The NHE3 Inhibitor Tenapanor Prevents Intestinal Obstructions in CFTR-Deleted Mice
Abstract
:1. Introduction
2. Results
2.1. Increased Stool Water Content and More Alkaline Stool pH but No Difference in Body Weight between Vehicle- and Tenapanor-Treated Mice
2.2. Accelerated GI Transit Time upon Treatment with Tenapanor
2.3. Significant Reduction in Obstructive Episodes from Tenapanor
2.4. Tenapanor Treatment Reverses Cryptal Hyperproliferation in the Ileum and Proximal Colon
2.5. Obstructed Segments Display Distorted Architecture and Loss of Mucosal Integrity
2.6. Tenapanor Treatment Results in Decreased Mucus Accumulation in cftr−/− Intestine
2.7. Mast Cell Number Reduced in Tenapanor-Treated Intestine
2.8. Leucocyte Infiltration in the Segments Proximal to the Site of Obstruction
2.9. Strong Expression of Proinflammatory Cytokine Expression in the Intestinal Segments Proximal to the Obstruction
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Protocol
4.2. Whole GI Transit Time
4.3. Stool Water Content
4.4. Stool pH Measurement
4.5. Histology and Immunohistochemistry
4.6. Quantitative PCR
4.7. Data and Statistical Analysis
4.8. Materials
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houwen, R.H.; van der Doef, H.P.; Sermet, I.; Munck, A.; Hauser, B.; Walkowiak, J.; Robberecht, E.; Colombo, C.; Sinaasappel, M.; Wilschanski, M. Defining DIOS and Constipation in Cystic Fibrosis with a Multicentre Study on the Incidence, Characteristics, and Treatment of DIOS. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 38–42. [Google Scholar] [CrossRef]
- Sharma, A.; Morton, A.; Peckham, D.; Jayne, D. Gastrointestinal surgery in adult patients with cystic fibrosis. Front. Gastroenterol. 2012, 3, 242–247. [Google Scholar] [CrossRef]
- Hite, M.A.; Gaertner, W.B.; Garcia, B.; Flume, P.A.; Maxwell, P.J.; George, V.V.; Curran, T. Abdominal Surgical Procedures in Adult Patients with Cystic Fibrosis: What Are the Risks? Dis. Colon Rectum 2022, 65, e805–e815. [Google Scholar] [CrossRef]
- Gilchrist, F.J.; Green, J.; Carroll, W. Interventions for treating distal intestinal obstruction syndrome (DIOS) in cystic fibrosis. Cochrane Database Syst. Rev. 2021, 12, Cd012798. [Google Scholar] [CrossRef] [PubMed]
- Carroll, W.; Green, J.; Gilchrist, F.J. Interventions for preventing distal intestinal obstruction syndrome (DIOS) in cystic fibrosis. Cochrane Database Syst. Rev. 2021, 12, Cd012619. [Google Scholar] [CrossRef] [PubMed]
- Hayee, B.; Watson, K.-L.; Campbell, J.; Simpson, A.; Farrell, E.; Hutchings, P.; Macedo, P.; Perrin, F.; Whelan, K.; Elston, C. A high prevalence of chronic gastrointestinal symptoms in adults with cystic fibrosis is detected using tools already validated in other GI disorders. United Eur. Gastroenterol. J. 2019, 7, 881–888. [Google Scholar] [CrossRef]
- Beaufils, F.; Mas, E.; Mittaine, M.; Addra, M.; Fayon, M.; Delhaes, L.; Clouzeau, H.; Galode, F.; Lamireau, T.; Bui, S.; et al. Increased Fecal Calprotectin is Associated with Worse Gastrointestinal Symptoms and Quality of Life Scores in Children with Cystic Fibrosis. J. Clin. Med. 2020, 9, 4080. [Google Scholar] [CrossRef] [PubMed]
