Hemodynamics and Tissue Optical Properties in Bimodal Infarctions Induced by Middle Cerebral Artery Occlusion
Abstract
:1. Introduction
2. Results
2.1. MCAO Lesion
2.2. Quantification of Optical and Hemodynamic Parameters in Lesioned Hemisphere
2.3. IHCCs in MCAO
3. Discussion
3.1. Previous NIRS Studies of Cerebral Hemodynamics in MCAO Model
3.2. MCAO Variation and LDF Monitoring
3.3. Changes in Tissue Scattering in Severe MCAO
3.4. IHCC
3.5. Limitations of the Study
3.6. Potential Clinical Applications
4. Materials and Methods
4.1. Animal Preparation and Experimental Design
4.2. MCAO Surgery
4.3. NIRS Measurement
4.4. Histological Examination
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart disease and stroke statistics-2017 update: A report from the american heart association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef]
- Offner, H.; Ihara, M.; Schabitz, W.R.; Wong, P.T. Stroke and other cerebrovascular diseases. Neurochem. Int. 2017, 107, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Fluri, F.; Schuhmann, M.K.; Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Des. Dev. Ther. 2015, 9, 3445–3454. [Google Scholar] [CrossRef]
- Navarro-Orozco, D.; Sánchez-Manso, J.C. Neuroanatomy, Middle Cerebral Artery. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ng, Y.S.; Stein, J.; Ning, M.; Black-Schaffer, R.M. Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. Stroke 2007, 38, 2309–2314. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, J.-I.; Yoshida, Y.; Nakazawa, T.; Ooneda, G. Experimental studies of ischemic brain edema 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn. J. Stroke 1986, 8, 1–8. [Google Scholar] [CrossRef]
- Longa, E.Z.; Weinstein, P.R.; Carlson, S.; Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke J. Cereb. Circ. 1989, 20, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Belayev, L.; Busto, R.; Zhao, W.; Ginsberg, M.D. HU-211, a novel noncompetitive n-methyl-d-aspartate antagonist, improves neurological deficit and reduces infarct volume after reversible focal cerebral ischemia in the rat. Stroke 1995, 26, 2313–2320. [Google Scholar] [CrossRef]
- Narayan, S.K.; Grace Cherian, S.; Babu Phaniti, P.; Babu Chidambaram, S.; Rachel Vasanthi, A.H.; Arumugam, M. Preclinical animal studies in ischemic stroke: Challenges and some solutions. Anim. Models Exp. Med. 2021, 4, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, S.T. Rodent models of focal stroke: Size, mechanism, and purpose. NeuroRx 2005, 2, 396–409. [Google Scholar] [CrossRef]
- Durukan, A.; Tatlisumak, T. Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol. Biochem. Behav. 2007, 87, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Macrae, I.M. Preclinical stroke research--advantages and disadvantages of the most common rodent models of focal ischaemia. Br. J. Pharmacol. 2011, 164, 1062–1078. [Google Scholar] [CrossRef] [PubMed]
