Sex-Dependent Effects of Piromelatine Treatment on Sleep-Wake Cycle and Sleep Structure of Prenatally Stressed Rats
Abstract
:1. Introduction
2. Results
2.1. Effect of Chronic Piromelatine Treatment on 24-h Home Cage Motor Activity in Male and Female PNS-Exposed Rats
2.2. Effect of Chronic Piromelatine Treatment on Sleep/Wake Cycle and Sleep Architecture in Male and Female PNS-Exposed Rats
2.2.1. The PNS-Induced Enhanced Wake Pattern during the Light and the Dark Phase Was Corrected in Male and Female Rats via Melatonin (MT) Receptors
2.2.2. The Sub-Chronic Treatment with Piromelatine Alleviated the Pns-Induced Reduction of the Nrem Pattern during the Light and the Dark Phase in Male and Female Rats via the Melatonin (Mt) Receptors
2.2.3. The Sub-Chronic Treatment with Piromelatine Suppressed the Extended Rem Duration Caused by Pns during the Light and the Dark Phase in Male and Female Rats via the Melatonin (Mt) Receptors
2.3. Effect of Chronic Piromelatine Treatment on BDNF Expression in Male and Female PNS-Exposed Rats
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs, Treatment and Experimental Protocol
4.3. Prenatal Stress (PNS) Rat Model and Experimental Groups
4.4. The 24-h Registration of Home-Cage Motor Activity
4.5. Surgery and EEG Recording
4.6. Measurement of BDNF Expression in the Hippocampus
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of Stress throughout the Lifespan on the Brain, Behaviour and Cognition. Nat. Rev. Neurosci. 2009, 10, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, M. The Long-Term Behavioural Consequences of Prenatal Stress. Neurosci. Biobehav. Rev. 2008, 32, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, N.; Nenchovska, Z.; Atanasova, M.; Laudon, M.; Mitreva, R.; Tchekalarova, J. Chronic Piromelatine Treatment Alleviates Anxiety, Depressive Responses and Abnormal Hypothalamic–Pituitary–Adrenal Axis Activity in Prenatally Stressed Male and Female Rats. Cell. Mol. Neurobiol. 2022, 42, 2257–2272. [Google Scholar] [CrossRef] [PubMed]
- Mairesse, J.; Silletti, V.; Laloux, C.; Zuena, A.R.; Giovine, A.; Consolazione, M.; van Camp, G.; Malagodi, M.; Gaetani, S.; Cianci, S.; et al. Chronic Agomelatine Treatment Corrects the Abnormalities in the Circadian Rhythm of Motor Activity and Sleep/Wake Cycle Induced by Prenatal Restraint Stress in Adult Rats. Int. J. Neuropsychopharmacol. 2013, 16, 323–338. [Google Scholar] [CrossRef]
- Mairesse, J.; Van Camp, G.; Gatta, E.; Marrocco, J.; Reynaert, M.-L.; Consolazione, M.; Morley-Fletcher, S.; Nicoletti, F.; Maccari, S. Sleep in Prenatally Restraint Stressed Rats, a Model of Mixed Anxiety-Depressive Disorder. In Perinatal Programming of Neurodevelopment; Antonelli, M.C., Ed.; Advances in Neurobiology; Springer: New York, NY, USA, 2015; Volume 10, pp. 27–44. ISBN 978-1-4939-1371-8. [Google Scholar]
- Schmidt, M.; Braun, K.; Brandwein, C.; Rossetti, A.C.; Guara Ciurana, S.; Riva, M.A.; Deuschle, M.; Bock, J.; Gass, P.; Gröger, N. Maternal Stress during Pregnancy Induces Depressive-like Behavior Only in Female Offspring and Correlates to Their Hippocampal Avp and Oxt Receptor Expression. Behav. Brain Res. 2018, 353, 1–10. [Google Scholar] [CrossRef]