- Jaudszus, A.; Pfeifer, E.; Lorenz, M.; Beiersdorf, N.; Hipler, U.C.; Zagoya, C.; Mainz, J.G. Abdominal Symptoms Assessed With the CFAbd-Score are Associated with Intestinal Inflammation in Patients with Cystic Fibrosis. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 355–360. [Google Scholar] [CrossRef] [PubMed]
- De Lisle, R.C. Altered transit and bacterial overgrowth in the cystic fibrosis mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G104–G111. [Google Scholar] [CrossRef]
- Dorsey, J.; Gonska, T. Bacterial overgrowth, dysbiosis, inflammation, and dysmotility in the Cystic Fibrosis intestine. J. Cyst. Fibros. 2017, 16, S14–S23. [Google Scholar] [CrossRef] [Green Version]
- Talebi, S.; Day, A.S.; Rezaiyan, M.K.; Ranjbar, G.; Zarei, M.; Safarian, M.; Kianifar, H.R. Fecal Calprotectin and Phenotype Severity in Patients with Cystic Fibrosis: A Systematic Review and Meta-Analysis. Pediatr. Gastroenterol. Hepatol. Nutr. 2022, 25, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tétard, C.; Mittaine, M.; Bui, S.; Beaufils, F.; Maumus, P.; Fayon, M.; Burgel, P.-R.; Lamireau, T.; Delhaes, L.; Mas, E.; et al. Reduced Intestinal Inflammation with Lumacaftor/Ivacaftor in Adolescents with Cystic Fibrosis. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Borowitz, D.; Gelfond, D. Intestinal complications of cystic fibrosis. Curr. Opin. Pulm. Med. 2013, 19, 676–680. [Google Scholar] [CrossRef]
- Clarke, L.L.; Gawenis, L.R.; Franklin, C.L.; Harline, M.C. Increased survival of CFTR knockout mice with an oral osmotic laxative. Lab. Anim. Sci. 1996, 46, 612–618. [Google Scholar]
- Rogers, C.S.; Stoltz, D.A.; Meyerholz, D.K.; Ostedgaard, L.S.; Rokhlina, T.; Taft, P.J.; Rogan, M.P.; Pezzulo, A.A.; Karp, P.H.; Itani, O.A.; et al. Disruption of the CFTR Gene Produces a Model of Cystic Fibrosis in Newborn Pigs. Science 2008, 321, 1837–1841. [Google Scholar] [CrossRef]
- Stoltz, D.A.; Rokhlina, T.; Ernst, S.E.; Pezzulo, A.A.; Ostedgaard, L.S.; Karp, P.H.; Samuel, M.S.; Reznikov, L.R.; Rector, M.V.; Gansemer, N.D.; et al. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J. Clin. Investig. 2013, 123, 2685–2693. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; di Stefano, G.; Tan, X.; Renjie, X.; Römermann, D.; Talbot, S.R.; Seidler, U.E. Inhibition of Na +/H + exchanger isoform 3 improves gut fluidity and alkalinity in cystic fibrosis transmembrane conductance regulator-deficient and F508del mutant mice. Br. J. Pharmacol. 2021, 178, 1018–1036. [Google Scholar] [CrossRef]
- Dellschaft, N.S.; Ng, C.; Hoad, C.; Marciani, L.; Spiller, R.; Stewart, I.; Menys, A.; Barr, H.; Gowland, P.A.; Major, G.; et al. Magnetic resonance imaging of the gastrointestinal tract shows reduced small bowel motility and altered chyme in cystic fibrosis compared to controls. J. Cyst. Fibros. 2021, 21, 502–505. [Google Scholar] [CrossRef]
- Malagelada, C.; Bendezú, R.; Seguí, S.; Vitrià, J.; Merino, X.; Nieto, A.; Sihuay, D.; Accarino, A.; Molero, X.; Azpiroz, F. Motor dysfunction of the gut in cystic fibrosis. Neurogastroenterol. Motil. 2020, 32, e13883. [Google Scholar] [CrossRef]
