Down-Regulation of Double C2 Domain Alpha Promotes the Formation of Hyperplastic Nerve Fibers in Aganglionic Segments of Hirschsprung’s Disease
Abstract
:1. Introduction
2. Results
2.1. Expression of DOC2A Was Correlated with AChE+ Grades in HSCR
2.2. Knock-Down of DOC2A Promoted Nerve Fiber Formation In Vitro
2.3. Down-Regulation of Doc2a Accelerated the Hyperplastic Nerve Fibers’ Formation in Aganglionic Segment in Zebrafish
2.4. UNC13B Seems to Be a Downstream Molecule to DOC2A
3. Discussion
4. Materials and Methods
4.1. Approval of the Study and Experimental Specimens
4.2. Histopathology of the Colon
4.3. Nerve Fiber Scoring
4.4. Culture of Cells
4.5. Transfection
4.6. Quantitative Real-Time PCR (qRT-PCR)
4.7. Western Blot Analysis
4.8. Immunofluorescence (IF) Staining of N-2a Cells and Neural Spheres
4.9. Morpholino (MO) Knockdown of doc2a and ret Genes
4.10. Whole-Mount Immunofluorescence Staining
4.11. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sergi, C.; Caluseriu, O.; McColl, H.; Eisenstat, D. Hirschsprung’s disease: Clinical dysmorphology, genes, micro-RNAs, and future perspectives. Pediatric Res. 2017, 81, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Kyrklund, K.; Sloots, C.; de Blaauw, I.; Bjørnland, K.; Rolle, U.; Cavalieri, D.; Francalanci, P.; Fusaro, F.; Lemli, A.; Schwarzer, N.; et al. ERNICA guidelines for the management of rectosigmoid Hirschsprung’s disease. Orphanet J. Rare Dis. 2020, 15, 164. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, E.; Satani, M.; Kuwata, K. Histologic and embryologic studies on the innervation of the pelvic viscera in patients with Hirschsprung’s disease. Surg. Gynecol. Obstet. 1982, 155, 823–828. [Google Scholar] [PubMed]
- Garrett, J.R.; Howard, E.R.; Nixon, H.H. Autonomic nerves in rectum and colon in Hirschsprung’s disease. A cholinesterase and catecholamine histochemical study. Arch. Dis. Child. 1969, 44, 406–417. [Google Scholar] [CrossRef]
- Meier-Ruge, W.; Hunziker, O.; Tobler, H.J.; Walliser, C. The pathophysiology of aganglionosis of the entire colon (Zuelzer-Wilson syndrome). Morphometric investigations of the extent of sacral parasympathetic innervation of the circular muscles of the aganglionic colon. Beitr. Pathol. 1972, 147, 228–236. [Google Scholar] [CrossRef]
- Matsuda, H.; Hirato, J.; Kuroiwa, M.; Nakazato, Y. Histopathological and immunohistochemical study of the enteric innervations among various types of aganglionoses including isolated and syndromic Hirschsprung disease. Neuropathology 2006, 26, 8–23. [Google Scholar] [CrossRef]
- Kakita, Y.; Oshiro, K.; O’Briain, D.S.; Puri, P. Selective demonstration of mural nerves in ganglionic and aganglionic colon by immunohistochemistry for glucose transporter-1: Prominent extrinsic nerve pattern staining in Hirschsprung disease. Arch. Pathol. Lab. Med. 2000, 124, 1314–1319. [Google Scholar] [CrossRef]
- Kobayashi, H.; O’Briain, D.S.; Puri, P. Nerve growth factor receptor immunostaining suggests an extrinsic origin for hypertrophic nerves in Hirschsprung’s disease. Gut 1994, 35, 1605–1607. [Google Scholar] [CrossRef]
- Yao, J.; Gaffaney, J.D.; Kwon, S.E.; Chapman, E.R. Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. Cell 2011, 147, 666–677. [Google Scholar] [CrossRef]
- Glessner, J.T.; Reilly, M.P.; Kim, C.E.; Takahashi, N.; Albano, A.; Hou, C.; Bradfield, J.P.; Zhang, H.; Sleiman, P.M.; Flory, J.H.; et al. Strong synaptic transmission impact by copy number variations in schizophrenia. Proc. Natl. Acad. Sci. USA 2010, 107, 10584–10589. [Google Scholar] [CrossRef] [Green Version]
- Iyer, J.; Singh, M.D.; Jensen, M.; Patel, P.; Pizzo, L.; Huber, E.; Koerselman, H.; Weiner, A.T.; Lepanto, P.; Vadodaria, K.; et al. Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in Drosophila melanogaster. Nat. Commun. 2018, 9, 2548–2567. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Tang, J.; Lan, X.; Mi, X. Increased expression of DOC2A in human and rat temporal lobe epilepsy. Epilepsy Res. 2019, 151, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, D.M.; Crawford, D.C.; Chanaday, N.L.; Trauterman, B.; Monteggia, L.M.; Kavalali, E.T. Loss of Doc2-Dependent Spontaneous Neurotransmission Augments Glutamatergic Synaptic Strength. J. Neurosci. 2017, 37, 6224–6230. [Google Scholar] [CrossRef]
- Courtney, N.A.; Briguglio, J.S.; Bradberry, M.M.; Greer, C.; Chapman, E.R. Excitatory and Inhibitory Neurons Utilize Different Ca Sensors and Sources to Regulate Spontaneous Release. Neuron 2018, 98, 977–991. [Google Scholar] [CrossRef] [PubMed]