- Ström, J.O.; Ingberg, E.; Theodorsson, A.; Theodorsson, E. Method parameters’ impact on mortality and variability in rat stroke experiments: A meta-analysis. BMC Neurosci. 2013, 14, 41. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Mayhan, W.G.; Sun, H. A modified suture technique produces consistent cerebral infarction in rats. Brain Res. 2008, 1246, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Gubskiy, I.L.; Namestnikova, D.D.; Cherkashova, E.A.; Chekhonin, V.P.; Baklaushev, V.P.; Gubsky, L.V.; Yarygin, K.N. MRI guiding of the middle cerebral artery occlusion in rats aimed to improve stroke modeling. Transl. Stroke Res. 2018, 9, 417–425. [Google Scholar] [CrossRef]
- Soriano, M.A.; Sanz, O.; Ferrer, I.; Planas, A.M. Cortical infarct volume is dependent on the ischemic reduction of perifocal cerebral blood flow in a three-vessel intraluminal MCA occlusion/reperfusion model in the rat. Brain Res. 1997, 747, 273–278. [Google Scholar] [CrossRef]
- Woitzik, J.; Schneider, U.C.; Thomé, C.; Schroeck, H.; Schilling, L. Comparison of different intravascular thread occlusion models for experimental stroke in rats. J. Neurosci. Methods 2006, 151, 224–231. [Google Scholar] [CrossRef]
- Henninger, N.; Bouley, J.; Bråtane, B.T.; Bastan, B.; Shea, M.; Fisher, M. Laser Doppler flowmetry predicts occlusion but not tPA-mediated reperfusion success after rat embolic stroke. Exp. Neurol. 2009, 215, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Riva, M.; Pappadá, G.B.; Papadakis, M.; Cuccione, E.; Carone, D.; Menendez, V.R.; Sganzerla, E.P.; Beretta, S. Hemodynamic monitoring of intracranial collateral flow predicts tissue and functional outcome in experimental ischemic stroke. Exp. Neurol. 2012, 233, 815–820. [Google Scholar] [CrossRef]
- Hedna, V.S.; Ansari, S.; Shahjouei, S.; Cai, P.Y.; Ahmad, A.S.; Mocco, J.; Qureshi, A.I. Validity of laser Doppler flowmetry in predicting outcome in murine intraluminal middle cerebral artery occlusion stroke. J. Vasc. Interv. Neurol. 2015, 8, 74–82. [Google Scholar] [PubMed]
- Cai, Q.; Xu, G.; Liu, J.; Wang, L.; Deng, G.; Liu, J.; Chen, Z. A modification of intraluminal middle cerebral artery occlusion/reperfusion model for ischemic stroke with laser Doppler flowmetry guidance in mice. Neuropsychiatr. Dis. Treat. 2016, 12, 2851–2858. [Google Scholar] [CrossRef] [Green Version]
- Cuccione, E.; Versace, A.; Cho, T.-H.; Carone, D.; Berner, L.-P.; Ong, E.; Rousseau, D.; Cai, R.; Monza, L.; Ferrarese, C.; et al. Multi-site laser Doppler flowmetry for assessing collateral flow in experimental ischemic stroke: Validation of outcome prediction with acute MRI. J. Cereb. Blood Flow Metab. 2017, 37, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Elsaesser, R.; Zausinger, S.; Hungerhuber, E.; Baethmann, A.; Reulen, H.J. A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: Evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 1998, 29, 2162–2170. [Google Scholar] [CrossRef]