- Morley-Fletcher, S.; Mairesse, J.; Van Camp, G.; Reynaert, M.-L.; Gatta, E.; Marrocco, J.; Bouwalerh, H.; Nicoletti, F.; Maccari, S. Perinatal Stress Programs Sex Differences in the Behavioral and Molecular Chronobiological Profile of Rats Maintained Under a 12-h Light-Dark Cycle. Front. Mol. Neurosci. 2019, 12, 89. [Google Scholar] [CrossRef]
- Mueller, B.R.; Bale, T.L. Sex-Specific Programming of Offspring Emotionality after Stress Early in Pregnancy. J. Neurosci. 2008, 28, 9055–9065. [Google Scholar] [CrossRef]
- Sickmann, H.M.; Arentzen, T.S.; Dyrby, T.B.; Plath, N.; Kristensen, M.P. Prenatal Stress Produces Sex-Specific Changes in Depression-like Behavior in Rats: Implications for Increased Vulnerability in Females. J. Dev. Orig. Health Dis. 2015, 6, 462–474. [Google Scholar] [CrossRef]
- Franzen, P.L.; Buysse, D.J. Sleep Disturbances and Depression: Risk Relationships for Subsequent Depression and Therapeutic Implications. Dialogues Clin. Neurosci. 2008, 10, 473–481. [Google Scholar] [CrossRef]
- Nutt, D.; Wilson, S.; Paterson, L. Sleep Disorders as Core Symptoms of Depression. Dialogues Clin. Neurosci. 2008, 10, 329–336. [Google Scholar] [CrossRef]
- Kupfer, D.J.; Foster, F.G.; Reich, L.; Thompson, S.K.; Weiss, B. EEG Sleep Changes as Predictors in Depression. Am. J. Psychiatry 1976, 133, 622–626. [Google Scholar] [CrossRef]
- Gillin, J.C.; Sitaram, N.; Duncan, W.C. Muscarinic Supersensitivity: A Possible Model for the Sleep Disturbance of Primary Depression? Psychiatry Res. 1979, 1, 17–22. [Google Scholar] [CrossRef]
- Vogel, G.W. Improvement of Depression by REM Sleep Deprivation: New Findings and a Theory. Arch. Gen. Psychiatry 1980, 37, 247. [Google Scholar] [CrossRef]
- Smyk, M.K.; van Luijtelaar, G.; Huysmans, H.; Drinkenburg, W.H. Spike–Wave Discharges and Sleep–Wake States during Circadian Desynchronization: No Effects of Agomelatine upon Re-Entrainment. Neuroscience 2019, 408, 327–338. [Google Scholar] [CrossRef]
- Tchekalarova, J.; Kortenska, L.; Ivanova, N.; Atanasova, M.; Marinov, P. Agomelatine Treatment Corrects Impaired Sleep-Wake Cycle and Sleep Architecture and Increases MT1 Receptor as Well as BDNF Expression in the Hippocampus during the Subjective Light Phase of Rats Exposed to Chronic Constant Light. Psychopharmacology 2020, 237, 503–518. [Google Scholar] [CrossRef]
- Sharpley, A.L.; Cowen, P.J. Effect of Pharmacologic Treatments on the Sleep of Depressed Patients. Biol. Psychiatry 1995, 37, 85–98. [Google Scholar] [CrossRef]
- Ursin, R. Serotonin and Sleep. Sleep Med. Rev. 2002, 6, 55–67. [Google Scholar] [CrossRef]
- Laudon, M.; Nir, T.; Zisapel, N. Sleep Development of Piromelatine, a Novel Multimodal Medicine. Eur. Neuropsychopharmacol. 2014, 24, S145. [Google Scholar] [CrossRef]
- Peleg-Shulman, T.; Laudon, M.; Daily, D. Substituted Aryl-Indole Compounds and Their Kynurenine/Kynuramine-like Metabolites as Therapeutic Agents. Available online: https://patents.google.com/patent/US8236858B2/en?oq=patient+8%2c236%2c858 (accessed on 1 June 2022).
