An Immunological Polysaccharide from Tremella fuciformis: Essential Role of Acetylation in Immunomodulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction, Purification, and Determination of the Molecular Weight of TFP-F1
2.2. Monosaccharide Composition and Linkage Analysis of TFP-F1 and Its Derivatives
2.3. Structural Elucidation of TFP-F1 and Its Derivatives by IR and NMR Spectra
2.4. TFP-F1 Enhances the Production of Pro-Inflammatory Cytokines through Interaction with TLR4
2.5. Immunomodulatory Activities of TFP-F1 Derivatives
3. Materials and Methods
3.1. Preparation of Polysaccharides (TFP-F1) from T. fuciformis
3.2. Molecular Weight Determination of TFP-F1
3.3. Periodate Cleavage of TFP-F1
3.4. Carboxyl Reduction of the Hexauronic Acid in the TFP-F1
3.5. Deacetylation of TFP-F1R
3.6. Monosaccharide Composition and Linkage Analysis
3.7. IR and NMR Spectroscopic Data
3.8. Cell Line Culture
3.9. Cell Viability
3.10. Cytokine Measurement
3.11. Limulus Amebocyte Lysate (LAL) Assay
3.12. Quanti-Blue Assay
3.13. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Wang, F.; Xu, Z.; Ding, Z. Bioactive mushroom polysaccharides: A review on monosaccharide composition, biosynthesis and regulation. Molecules 2017, 22, 955. [Google Scholar] [CrossRef] [PubMed]
- Wasser, S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. [Google Scholar] [PubMed]
- Wong, K.H.; Lai, C.K.M.; Cheung, P.C.K. Immunomodulatory activities of mushroom sclerotial polysaccharides. Food Hydrocoll. 2011, 25, 150–158. [Google Scholar] [CrossRef]
- El Enshasy, H.A.; Hatti-Kaul, R. Mushroom immunomodulators: Unique molecules with unlimited applications. Trends Biotechnol. 2013, 31, 668–677. [Google Scholar] [CrossRef]
- Vannucci, L.; Krizan, J.; Sima, P.; Stakheev, D.; Caja, F.; Rajsiglova, L.; Horak, V.; Saieh, M. Immunostimulatory properties and antitumor activities of glucans (Review). Int. J. Oncol. 2013, 43, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Mau, J.L.; Wu, K.T.; Wu, Y.H.; Lin, Y.P. Nonvolatile taste components of ear mushrooms. J. Agric. Food Chem. 1998, 46, 4583–4586. [Google Scholar] [CrossRef]
- Zuo, S.; Zhang, R.; Zhang, Y.; Liu, Y.; Wang, J. Studies on the physicochemical and processing properties of Tremella fuciformis powder. Int. J. Food Eng. 2018, 14, 20170288. [Google Scholar] [CrossRef]
- Ukai, S.; Hirose, K.; Kiho, T.; Hara, C. Polysaccharides in Fungi. I. Purification and characterization of acidic heteroglycans from aqueous extract of Tremella fuciformis berk. Chem. Pharm. Bull. 1974, 22, 1102–1107. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, Z.; Zhang, F.; Linhardt, R.J.; Sun, P.; Zhang, A. Structure, bioactivities and applications of the polysaccharides from Tremella fuciformis mushroom: A review. Int. J. Biol. Macromol. 2019, 121, 1005–1010. [Google Scholar] [CrossRef]
- Shi, X.; Wei, W.; Wang, N. Tremella polysaccharides inhibit cellular apoptosis and autophagy induced by Pseudomonas aeruginosa lipopolysaccharide in A549 cells through sirtuin 1 activation. Oncol. Lett. 2018, 15, 9609–9616. [Google Scholar]
- Park, H.J.; Shim, H.S.; Ahn, Y.H.; Kim, K.S.; Park, K.J.; Choi, W.K.; Ha, H.C.; Kang, J.I.; Kim, T.S.; Yeo, I.H.; et al. Tremella fuciformis enhances the neurite outgrowth of PC12 cells and restores trimethyltin-induced impairment of memory in rats via activation of CREB transcription and cholinergic systems. Behav. Brain Res. 2012, 229, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Perera, P.K.; Li, Y. Mushrooms as a functional food mediator in preventing and ameliorating diabetes. Funct. Foods Health Dis. 2011, 1, 161–171. [Google Scholar] [CrossRef]
- Cheung, P.C.K. The hypocholesterolemic effect of two edible mushrooms: Auricularia auricula (tree-ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats1. Nutr. Res. 1996, 16, 1721–1725. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, Y.; Xu, Y.; Hong, Y.; Liu, Q.; Li, X.; Wang, Z. Tremella polysaccharides attenuated sepsis through inhibiting abnormal CD4+CD25(high) regulatory T cells in mice. Cell. Immunol. 2014, 288, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Sone, Y.; Misaki, A. Structures of the cell wall polysaccharides of Tremella fucifonnis. Agric. Biol. Chem. 1978, 42, 825–834. [Google Scholar] [CrossRef]
- Kiho, T.; Hara, C.; Ukai, S. Polysaccharides in fungi. VI. The locations of the O-acetyl groups in acidic polysaccharides of Tremella fuciformis berk. Chem. Pharm. Bull. 1981, 29, 225–228. [Google Scholar] [CrossRef]
- Gao, Q.; Seljelid, R.; Chen, H.; Jiang, R. Characterisation of acidic heteroglycans from Tremella fuciformis Berk with cytokine stimulating activity. Carbohydr. Res. 1996, 288, 135–142. [Google Scholar] [CrossRef]