- Hungerhuber, E.; Zausinger, S.; Westermaier, T.; Plesnila, N.; Schmid-Elsaesser, R. Simultaneous bilateral laser Doppler fluxmetry and electrophysiological recording during middle cerebral artery occlusion in rats. J. Neurosci. Methods 2006, 154, 109–115. [Google Scholar] [CrossRef]
- Morris, G.P.; Wright, A.L.; Tan, R.P.; Gladbach, A.; Ittner, L.M.; Vissel, B. A Comparative study of variables influencing ischemic injury in the Longa and Koizumi methods of intraluminal filament middle cerebral artery occlusion in mice. PLoS ONE 2016, 11, e0148503. [Google Scholar] [CrossRef]
- Yuan, L.; Li, Y.; Li, H.; Lu, H.; Tong, S. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model. J. Biomed. Opt. 2015, 20, 096012. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, S.; Yuan, L.; Lu, H.; Li, H.; Tong, S. Predicting the ischemic infarct volume at the first minute after occlusion in rodent stroke model by laser speckle imaging of cerebral blood flow. J. Biomed. Opt. 2013, 18, 76024. [Google Scholar] [CrossRef]
- Røhl, L.; Sakoh, M.; Simonsen, C.Z.; Vestergaard-Poulsen, P.; Sangill, R.; Sørensen, J.C.; Bjarkam, C.R.; Gyldensted, C.; Østergaard, L. Time evolution of cerebral perfusion and apparent diffusion coefficient measured by magnetic resonance imaging in a porcine stroke model. J. Magn. Reson. Imaging 2002, 15, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.-I.; Woo, C.-W.; Kim, K.-W.; Choi, Y.; Kim, S.-T.; Kim, Y.J.; Kang, J.; Lee, D.-W.; Tak, E.; Kim, J.-K.; et al. Does the apparent diffusion coefficient value predict permanent cerebral ischemia/reperfusion injury in rats? Acad. Radiol. 2019, 26, e348–e354. [Google Scholar] [CrossRef] [PubMed]
- Strangman, G.; Boas, D.A.; Sutton, J.P. Non-invasive neuroimaging using near-infrared light. Biol. Psychiatry 2002, 52, 679–693. [Google Scholar] [CrossRef]
- Jöbsis, F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977, 198, 1264–1267. [Google Scholar] [CrossRef] [PubMed]
- Obrig, H.; Steinbrink, J. Non-invasive optical imaging of stroke. Philos. Trans. A Math Phys. Eng. Sci. 2011, 369, 4470–4494. [Google Scholar] [CrossRef]
- Obrig, H. NIRS in clinical neurology—A ‘promising’ tool? Neuroimage 2014, 85, 535–546. [Google Scholar] [CrossRef]
- Schytz, H.W. Near infrared spectroscopy—Investigations in neurovascular diseases. Dan. Med. J. 2015, 62, B5166. [Google Scholar]
- Pellicer, A.; Bravo, M.d.C. Near-infrared spectroscopy: A methodology-focused review. Semin. Fetal Neonatal Med. 2011, 16, 42–49. [Google Scholar] [CrossRef]
- Lin, P.-Y.; Lin, S.-I.; Penney, T.; Chen, J.-J. Review: Applications of near infrared spectroscopy and imaging for motor rehabilitation in stroke patients. J. Med. Biol. Eng. 2009, 29, 210–221. [Google Scholar]