- Tian, S.; Laudon, M.; Han, L.; Gao, J.; Huang, F.; Yang, Y.; Deng, H. Antidepressant- and Anxiolytic Effects of the Novel Melatonin Agonist Neu-P11 in Rodent Models. Acta Pharmacol. Sin. 2010, 31, 775–783. [Google Scholar] [CrossRef]
- Fisher, S.P.; Davidson, K.; Kulla, A.; Sugden, D. Acute Sleep-Promoting Action of the Melatonin Agonist, Ramelteon, in the Rat. J. Pineal Res. 2008, 45, 125–132. [Google Scholar] [CrossRef]
- Maccari, S.; Van Reeth, O. Circadian Rhythms, Effects of Prenatal Stress in Rodents. In Encyclopedia of Stress; Elsevier: Amsterdam, The Netherlands, 2007; pp. 505–508. ISBN 978-0-12-373947-6. [Google Scholar]
- Vallée, M.; Mayo, W.; Dellu, F.; Le Moal, M.; Simon, H.; Maccari, S. Prenatal Stress Induces High Anxiety and Postnatal Handling Induces Low Anxiety in Adult Offspring: Correlation with Stress-Induced Corticosterone Secretion. J. Neurosci. 1997, 17, 2626–2636. [Google Scholar] [CrossRef] [PubMed]
- Depres-Brummer, P.; Levi, F.; Metzger, G.; Touitou, Y. Light-Induced Suppression of the Rat Circadian System. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1995, 268, R1111–R1116. [Google Scholar] [CrossRef] [PubMed]
- Wideman, C.H.; Murphy, H.M. Constant Light Induces Alterations in Melatonin Levels, Food Intake, Feed Efficiency, Visceral Adiposity, and Circadian Rhythms in Rats. Nutr. Neurosci. 2009, 12, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Dugovic, C.; Maccari, S.; Weibel, L.; Turek, F.W.; Van Reeth, O. High Corticosterone Levels in Prenatally Stressed Rats Predict Persistent Paradoxical Sleep Alterations. J. Neurosci. 1999, 19, 8656–8664. [Google Scholar] [CrossRef]
- Sickmann, H.M.; Skoven, C.; Bastlund, J.F.; Dyrby, T.B.; Plath, N.; Kohlmeier, K.A.; Kristensen, M.P. Sleep Patterning Changes in a Prenatal Stress Model of Depression. J. Dev. Orig. Health Dis. 2018, 9, 102–111. [Google Scholar] [CrossRef]
- Dalla, C.; Pitychoutis, P.M.; Kokras, N.; Papadopoulou-Daifoti, Z. Sex Differences in Response to Stress and Expression of Depressive-like Behaviours in the Rat. In Biological Basis of Sex Differences in Psychopharmacology; Neill, J.C., Kulkarni, J., Eds.; Current Topics in Behavioral Neurosciences; Springer: Berlin/Heidelberg, Germany, 2010; Volume 8, pp. 97–118. ISBN 978-3-642-20005-2. [Google Scholar]
- Holden, C. Sex and the Suffering Brain. Science 2005, 308, 1574. [Google Scholar] [CrossRef]
- Armstrong, S.M.; McNulty, O.M.; Guardiola-Lemaitre, B.; Redman, J.R. Successful Use of S20098 and Melatonin in an Animal Model of Delayed Sleep-Phase Syndrome (DSPS). Pharmacol. Biochem. Behav. 1993, 46, 45–49. [Google Scholar] [CrossRef]
- Weibel, L.; Turek, F.W.; Mocaer, E.; Van Reeth, O. A Melatonin Agonist Facilitates Circadian Resynchronization in Old Hamsters after Abrupt Shifts in the Light–Dark Cycle. Brain Res. 2000, 880, 207–211. [Google Scholar] [CrossRef]
- Van Reeth, O.; Olivares, E.; Zhang, Y.; Zee, P.C.; Mocaer, E.; Defrance, R.; Turek, F.W. Comparative Effects of a Melatonin Agonist on the Circadian System in Mice and Syrian Hamsters. Brain Res. 1997, 762, 185–194. [Google Scholar] [CrossRef]