- Vitko, M.; Valerio, D.M.; Rye, P.D.; Onsøyen, E.; Myrset, A.H.; Dessen, A.; Drumm, M.L.; Hodges, C.A. A novel guluronate oligomer improves intestinal transit and survival in cystic fibrosis mice. J. Cyst. Fibros. 2016, 15, 745–751. [Google Scholar] [CrossRef]
- Kini, A.; Singh, A.K.; Riederer, B.; Yang, I.; Tan, X.; di Stefano, G.; Tan, Q.; Xiao, F.; Xia, W.; Suerbaum, S.; et al. Slc26a3 deletion alters pH-microclimate, mucin biosynthesis, microbiome composition and increases the TNFα expression in murine colon. Acta Physiol. 2020, 230, e13498. [Google Scholar] [CrossRef]
- Norkina, O.; Kaur, S.; Ziemer, D.; De Lisle, R.C. Inflammation of the cystic fibrosis mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G1032–G1041. [Google Scholar] [CrossRef] [PubMed]
- Philp, A.R.; Riquelme, T.T.; Millar-Büchner, P.; González, R.; Sepúlveda, F.V.; Cid, L.P.; Flores, C.A. Kcnn4 is a modifier gene of intestinal cystic fibrosis preventing lethality in the Cftr-F508del mouse. Sci. Rep. 2018, 8, 9320. [Google Scholar] [CrossRef] [PubMed]
- Barone, S.; Fussell, S.L.; Singh, A.K.; Lucas, F.; Xu, J.; Kim, C.; Wu, X.; Yu, Y.; Amlal, H.; Seidler, U.; et al. Slc2a5 (Glut5) Is Essential for the Absorption of Fructose in the Intestine and Generation of Fructose-induced Hypertension. J. Biol. Chem. 2009, 284, 5056–5066. [Google Scholar] [CrossRef]
- Schultheis, P.J.; Clarke, L.L.; Meneton, P.; Miller, M.L.; Soleimani, M.; Gawenis, L.R.; Riddle, T.M.; Duffy, J.J.; Doetschman, T.; Wang, T.; et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat. Genet. 1998, 19, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Thomas, L.; Tahmasbi, M.; Valdez, A.; Rieg, J.A.D.; Fenton, R.A.; Rieg, T. An inducible intestinal epithelial cell-specific NHE3 knockout mouse model mimicking congenital sodium diarrhea. Clin. Sci. 2020, 134, 941–953. [Google Scholar] [CrossRef]
- Thwaites, D.T.; Anderson, C.M.H. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp. Physiol. 2007, 92, 603–619. [Google Scholar] [CrossRef]
- Johansson, S.; Rosenbaum, D.P.; Palm, J.; Stefansson, B.; Knutsson, M.; Lisbon, E.A.; Hilgendorf, C. Tenapanor administration and the activity of the H+ -coupled transporter PepT1 in healthy volunteers. Br. J. Clin. Pharmacol. 2017, 83, 2008–2014. [Google Scholar] [CrossRef]
- Anderson, C.M.H.; Thwaites, D.T. Indirect regulation of the intestinal H+-coupled amino acid transporter hPAT1 (SLC36A1). J. Cell. Physiol. 2005, 204, 604–613. [Google Scholar] [CrossRef]
- Shawki, A.; Engevik, M.A.; Kim, R.S.; Knight, P.B.; Baik, R.A.; Anthony, S.R.; Worrell, R.T.; Shull, G.E.; Mackenzie, B. Intestinal brush-border Na+/H+ exchanger-3 drives H+-coupled iron absorption in the mouse. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G423–G430. [Google Scholar] [CrossRef]