- Muehlschlegel, S.; Selb, J.; Patel, M.; Diamond, S.; Franceschini, M.; Sorensen, A.; Boas, D.; Schwamm, L. Feasibility of NIRS in the neurointensive care unit: A pilot study in stroke using physiological oscillations. Neurocritical Care 2009, 11, 288. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.C.; Lin, P.Y.; Hoe, Z.Y.; Chen, J.J.J. Near infrared spectroscopy study of cortical excitability during electrical stimulation-assisted cycling for neurorehabilitation of stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1292–1300. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Lu, Y.-H.; Wu, C.-W.; Sung, P.-S.; Lin, C.-C.; Lin, P.-Y.; Wang, S.-M.; Chen, F.-Y.; Chen, J.-J.J. Evaluating interhemispheric synchronization and cortical activity in acute stroke patients using optical hemodynamic oscillations. J. Neural Eng. 2022, 19, 036034. [Google Scholar] [CrossRef]
- Wolf, T.; Lindauer, U.; Reuter, U.; Back, T.; Villringer, A.; Einhaupl, K.; Dirnagl, U. Noninvasive near infrared spectroscopy monitoring of regional cerebral blood oxygenation changes during peri-infarct depolarizations in focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 1997, 17, 950–954. [Google Scholar] [CrossRef]
- Liu, L.-F.; Yeh, C.-K.; Chen, C.-H.; Wong, T.-W.; Chen, J.-J. Measurement of cerebral blood flow and oxygen saturation using laser doppler flowmetry and near infrared spectroscopy in ischemic stroke rats. J. Med. Biol. Eng. 2008, 28, 5. [Google Scholar]
- Xia, M.; Yang, S.; Simpkins, J.W.; Liu, H. Noninvasive monitoring of estrogen effects against ischemic stroke in rats by near-infrared spectroscopy. Appl. Opt. 2007, 46, 8315–8321. [Google Scholar] [CrossRef]
- Abookasis, D.; Lay, C.C.; Mathews, M.S.; Linskey, M.E.; Frostig, R.D.; Tromberg, B.J. Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination. J. Biomed. Opt. 2009, 14, 024033. [Google Scholar] [CrossRef]
- Culver, J.P.; Durduran, T.; Furuya, D.; Cheung, C.; Greenberg, J.H.; Yodh, A.G. Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia. J. Cereb. Blood Flow Metab. 2003, 23, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.J.; Ren, M.; Li, L.; Liu, Y.; Su, J.; Yang, S.H.; Liu, H. Interleaved imaging of cerebral hemodynamics and blood flow index to monitor ischemic stroke and treatment in rat by volumetric diffuse optical tomography. Neuroimage 2014, 85, 566–582. [Google Scholar] [CrossRef]
- Bluestone, A.Y.; Stewart, M.; Lei, B.; Kass, I.S.; Lasker, J.; Abdoulaev, G.S.; Hielscher, A.H. Three-dimensional optical tomographic brain imaging in small animals, part 2: Unilateral carotid occlusion. J. Biomed. Opt. 2004, 9, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Demet, G.; Talip, A.; Nevzat, U.; Serhat, O.; Gazi, O. The evaluation of cerebral oxygenation by oximetry in patients with ischaemic stroke. J. Postgrad. Med. 2000, 46, 70–74. [Google Scholar] [PubMed]
- van Meer, M.P.A.; van der Marel, K.; Wang, K.; Otte, W.M.; El Bouazati, S.; Roeling, T.A.P.; Viergever, M.A.; Berkelbach van der Sprenkel, J.W.; Dijkhuizen, R.M. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J. Neurosci. 2010, 30, 3964–3972. [Google Scholar] [CrossRef]
- van Meer, M.P.A.; Otte, W.M.; van der Marel, K.; Nijboer, C.H.; Kavelaars, A.; van der Sprenkel, J.W.B.; Viergever, M.A.; Dijkhuizen, R.M. Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J. Neurosci. 2012, 32, 4495–4507. [Google Scholar] [CrossRef]