- Kopp, C.; Vogel, E.; Rettori, M.-C.; Delagrange, P.; Misslin, R. The Effects of Melatonin on the Behavioural Disturbances Induced by Chronic Mild Stress in C3H/He Mice. Behav. Pharmacol. 1999, 10, 73–83. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Yin, D.; Chen, L.; Qu, W.-M.; Chen, C.-R.; Laudon, M.; Cheng, N.-N.; Urade, Y.; Huang, Z.-L. Piromelatine Exerts Antinociceptive Effect via Melatonin, Opioid, and 5HT1A Receptors and Hypnotic Effect via Melatonin Receptors in a Mouse Model of Neuropathic Pain. Psychopharmacology 2014, 231, 3973–3985. [Google Scholar] [CrossRef]
- Hickie, I.B.; Naismith, S.L.; Robillard, R.; Scott, E.M.; Hermens, D.F. Manipulating the Sleep-Wake Cycle and Circadian Rhythms to Improve Clinical Management of Major Depression. BMC Med. 2013, 11, 79. [Google Scholar] [CrossRef]
- Keller, J.; Gomez, R.; Williams, G.; Lembke, A.; Lazzeroni, L.; Murphy, G.M.; Schatzberg, A.F. HPA Axis in Major Depression: Cortisol, Clinical Symptomatology and Genetic Variation Predict Cognition. Mol. Psychiatry 2017, 22, 527–536. [Google Scholar] [CrossRef]
- Forsling, M.L. Diurnal Rhythms in Neurohypophysial Function. Exp. Physiol. 2000, 85, 179s–186s. [Google Scholar] [CrossRef]
- She, M.; Hu, X.; Su, Z.; Zhang, C.; Yang, S.; Ding, L.; Laudon, M.; Yin, W. Piromelatine, a Novel Melatonin Receptor Agonist, Stabilizes Metabolic Profiles and Ameliorates Insulin Resistance in Chronic Sleep Restricted Rats. Eur. J. Pharmacol. 2014, 727, 60–65. [Google Scholar] [CrossRef]
- Gobbi, G.; Comai, S. Differential Function of Melatonin MT1 and MT2 Receptors in REM and NREM Sleep. Front. Endocrinol. 2019, 10, 87. [Google Scholar] [CrossRef]
- Dubocovich, M.L.; Yun, K.; Al-Ghoul, W.M.; Benloucif, S.; Masana, M.I. Selective MT 2 Melatonin Receptor Antagonists Block Melatonin-mediated Phase Advances of Circadian Rhythms. FASEB J. 1998, 12, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Xie, H.; Laudon, M.; Zhou, S.; Tian, S.; You, Y. Piromelatine Ameliorates Memory Deficits Associated with Chronic Mild Stress-Induced Anhedonia in Rats. Psychopharmacology 2016, 233, 2229–2239. [Google Scholar] [CrossRef]
- Kushikata, T.; Fang, J.; Krueger, J.M. Brain-Derived Neurotrophic Factor Enhances Spontaneous Sleep in Rats and Rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1999, 276, R1334–R1338. [Google Scholar] [CrossRef]
- He, P.; Ouyang, X.; Zhou, S.; Yin, W.; Tang, C.; Laudon, M.; Tian, S. A Novel Melatonin Agonist Neu-P11 Facilitates Memory Performance and Improves Cognitive Impairment in a Rat Model of Alzheimer’ Disease. Horm. Behav. 2013, 64, 1–7. [Google Scholar] [CrossRef]
- Chapman, R.H.; Stern, J.M. Failure of Severe Maternal Stress or ACTH during Pregnancy to Affect Emotionality of Male Rat Offspring: Implications of Litter Effects for Prenatal Studies. Dev. Psychobiol. 1979, 12, 255–267. [Google Scholar] [CrossRef] [PubMed]
Stage | Latency | No of Events | Duration |
---|---|---|---|
Wake | |||
C-veh | NA | 25.60 ± 1.80 | 32,316 ± 520.4 |
C-Pir | 18.00 ± 2.00 | 38,250 ± 2865 | |
C-Pir-Luz | 27.00 ± 3.00 | 45,410 ± 1352 | |