- Snouwaert, J.N.; Brigman, K.K.; Latour, A.M.; Malouf, N.N.; Boucher, R.C.; Smithies, O.; Koller, B.H. An Animal Model for Cystic Fibrosis Made by Gene Targeting. Science 1992, 257, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Walker, N.M.; Simpson, J.E.; Levitt, R.C.; Boyle, K.T.; Clarke, L.L. Talniflumate Increases Survival in a Cystic Fibrosis Mouse Model of Distal Intestinal Obstructive Syndrome. J. Pharmacol. Exp. Ther. 2006, 317, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Lord, R.; Fairbourn, N.; Mylavarapu, C.; Dbeis, A.; Bowman, T.; Chandrashekar, A.; Banayat, T.; Hodges, C.A.; Al-Nakkash, L. Consuming Genistein Improves Survival Rates in the Absence of Laxative in ΔF508-CF Female Mice. Nutrients 2018, 10, 1418. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, A.M.; Gottlieb, R.A. Proliferation, not apoptosis, alters epithelial cell migration in small intestine of CFTR null mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G681–G687. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.E.; Gawenis, L.R.; Walker, N.M.; Boyle, K.T.; Clarke, L.L. Chloride conductance of CFTR facilitates basal Cl−/HCO3−exchange in the villous epithelium of intact murine duodenum. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288, G1241–G1251. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Walker, N.M.; Cook, M.T.; Ootani, A.; Clarke, L.L. Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine. Am. J. Physiol. Cell Physiol. 2012, 302, C1492–C1503. [Google Scholar] [CrossRef]
- Strubberg, A.M.; Liu, J.; Walker, N.M.; Stefanski, C.D.; MacLeod, R.J.; Magness, S.T.; Clarke, L.L. Cftr Modulates Wnt/β-Catenin Signaling and Stem Cell Proliferation in Murine Intestine. Cell. Mol. Gastroenterol. Hepatol. 2018, 5, 253–271. [Google Scholar] [CrossRef]
- Foulke-Abel, J.; In, J.; Yin, J.; Zachos, N.C.; Kovbasnjuk, O.; Estes, M.K.; de Jonge, H.; Donowitz, M. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology. Gastroenterology 2016, 150, 638–649.e8. [Google Scholar] [CrossRef]
- Jakab, R.L.; Collaco, A.M.; Ameen, N.A. Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G82–G98. [Google Scholar] [CrossRef]
- Bradford, E.M.; Sartor, M.A.; Gawenis, L.R.; Clarke, L.L.; Shull, G.E. Reduced NHE3-mediated Na+ absorption increases survival and decreases the incidence of intestinal obstructions in cystic fibrosis mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G886–G898. [Google Scholar] [CrossRef]
- Malmberg, E.K.; Noaksson, K.A.; Phillipson, M.; Johansson, M.E.V.; Hinojosa-Kurtzberg, M.; Holm, L.; Gendler, S.J.; Hansson, G.C. Increased levels of mucins in the cystic fibrosis mouse small intestine, and modulator effects of the Muc1 mucin expression. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G203–G210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmley, R.R.; Gendler, S.J. Cystic fibrosis mice lacking Muc1 have reduced amounts of intestinal mucus. J. Clin. Investig. 1998, 102, 1798–1806. [Google Scholar] [CrossRef] [PubMed]
- Raia, V.; Maiuri, L.; de Ritis, G.; de Vizia, B.; Vacca, L.; Conte, R.; Auricchio, S.; Londei, M. Evidence of Chronic Inflammation in Morphologically Normal Small Intestine of Cystic Fibrosis Patients. Pediatr. Res. 2000, 47, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Bruzzese, E.; Raia, V.; Gaudiello, G.; Polito, G.; Buccigrossi, V.; Formicola, V.; Guarino, A. Intestinal inflammation is a frequent feature of cystic fibrosis and is reduced by probiotic administration. Aliment. Pharmacol. Ther. 2004, 20, 813–819. [Google Scholar] [CrossRef]