- Wen, Z.; Xu, X.; Xu, L.; Yang, L.; Xu, X.; Zhu, J.; Wu, L.; Jiang, Y.; Liu, X. Optimization of behavioural tests for the prediction of outcomes in mouse models of focal middle cerebral artery occlusion. Brain Res. 2017, 1665, 88–94. [Google Scholar] [CrossRef]
- Laing, R.J.; Jakubowski, J.; Laing, R.W. Middle cerebral artery occlusion without craniectomy in rats. Which method works best? Stroke 1993, 24, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Kuge, Y.; Minematsu, K.; Yamaguchi, T.; Miyake, Y. Nylon monofilament for intraluminal middle cerebral artery occlusion in rats. Stroke 1995, 26, 1655–1658. [Google Scholar] [CrossRef]
- Taninishi, H.; Jung, J.Y.; Izutsu, M.; Wang, Z.; Sheng, H.; Warner, D.S. A blinded randomized assessment of laser Doppler flowmetry efficacy in standardizing outcome from intraluminal filament MCAO in the rat. J. Neurosci. Methods 2015, 241, 111–120. [Google Scholar] [CrossRef]
- Ingberg, E.; Dock, H.; Theodorsson, E.; Theodorsson, A.; Ström, J.O. Effect of laser Doppler flowmetry and occlusion time on outcome variability and mortality in rat middle cerebral artery occlusion: Inconclusive results. BMC Neurosci. 2018, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Howells, D.W.; Porritt, M.J.; Rewell, S.S.J.; O’Collins, V.; Sena, E.S.; van der Worp, H.B.; Traystman, R.J.; Macleod, M.R. Different strokes for different folks: The rich diversity of animal models of focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2010, 30, 1412–1431. [Google Scholar] [CrossRef]
- Mourant, J.R.; Fuselier, T.; Boyer, J.; Johnson, T.M.; Bigio, I.J. Predictions and measurements of scattering and absorption over broadwavelength ranges in tissue phantoms. Appl. Opt. 1997, 36, 949–957. [Google Scholar] [CrossRef]
- Wang, X.; Pogue, B.; Jiang, S.; Song, X.; Paulsen, K.; Kogel, C.; Poplack, S.; Wells, W. Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo. J. Biomed. Opt. 2005, 10, 051704. [Google Scholar] [CrossRef] [PubMed]
- Kawauchi, S.; Nishidate, I.; Nawashiro, H.; Sato, S. Near-infrared diffuse reflectance signals for monitoring spreading depolarizations and progression of the lesion in a male rat focal cerebral ischemia model. J. Neurosci. Res. 2018, 96, 875–888. [Google Scholar] [CrossRef]
- Xie, J.; Qian, Z.; Yang, T.; Li, W.; Hu, G. Minimally invasive assessment of the effect of mannitol and hypertonic saline therapy on traumatic brain edema using measurements of reduced scattering coefficient (μs’). Appl. Opt. 2010, 49, 5407–5414. [Google Scholar] [CrossRef]
- Thiagarajah, J.R.; Papadopoulos, M.C.; Verkman, A. Noninvasive early detection of brain edema in mice by near-infrared light scattering. J. Neurosci. Res. 2005, 80, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Slivka, A.; Murphy, E.; Horrocks, L. Cerebral edema after temporary and permanent middle cerebral artery occlusion in the rat. Stroke 1995, 26, 1061–1066. [Google Scholar] [CrossRef]