- Frank, C.A.; Kennedy, M.J.; Goold, C.P.; Marek, K.W.; Davis, G.W. Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 2006, 52, 663–677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Xu, M.; Miao, Q.L.; Poo, M.M.; Zhang, X.H. Endocannabinoid-dependent homeostatic regulation of inhibitory synapses by miniature excitatory synaptic activities. J. Neurosci. 2009, 29, 13222–13231. [Google Scholar] [CrossRef]
- Sutton, M.A.; Schuman, E.M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 2006, 127, 49–58. [Google Scholar] [CrossRef]
- Li, Z.; He, X.; Feng, J.X. 16p11.2 is required for neuronal polarity. World J. Neurosci. 2013, 03, 221–227. [Google Scholar] [CrossRef]
- Orita, S.; Naito, A.; Sakaguchi, G.; Maeda, M.; Igarashi, H.; Sasaki, T.; Takai, Y. Physical and functional interactions of Doc2 and Munc13 in Ca2+-dependent exocytotic machinery. J. Biol. Chem. 1997, 272, 16081–16084. [Google Scholar] [CrossRef]
- Mochida, S.; Orita, S.; Sakaguchi, G.; Sasaki, T.; Takai, Y. Role of the Doc2 alpha-Munc13-1 interaction in the neurotransmitter release process. Proc. Natl. Acad. Sci. USA 1998, 95, 11418–11422. [Google Scholar] [CrossRef] [Green Version]
- Epperson, A.; Hatton, W.J.; Callaghan, B.; Doherty, P.; Walker, R.L.; Sanders, K.M.; Ward, S.M.; Horowitz, B. Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. American journal of physiology. Cell Physiol. 2000, 279, C529–C539. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, R.G.; Sikorska, M.; Sandhu, J.K.; Lanthier, P.; Ribecco-Lutkiewicz, M.; Bani-Yaghoub, M. Differentiation of mouse Neuro 2A cells into dopamine neurons. J. Neurosci. Methods 2010, 186, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Kapur, R. Colonization of the murine hindgut by sacral crest-derived neural precursors: Experimental support for an evolutionarily conserved model. Dev. Biol. 2000, 227, 146–155. [Google Scholar] [CrossRef]
- Rao, M.; Gershon, M.D. Enteric nervous system development: What could possibly go wrong? Nat. Rev. Neurosci. 2018, 19, 552–565. [Google Scholar] [CrossRef]
- Almond, S.; Lindley, R.M.; Kenny, S.E.; Connell, M.G.; Edgar, D.H. Characterisation and transplantation of enteric nervous system progenitor cells. Gut 2007, 56, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Stavely, R.; Bhave, S.; Ho, W.; Ahmed, M.; Pan, W.; Rahman, A.; Ulloa, J.; Bousquet, N.; Omer, M.; Guyer, R.; et al. Enteric mesenchymal cells support the growth of postnatal enteric neural stem cells. Stem Cells 2021, 39, 1236–1252. [Google Scholar] [CrossRef] [PubMed]
- Radenkovic, G.; Radenkovic, D.; Velickov, A. Development of interstitial cells of Cajal in the human digestive tract as the result of reciprocal induction of mesenchymal and neural crest cells. J. Cell. Mol. Med. 2018, 22, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Lindley, R.; Hawcutt, D.; Connell, M.; Almond, S.; Almond, S.; Vannucchi, M.; Faussone-Pellegrini, M.; Edgar, D.; Kenny, S. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology 2008, 135, 205–216. [Google Scholar] [CrossRef]
- Jiang, Q.; Arnold, S.; Heanue, T.; Kilambi, K.; Doan, B.; Kapoor, A.; Ling, A.; Sosa, M.; Guy, M.; Jiang, Q.; et al. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am. J. Hum. Genet. 2015, 96, 581–596. [Google Scholar] [CrossRef]
- Stainier, D.; Raz, E.; Lawson, N.; Ekker, S.; Burdine, R.; Eisen, J.; Ingham, P.; Schulte-Merker, S.; Yelon, D.; Weinstein, B.; et al. Guidelines for morpholino use in zebrafish. PLoS Genet. 2017, 13, e1007000. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Meng, X.; Chen, K.; Wang, J.; Wu, L.; Chen, Y.; Yu, X.; Feng, J.; Li, Z. Down-Regulation of Double C2 Domain Alpha Promotes the Formation of Hyperplastic Nerve Fibers in Aganglionic Segments of Hirschsprung’s Disease. Int. J. Mol. Sci. 2022, 23, 10204. https://doi.org/10.3390/ijms231810204
Xiao J, Meng X, Chen K, Wang J, Wu L, Chen Y, Yu X, Feng J, Li Z. Down-Regulation of Double C2 Domain Alpha Promotes the Formation of Hyperplastic Nerve Fibers in Aganglionic Segments of Hirschsprung’s Disease. International Journal of Molecular Sciences. 2022; 23(18):10204. https://doi.org/10.3390/ijms231810204
Chicago/Turabian StyleXiao, Jun, Xinyao Meng, Ke Chen, Jing Wang, Luyao Wu, Yingjian Chen, Xiaosi Yu, Jiexiong Feng, and Zhi Li. 2022. "Down-Regulation of Double C2 Domain Alpha Promotes the Formation of Hyperplastic Nerve Fibers in Aganglionic Segments of Hirschsprung’s Disease" International Journal of Molecular Sciences 23, no. 18: 10204. https://doi.org/10.3390/ijms231810204
APA StyleXiao, J., Meng, X., Chen, K., Wang, J., Wu, L., Chen, Y., Yu, X., Feng, J., & Li, Z. (2022). Down-Regulation of Double C2 Domain Alpha Promotes the Formation of Hyperplastic Nerve Fibers in Aganglionic Segments of Hirschsprung’s Disease. International Journal of Molecular Sciences, 23(18), 10204. https://doi.org/10.3390/ijms231810204