- Werlin, S.L.; Benuri-Silbiger, I.; Kerem, E.; Adler, S.N.; Goldin, E.; Zimmerman, J.; Malka, N.; Cohen, L.; Armoni, S.; Yatzkan-Israelit, Y.; et al. Evidence of Intestinal Inflammation in Patients With Cystic Fibrosis. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 304–308. [Google Scholar] [CrossRef]
- Lisowska, A.; Mądry, E.; Pogorzelski, A.; Szydłowski, J.; Radzikowski, A.; Walkowiak, J. Small intestine bacterial overgrowth does not correspond to intestinal inflammation in cystic fibrosis. Scand. J. Clin. Lab. Investig. 2010, 70, 322–326. [Google Scholar] [CrossRef]
- Galli, F.; Battistoni, A.; Gambari, R.; Pompella, A.; Bragonzi, A.; Pilolli, F.; Iuliano, L.; Piroddi, M.; Dechecchi, M.C.; Cabrini, G. Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 690–713. [Google Scholar] [CrossRef]
- Crites, K.S.-M.; Morin, G.; Orlando, V.; Patey, N.; Cantin, C.; Martel, J.; Brochiero, E.; Mailhot, G. CFTR Knockdown induces proinflammatory changes in intestinal epithelial cells. J. Inflamm. 2015, 12, 62. [Google Scholar] [CrossRef]
- Lavie, M.; Manovitz, T.; Vilozni, D.; Levy-Mendelovich, S.; Sarouk, I.; Weintraubv, I.; Shoseyov, D.; Cohen-Cymberknoh, M.; Rivlin, J.; Efrati, O. Long-term follow-up of distal intestinal obstruction syndrome in cystic fibrosis. World J. Gastroenterol. 2015, 21, 318–325. [Google Scholar] [CrossRef]
- Munck, A.; Alberti, C.; Colombo, C.; Kashirskaya, N.; Ellemunter, H.; Fotoulaki, M.; Houwen, R.; Robberecht, E.; Boizeau, P.; Wilschanski, M. International prospective study of distal intestinal obstruction syndrome in cystic fibrosis: Associated factors and outcome. J. Cyst. Fibros. 2016, 15, 531–539. [Google Scholar] [CrossRef]
- Graeber, S.Y.; Vitzthum, C.; Pallenberg, S.T.; Naehrlich, L.; Stahl, M.; Rohrbach, A.; Drescher, M.; Minso, R.; Ringshausen, F.C.; Rueckes-Nilges, C.; et al. Effects of Elexacaftor/Tezacaftor/Ivacaftor Therapy on CFTR Function in Patients with Cystic Fibrosis and One or Two F508del Alleles. Am. J. Respir. Crit. Care Med. 2022, 205, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Ooi, C.Y.; Syed, S.A.; Rossi, L.; Garg, M.; Needham, B.; Avolio, J.; Young, K.; Surette, M.G.; Gonska, T. Impact of CFTR modulation with Ivacaftor on Gut Microbiota and Intestinal Inflammation. Sci. Rep. 2018, 8, 17834. [Google Scholar] [CrossRef] [PubMed]
- Sinagra, E.; Rossi, F.; Raimondo, D.; Conoscenti, G.; Anderloni, A.; Guarnotta, V.; Maida, M. Tenapanor for the treatment of irritable bowel syndrome with constipation. Expert Rev. Clin. Pharmacol. 2020, 13, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Block, G.A.; Bleyer, A.J.; Silva, A.L.; Weiner, D.E.; Lynn, R.I.; Yang, Y.; Rosenbaum, D.P.; Chertow, G.M. Safety and Efficacy of Tenapanor for Long-term Serum Phosphate Control in Maintenance Dialysis: A 52-Week Randomized Phase 3 Trial (PHREEDOM). Kidney360 2021, 2, 1600–1610. [Google Scholar] [CrossRef]
