Available online: https://www.researchgate.net/publication/258316463 (accessed on 1 January 2013).
- Li, M.; Zhang, X.; Yi, K.; He, L.; Han, P.; Tong, M. Transport and deposition of microplastic particles in saturated porous media: Co-effects of clay particles and natural organic matter. Environ Pollut. 2021, 287, 117585. [Google Scholar] [CrossRef] [PubMed]
- Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003, 261, 402–410. [Google Scholar] [CrossRef]
- Deshpande, P.A.; Shonnard, D.R. Modeling the effects of systematic variation in ionic strength on the attachment kinetics of Pseudomonas fluorescens UPER-1 in saturated sand columns. Water Resour. Res. 1999, 35, 1619–1627. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces Academic Pres. In Intermolecular and Surface Forces, 3rd ed.; Academic Press: San Diego, CA, USA, 1992; p. iv. [Google Scholar] [CrossRef]
- He, L.; Wu, D.; Rong, H.; Li, M.; Tong, M.; Kim, H. Influence of Nano- and Microplastic Particles on the Transport and Deposition Behaviors of Bacteria in Quartz Sand. Environ. Sci. Technol. 2018, 52, 11555–11563. [Google Scholar] [CrossRef]
NaH2PO4 mM | Na2HPO4 mM | NaCl mM | pH | IS | Recovery (%) | |||
---|---|---|---|---|---|---|---|---|
Meff | M2 | M3 | ||||||
Figure 1a | 0 | 0 | 0 | 7 | 0.01 | 91 | - | - |
0.25 | 0 | 0 | 7 | 0.25 | 98 | - | 1 | |
0.5 | 0 | 0 | 7 | 0.50 | 43 | 1 | - | |
1 | 0 | 0 | 7 | 1.00 | - | - | - | |
Figure 1b | 0 | 0 | 0 | 7 | 0.01 | 91 | - | - |
0 | 0.25 | 0 | 7 | 0.75 | 82 | - | - | |
0 | 0.5 | 0 | 7 | 1.50 | 32 | 2 | - | |
0 | 1 | 0 | 7 | 3.00 | - | 2 | - | |
Figure 2a | 0 | 0 | 1 | 7 | 1.00 | 45 | - | 1 |
0.25 | 0 | 1 | 7 | 1.25 | 10 | - | - | |
0.5 | 0 | 1 | 7 | 1.50 | - | - | - | |
1 | 0 | 1 | 7 | 1.75 | - | 2 | - | |
Figure 2b | 0 | 0 | 1 | 10 | 1.00 | 56 | - | - |
0.25 | 0 | 1 | 10 | 1.25 | 53 | - | - | |
0.5 | 0 | 1 | 10 | 1.50 | 35 | - | 1 | |
1 | 0 | 1 | 10 | 2.00 | - | - | 1 | |
Figure 2c | 0 | 0 | 1 | 7 | 1.00 | 45 | - | 1 |
0 | 0.25 | 1 | 7 | 1.75 | - | - | - | |
0 | 0.5 | 1 | 7 | 2.50 | - | - | - | |
0 | 1 | 1 | 7 | 4.00 | - | - | - | |
Figure 2d | 0 | 0 | 1 | 10 | 1.00 | 56 | - | - |
0 | 0.25 | 1 | 10 | 1.75 | 24 | - | - | |
0 | 0.5 | 1 | 10 | 2.50 | - | - | 2 | |
0 | 1 | 1 | 10 | 4.00 | - | - | 3 | |
Figure 3a | 0.25 | 0 | 1 | 5 | 1.25 | - | - | - |
0.25 | 0 | 1 | 7 | 1.25 | 10 | - | - | |
0.25 | 0 | 1 | 8.5 | 1.25 | 10 | - | - | |
0.25 | 0 | 1 | 10 | 1.25 | 53 | - | - | |
Figure 3b | 0 | 0.25 | 1 | 5 | 1.75 | - | - | - |
0 | 0.25 | 1 | 7 | 1.75 | - | - | - | |
0 | 0.25 | 1 | 8.5 | 1.75 | - | - | - | |
0 | 0.25 | 1 | 10 | 1.75 | 24 | - | - | |
Figure 4 | 0 | 0 | 1 | 7 | 1.00 | 45 | - | 1 |
0.3 | 0 | 0.7 | 7 | 1.00 | 30 | - | - | |
0 | 0.3 | 0.1 | 7 | 1.00 | 86 | 1 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liang, Y.; Peng, Y.; Meng, T.; Xu, L.; Dong, P. Sensitivity of the Transport of Plastic Nanoparticles to Typical Phosphates Associated with Ionic Strength and Solution pH. Int. J. Mol. Sci. 2022, 23, 9860. https://doi.org/10.3390/ijms23179860
Liu X, Liang Y, Peng Y, Meng T, Xu L, Dong P. Sensitivity of the Transport of Plastic Nanoparticles to Typical Phosphates Associated with Ionic Strength and Solution pH. International Journal of Molecular Sciences. 2022; 23(17):9860. https://doi.org/10.3390/ijms23179860
Chicago/Turabian StyleLiu, Xingyu, Yan Liang, Yongtao Peng, Tingting Meng, Liling Xu, and Pengcheng Dong. 2022. "Sensitivity of the Transport of Plastic Nanoparticles to Typical Phosphates Associated with Ionic Strength and Solution pH" International Journal of Molecular Sciences 23, no. 17: 9860. https://doi.org/10.3390/ijms23179860
APA StyleLiu, X., Liang, Y., Peng, Y., Meng, T., Xu, L., & Dong, P. (2022). Sensitivity of the Transport of Plastic Nanoparticles to Typical Phosphates Associated with Ionic Strength and Solution pH. International Journal of Molecular Sciences, 23(17), 9860. https://doi.org/10.3390/ijms23179860