- Silasi, G.; MacLellan, C.L.; Colbourne, F. Use of telemetry blood pressure transmitters to measure intracranial pressure (ICP) in freely moving rats. Curr. Neurovasc. Res. 2009, 6, 62–69. [Google Scholar] [CrossRef]
- Cheng, R.; Shang, Y.; Hayes, D., Jr.; Saha, S.P.; Yu, G. Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics. Neuroimage 2012, 62, 1445–1454. [Google Scholar] [CrossRef]
- Schytz, H.W.; Hansson, A.; Phillip, D.; Selb, J.; Boas, D.A.; Iversen, H.K.; Ashina, M. Spontaneous low-frequency oscillations in cerebral vessels: Applications in carotid artery disease and ischemic stroke. J. Stroke Cerebrovasc. Dis. 2010, 19, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Franceschini, M.A.; Joseph, D.K.; Huppert, T.J.; Diamond, S.G.; Boas, D.A. Diffuse optical imaging of the whole head. J. Biomed. Opt. 2006, 11, 054007. [Google Scholar] [CrossRef]
- Sim, J.; Jo, A.; Kang, B.-M.; Lee, S.; Bang, O.Y.; Heo, C.; Jhon, G.-J.; Lee, Y.; Suh, M. Cerebral hemodynamics and vascular reactivity in mild and severe ischemic rodent middle cerebral artery occlusion stroke models. Exp. Neurobiol. 2016, 25, 130–138. [Google Scholar] [CrossRef]
- Kwon, H.; Kim, K.; Jo, Y.H.; Park, M.J.; Ko, S.-B.; Kim, T.J.; Kang, J.; Bae, H.-M.; Lee, J.E. Early detection of cerebral infarction with middle cerebral artery occlusion with functional near-infrared spectroscopy: A pilot study. Front. Neurol. 2018, 9, 898. [Google Scholar] [CrossRef] [PubMed]
- Gholampour, S.; Mehrjoo, S. Effect of bifurcation in the hemodynamic changes and rupture risk of small intracranial aneurysm. Neurosurg. Rev. 2021, 44, 1703–1712. [Google Scholar] [CrossRef]
- Hajirayat, K.; Gholampour, S.; Sharifi, I.; Bizari, D. Biomechanical Simulation to Compare the Blood Hemodynamics and Cerebral Aneurysm Rupture Risk in Patients with Different Aneurysm Necks. J. Appl. Mech. Tech. Phys. 2017, 58, 968–974. [Google Scholar] [CrossRef]
- Taher, M.; Gholampour, S. Effect of Ambient Temperature Changes on Blood Flow in Anterior Cerebral Artery of Patients with Skull Prosthesis. World Neurosurg. 2020, 135, e358–e365. [Google Scholar] [CrossRef]
- Lidington, D.; Wan, H.; Bolz, S.S. Cerebral Autoregulation in Subarachnoid Hemorrhage. Front. Neurol. 2021, 12, 688362. [Google Scholar] [CrossRef] [PubMed]
- Lang, E.W.; Diehl, R.R.; Mehdorn, H.M. Cerebral autoregulation testing after aneurysmal subarachnoid hemorrhage: The phase relationship between arterial blood pressure and cerebral blood flow velocity. Crit. Care Med. 2001, 29, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Gholampour, S.; Yamini, B.; Droessler, J.; Frim, D. A New Definition for Intracranial Compliance to Evaluate Adult Hydrocephalus After Shunting. Front. Bioeng. Biotechnol. 2022, 10, 900644. [Google Scholar] [CrossRef]
- Fantini, S.; Franceschini, M.A.; Gratton, E. Semi-infinite-geometry boundary problem for light migration in highly scattering media: A frequency-domain study in the diffusion approximation. J. Opt. Soc. Am. B 1994, 11, 2128–2138. [Google Scholar] [CrossRef] [Green Version]