- Ratcliff, R.; Evans, M.J.; Cuthbert, A.W.; MacVinish, L.J.; Foster, D.; Anderson, J.R.; Colledge, W.H. Production of a severe cystic fibrosis mutation in mice by gene targeting. Nat. Genet. 1993, 4, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Li, J.; Singh, A.K.; Riederer, B.; Wang, J.; Sultan, A.; Park, H.; Lee, M.G.; Lamprecht, G.; Scholte, B.J.; et al. Rescue of epithelial HCO3− secretion in murine intestine by apical membrane expression of the cystic fibrosis transmembrane conductance regulator mutant F508del. J. Physiol. 2012, 590, 5317–5334. [Google Scholar] [CrossRef]
- Bleich, A.; Tolba, R.H. How can we assess their suffering? German research consortium aims at defining a severity assessment framework for laboratory animals. Lab. Anim. 2017, 51, 667. [Google Scholar] [CrossRef]
- du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br. J. Pharmacol. 2020, 177, 3617–3624. [Google Scholar] [CrossRef]
- Kini, A.; Zhao, B.; Basic, M.; Roy, U.; Iljazovic, A.; Odak, I.; Ye, Z.; Riederer, B.; Di Stefano, G.; Römermann, D.; et al. Upregulation of antimicrobial peptide expression in slc26a3−/− mice with colonic dysbiosis and barrier defect. Gut Microbes 2022, 14, 2041943. [Google Scholar] [CrossRef]
- Alshamy, Z.; Richardson, K.C.; Hünigen, H.; Hafez, H.M.; Plendl, J.; Al Masri, S. Comparison of the gastrointestinal tract of a dual-purpose to a broiler chicken line: A qualitative and quantitative macroscopic and microscopic study. PLoS ONE 2018, 13, e0204921. [Google Scholar] [CrossRef]
- Honda, S.; Loher, P.; Morichika, K.; Shigematsu, M.; Kawamura, T.; Kirino, Y.; Rigoutsos, I.; Kirino, Y. Increasing cell density globally enhances the biogenesis of Piwi-interacting RNAs in Bombyx mori germ cells. Sci. Rep. 2017, 7, 4110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
Gender | Age (Weeks) | |||||
---|---|---|---|---|---|---|
Vehicle | Tenapanor | Vehicle | Tenapanor | |||
Male | Female | Male | Female | |||
Unobstructed | 1 | 6 | 4 | 7 | 11.7 ± 0.522 | 11.5 ± 0.366 |
Obstructed | 4 | 2 | 1 | 0 | 10.8 ± 0.477 | 9.0 |
Total | 5 | 8 | 5 | 7 | 11.3 ± 0.365 | 11.3 ± 0.392 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Kini, A.; Römermann, D.; Seidler, U. The NHE3 Inhibitor Tenapanor Prevents Intestinal Obstructions in CFTR-Deleted Mice. Int. J. Mol. Sci. 2022, 23, 9993. https://doi.org/10.3390/ijms23179993
Tan X, Kini A, Römermann D, Seidler U. The NHE3 Inhibitor Tenapanor Prevents Intestinal Obstructions in CFTR-Deleted Mice. International Journal of Molecular Sciences. 2022; 23(17):9993. https://doi.org/10.3390/ijms23179993
Chicago/Turabian StyleTan, Xinjie, Archana Kini, Dorothee Römermann, and Ursula Seidler. 2022. "The NHE3 Inhibitor Tenapanor Prevents Intestinal Obstructions in CFTR-Deleted Mice" International Journal of Molecular Sciences 23, no. 17: 9993. https://doi.org/10.3390/ijms23179993
APA StyleTan, X., Kini, A., Römermann, D., & Seidler, U. (2022). The NHE3 Inhibitor Tenapanor Prevents Intestinal Obstructions in CFTR-Deleted Mice. International Journal of Molecular Sciences, 23(17), 9993. https://doi.org/10.3390/ijms23179993