PNS-veh | 45.33 ± 5.36 ** | 49,975 ± 910.4 * | |
PNS-Pir | 28.11 ± 11.0 o | 36,086 ± 281.5 | |
PNS-Pir-Luz | 21.50 ± 2.50 | 50,894 ± 715.5 | |
NREM | |||
C-veh | 76.00 ± 17.00 | 42.60 ± 3.35 | 47,203 ± 3586 |
C-Pir | 79.50 ± 8.500 | 38.50 ± 1.50 | 43,578 ± 1271 |
C-Pir-Luz | 62.00 ± 13.00 | 35.50 ± 0.50 | 38,310 ± 858.2 |
PNS-veh | 63.00 ± 15.37 | 50.50 ± 4.50 | 22,581 ± 8029 * |
PNS-Pir | 72.50 ± 4.500 | 34.50 ± 3.50 | 44,507 ± 763.8 o |
PNS-Pir-Luz | 62.50 ± 19.50 | 44.50 ± 2.50 | 30,586 ± 69.86 |
REM | |||
C-veh | 138.6 ± 23.74 | 23.00 ± 1.78 | 5985 ± 1276 |
C-Pir | 161.5 ± 50.50 | 24.00 ± 7.00 | 4572 ± 664 |
C-Pir-Luz | 103.5 ± 30.50 | 16.00 ± 4.00 | 2681 ± 134.5 |
PNS-veh | 138.7 ± 38.61 | 15.33 ± 4.09 | 9500 ± 523.5 * |
PNS-Pir | 210.00 ± 63.00 | 14.50 ± 5.50 | 1292 ± 114.7 o |
PNS-Pir-Luz | 112.5 ± 12.50 | 35.50 ± 0.50 o | 7410 ± 1478 |
Stage | Latency | No of Events | Duration |
---|---|---|---|
Wake | |||
C-veh | NA | 60.00 ± 7.29 | 32,947 ± 1613 |
C-Pir | 49.00 ± 7.01 | 35,271 ± 1154 | |
C-Pir-Luz | 38.50 ± 1.50 | 44,257 ± 446.5 | |
PNS-veh | 67.60 ± 5.40 | 46,257 ± 1556 * | |
PNS-Pir | 47.00 ± 6.50 | 26,277 ± 1743 o | |
PNS-Pir-Luz | 51.50 ± 2.50 | 47,267 ± 1207 | |
NREM | |||
C-veh | 89.00 ± 12.19 | 86.40 ± 4.94 | 42,214 ± 1618 |
C-Pir | 40.75 ± 11.40 * | 46.00 ± 9.39 ** | 39,550 ± 1089 |
C-Pir-Luz | 53.50 ± 13.50 | 61.00 ± 0.00 * | 31,906 ± 137.4 |
PNS-veh | 69.60 ± 1.86 | 66.80 ± 3.99 * | 16,145 ± 640.1 ** |
PNS-Pir | 77.33 ± 14.44 | 58.33 ± 3.75 | 54,215 ± 1147 o |
PNS-Pir-Luz | 76.00 ± 10.41 | 70.25 ± 10.14 | 23,534 ± 529.9 |
REM | |||
C-veh | 144.4 ± 15.52 | 42.00 ± 4.39 | 10,967 ± 1524 |
C-Pir | 179.5 ± 23.18 | 28.25 ± 3.09 * | 11,104 ± 1059 |
C-Pir-Luz | 113.00 ± 40.00 | 26.00 ± 0.00 | 10,238 ± 208.5 |
PNS-veh | 85.20 ± 8.817 * | 79.80 ± 11.38 * | 23,798 ± 1673 * |
PNS-Pir | 89.33 ± 12.41 | 32.00 ± 3.21 o | 6670 ± 889.8 o |
PNS-Pir-Luz | 106.00 ± 13.00 | 45.50 ± 5.26 o | 15,600 ± 997.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tchekalarova, J.; Kortenska, L.; Marinov, P.; Ivanova, N. Sex-Dependent Effects of Piromelatine Treatment on Sleep-Wake Cycle and Sleep Structure of Prenatally Stressed Rats. Int. J. Mol. Sci. 2022, 23, 10349. https://doi.org/10.3390/ijms231810349
Tchekalarova J, Kortenska L, Marinov P, Ivanova N. Sex-Dependent Effects of Piromelatine Treatment on Sleep-Wake Cycle and Sleep Structure of Prenatally Stressed Rats. International Journal of Molecular Sciences. 2022; 23(18):10349. https://doi.org/10.3390/ijms231810349
Chicago/Turabian StyleTchekalarova, Jana, Lidia Kortenska, Pencho Marinov, and Natasha Ivanova. 2022. "Sex-Dependent Effects of Piromelatine Treatment on Sleep-Wake Cycle and Sleep Structure of Prenatally Stressed Rats" International Journal of Molecular Sciences 23, no. 18: 10349. https://doi.org/10.3390/ijms231810349
APA StyleTchekalarova, J., Kortenska, L., Marinov, P., & Ivanova, N. (2022). Sex-Dependent Effects of Piromelatine Treatment on Sleep-Wake Cycle and Sleep Structure of Prenatally Stressed Rats. International Journal of Molecular Sciences, 23(18), 10349. https://doi.org/10.3390/ijms231810349