- Fantini, S.; Franceschini, M.-A.; Maier, J.S.; Walker, S.A.; Barbieri, B.B.; Gratton, E. Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry. Opt. Eng. 1995, 34, 32–42. [Google Scholar] [CrossRef]
- Franceschini, M.-A.; Wallace, D.J.; Barbieri, B.B.; Fantini, S.; Mantulin, W.W.; Pratesi, S.; Donzelli, G.P.; Gratton, E. Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter. In Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II; SPIE: Bellingham, WA, USA, 1997; pp. 807–814. [Google Scholar] [CrossRef]
- Joshi, C.N.; Jain, S.K.; Murthy, P.S.R. An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Res. Brain Res. Protoc. 2004, 13, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Regan, H.K.; Detwiler, T.J.; Huang, J.C.; Lynch, J.J.; Regan, C.P. An improved automated method to quantitate infarct volume in triphenyltetrazolium stained rat brain sections. J. Pharm. Toxicol. Methods 2007, 56, 339–343. [Google Scholar] [CrossRef] [PubMed]
Parameter | µa (690 nm) (cm−1) | µa (830 nm) (cm−1) | µs’ (690 nm) (cm−1) | µs’ (830 nm) (cm−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | Sham | Mild | Severe | Sham | Mild | Severe | Sham | Mild | Severe | Sham | Mild | Severe |
pre | 0.256 ± 0.005 | 0.237 ± 0.006 | 0.239 ± 0.004 | 0.261 ± 0.004 | 0.260 ± 0.007 | 0.245 ± 0.005 | 17.98 ± 0.48 | 17.75 ± 0.52 | 16.93 ± 0.50 | 12.94 ± 0.25 | 12.64 ± 0.37 | 12.30 ± 0.33 |
occ | 0.256 ± 0.005 | 0.257 ± 0.009 | 0.256 ± 0.011 | 0.240 ± 0.005 | 0.240 ± 0.009 | 0.218 ± 0.008 | 17.20 ± 0.60 | 16.42 ± 0.83 | 14.99 ± 0.69 | 12.03 ± 0.26 | 12.11 ± 0.73 | 10.49 ± 0.41 |
post | 0.254 ± 0.006 | 0.257 ± 0.009 | 0.247 ± 0.007 | 0.242 ± 0.005 | 0.233 ± 0.008 | 0.230 ± 0.006 | 16.30 ± 0.56 | 16.64 ± 0.96 | 16.95 ± 0.82 | 11.93 ± 0.36 | 12.68 ± 0.81 | 12.38 ± 0.38 |
d1 | 0.264 ± 0.007 | 0.254 ± 0.006 | 0.238 ± 0.007 | 0.249 ± 0.006 | 0.242 ± 0.007 | 0.226 ± 0.006 | 16.92 ± 0.62 | 17.08 ± 0.84 | 17.08 ± 0.56 | 12.24 ± 0.34 | 13.07 ± 0.66 | 12.67 ± 0.28 |
d2 | 0.262 ± 0.006 | 0.251 ± 0.006 | 0.264 ± 0.008 | 0.261 ± 0.004 | 0.268 ± 0.007 | 0.270 ± 0.008 | 18.57 ± 0.53 | 18.58 ± 0.51 | 21.68 ± 0.62 | 13.51 ± 0.24 | 14.19 ± 0.66 | 16.35 ± 0.43 |
d3 | 0.263 ± 0.005 | 0.249 ± 0.006 | 0.275 ± 0.010 | 0.255 ± 0.003 | 0.269 ± 0.006 | 0.290 ± 0.007 | 18.41 ± 0.44 | 17.51 ± 0.57 | 22.62 ± 0.60 | 13.51 ± 0.12 | 13.29 ± 0.36 | 17.40 ± 0.35 |
Parameter | [HbO] (µM) | [HbR] (µM) | [HbT] (µM) | StO2 (%) | ||||||||
Group | Sham | Mild | Severe | Sham | Mild | Severe | Sham | Mild | Severe | Sham | Mild | Severe |
pre | 83.25 ± 1.73 | 85.48 ± 3.06 | 78.13 ± 2.14 | 34.86 ± 1.25 | 30.77 ± 0.69 | 32.70 ± 0.73 | 118.1 ± 1.5 | 116.3 ± 3.6 | 110.8 ± 2.0 | 70.70 ± 1.03 | 73.40 ± 0.52 | 70.35 ± 0.84 |
occ | 71.78 ± 2.51 | 70.36 ± 3.33 | 56.79 ± 2.74 | 37.12 ± 0.93 | 37.69 ± 1.40 | 40.88 ± 1.72 | 108.9 ± 2.5 | 108.1 ± 4.2 | 97.7 ± 3.8 | 65.62 ± 1.02 | 64.89 ± 1.03 | 59.56 ± 0.86 |
post | 73.15 ± 1.63 | 66.57 ± 2.97 | 65.23 ± 2.70 | 36.64 ± 1.14 | 38.50 ± 1.67 | 38.28 ± 1.71 | 109.8 ± 2.1 | 105.1 ± 3.8 | 103.5 ± 2.5 | 66.58 ± 0.81 | 63.21 ± 1.20 | 63.71 ± 1.61 |
d1 | 74.09 ± 2.86 | 72.33 ± 3.28 | 66.28 ± 2.73 | 38.50 ± 1.34 | 36.77 ± 1.21 | 35.58 ± 1.66 | 112.6 ± 2.9 | 109.1 ± 3.4 | 101.9 ± 2.6 | 66.31 ± 1.23 | 65.93 ± 1.31 | 65.41 ± 1.60 |
d2 | 81.96 ± 1.87 | 87.67 ± 3.30 | 86.69 ± 2.85 | 37.03 ± 1.06 | 33.21 ± 0.85 | 35.93 ± 1.62 | 119.0 ± 2.2 | 120.9 ± 3.6 | 122.6 ± 3.3 | 69.14 ± 0.75 | 72.32 ± 0.82 | 70.44 ± 1.18 |
d3 | 78.67 ± 1.65 | 87.58 ± 2.46 | 96.47 ± 2.63 | 37.16 ± 1.28 | 32.64 ± 0.88 | 36.41 ± 2.29 | 115.8 ± 1.3 | 120.3 ± 2.8 | 132.9 ± 2.2 | 67.90 ± 1.11 | 72.78 ± 0.70 | 72.02 ± 1.75 |
Factor | µa (690 nm) | µa (830 nm) | µs’ (690 nm) | µs’ (830 nm) |
---|---|---|---|---|
Time course | F5,195 = 4.35, p = 0.0009 | F5,195 = 41.29, p < 0.0001 | F5,195 = 28.71, p < 0.0001 | F5,195 = 41.53, p < 0.0001 |
Severity | F2,39 = 0.69, p = 0.5063 | F2,39 = 0.38, p = 0.6873 | F2,39 = 1.57, p = 0.2201 | F2,39 = 2.24, p = 0.1201 |
Interaction | F10,195 = 2.87, p = 0.0023 | F10,195 = 6.55, p < 0.0001 | F10,195 = 9.01, p < 0.0001 | F10,195 = 12.05, p < 0.0001 |
Factor | [HbO] | [HbR] | [HbT] | StO2 |
Time course | F5,195 = 72.10, p < 0.0001 | F5,195 = 11.59, p < 0.0001 | F5,195 = 41.29, p < 0.0001 | F5,195 = 51.30, p < 0.0001 |
Severity | F2,39 = 0.76, p = 0.4744 | F2,39 = 1.22, p = 0.3068 | F2,39 = 0.34, p = 0.7138 | F2,39 = 1.35, p = 0.2717 |
Interaction | F10,195 = 10.33, p < 0.0001 | F10,195 = 2.56, p = 0.0062 | F10,195 = 7.48, p < 0.0001 | F10,195 = 5.63, p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-W.; Chen, J.-J.; Lin, C.-C.K.; Chen, C.-A.; Wu, C.-I.; Hwang, I.-S.; Hsieh, T.-H.; Lin, B.-S.; Peng, C.-W. Hemodynamics and Tissue Optical Properties in Bimodal Infarctions Induced by Middle Cerebral Artery Occlusion. Int. J. Mol. Sci. 2022, 23, 10318. https://doi.org/10.3390/ijms231810318
Wu C-W, Chen J-J, Lin C-CK, Chen C-A, Wu C-I, Hwang I-S, Hsieh T-H, Lin B-S, Peng C-W. Hemodynamics and Tissue Optical Properties in Bimodal Infarctions Induced by Middle Cerebral Artery Occlusion. International Journal of Molecular Sciences. 2022; 23(18):10318. https://doi.org/10.3390/ijms231810318
Chicago/Turabian StyleWu, Chun-Wei, Jia-Jin Chen, Chou-Ching K. Lin, Chien-An Chen, Chun-Ie Wu, Ing-Shiou Hwang, Tsung-Hsun Hsieh, Bor-Shing Lin, and Chih-Wei Peng. 2022. "Hemodynamics and Tissue Optical Properties in Bimodal Infarctions Induced by Middle Cerebral Artery Occlusion" International Journal of Molecular Sciences 23, no. 18: 10318. https://doi.org/10.3390/ijms231810318
APA StyleWu, C. -W., Chen, J. -J., Lin, C. -C. K., Chen, C. -A., Wu, C. -I., Hwang, I. -S., Hsieh, T. -H., Lin, B. -S., & Peng, C. -W. (2022). Hemodynamics and Tissue Optical Properties in Bimodal Infarctions Induced by Middle Cerebral Artery Occlusion. International Journal of Molecular Sciences, 23(18), 10318. https://doi.org/10.3390/ijms231810318