- Gao, Q.; Jiang, R.; Chen, H.; Jensen, E.; Seljelid, R. Characterization and cytokine stimulating activities of heteroglycans from Tremella fuciformis. Planta Med. 1996, 62, 297–302. [Google Scholar] [CrossRef]
- Gao, Q.; Killie, M.K.; Chen, H.; Jang, R.; Seljelid, R. Characterization and cytokine-stimulating activities of acidic heteroglycans from Tremella fuciformis. Planta Med. 1997, 63, 457–460. [Google Scholar] [CrossRef]
- Gao, Q.; Berntzen, G.; Jiang, R.; Killie, M.K.; Seljelid, R. Conjugates of Tremella polysaccharides with microbeads and their TNF-simulating activity. Planta Med. 1998, 64, 551–554. [Google Scholar] [CrossRef]
- Espinosa, V.; Rivera, A. First line of defense: Innate cell-mediated control of pulmonary aspergillosis. Front. Microbiol. 2016, 7, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, K.; Kaisho, T.; Akira, S. Toll-like receptors. Annu. Rev. Biochem. 2003, 21, 335–376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qi, C.; Guo, Y.; Zhou, W.; Zhang, Y. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models. Carbohydr. Polym. 2016, 149, 186–206. [Google Scholar] [CrossRef]
- Li, M.; Wen, J.; Huang, X.; Nie, Q.; Wu, X.; Ma, W.; Nie, S.; Xie, M. Interaction between polysaccharides and toll-like receptor 4: Primary structural role, immune balance perspective, and 3D interaction model hypothesis. Food Chem. 2021, 374, 131586. [Google Scholar] [CrossRef]
- Perera, N.; Yang, F.L.; Lu, Y.T.; Li, L.H.; Hua, K.F.; Wu, S.H. Antrodia cinnamomea galactomannan elicits immuno-stimulatory activity through Toll-like receptor 4. Int. J. Biol. Sci. 2018, 14, 1378–1388. [Google Scholar] [CrossRef]
- Perera, N.; Yang, F.L.; Chern, J.; Chiu, H.-W.; Hsieh, C.Y.; Li, L.H.; Zhang, Y.L.; Hua, K.F.; Wu, S.H. Carboxylic and O-acetyl moieties are essential for the immunostimulatory activity of glucuronoxylomannan: A novel TLR4 specific immunostimulator from Auricularia auricula-judae. Chem. Commun. 2018, 54, 6995–6998. [Google Scholar] [CrossRef] [PubMed]
- Perera, N.; Yang, F.L.; Chiu, H.W.; Hsieh, C.Y.; Li, L.H.; Zhang, Y.L.; Hua, K.F.; Wu, S.H. Phagocytosis enhancement, endotoxin tolerance, and signal mechanisms of immunologically active glucuronoxylomannan from Auricularia auricula-judae. Int. J. Biol. Macromol. 2020, 165, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Porcheray, F.; Viaud, S.; Rimaniol, A.C.; Léone, C.; Samah, B.; Dereuddre-Bosquet, N.; Dormont, D.; Gras, G. Macrophage activation switching: An asset for the resolution of inflammation. Clin. Exp. Immunol. 2005, 142, 481–489. [Google Scholar] [CrossRef]
- Shimoyama, A.; Di Lorenzo, F.; Yamaura, H.; Mizote, K.; Palmigiano, A.; Pither, M.D.; Speciale, I.; Uto, T.; Masui, S.; Sturiale, L.; et al. Lipopolysaccharide from gut-associated lymphoid-tissue-resident Alcaligenes faecalis: Complete structure determination and chemical synthesis of its lipid A. Angew. Chem. Int. Ed. 2021, 60, 10023–10031. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhao, M.; Qi, H. Free-radical degradation by Fe2+/Vc/H2O2 and antioxidant activity of polysaccharide from Tremella fuciformis. Carbohydr. Polym. 2014, 112, 578–582. [Google Scholar] [CrossRef]
- Ukai, S.; Hirose, K.; Kiho, T. Isolations and characterizations of polysaccharides from Tremella fuciformis Berk. Chem. Pharm. Bull. 1972, 20, 1347–1348. [Google Scholar] [CrossRef] [Green Version]
- Hakomori, S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem. 1964, 55, 205–208. [Google Scholar] [PubMed]
- Ciucanu, I.; Kerek, F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 1984, 131, 209–217. [Google Scholar] [CrossRef]
- Xu, X.; Chen, A.; Ge, X.; Li, S.; Zhang, T.; Xu, H. Chain conformation and physicochemical properties of polysaccharide (glucuronoxylomannan) from fruit bodies of Tremella fuciformis. Carbohydr. Polym. 2020, 245, 116354. [Google Scholar] [CrossRef]
- Kačuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Agarwal, P.K. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 1992, 31, 3307–3330. [Google Scholar] [CrossRef]
- Michalak, L.; La Rosa, S.L.; Leivers, S.; Lindstad, L.J.; Røhr, Å.K.; Lillelund Aachmann, F.; Westereng, B. A pair of esterases from a commensal gut bacterium remove acetylations from all positions on complex β-mannans. Proc. Natl. Acad. Sci. USA. 2020, 117, 7122–7130. [Google Scholar] [CrossRef]
- Meng, J.; Lien, E.; Golenbock, D.T. MD-2-Mediated Ionic Interactions between Lipid A and TLR4 Are Essential for Receptor Activation. J. Biol. Chem. 2010, 285, 8695–8702. [Google Scholar] [CrossRef]
- Yamamoto, M.; Sato, S.; Hemmi, H.; Sanjo, H.; Uematsu, S.; Kaisho, T.; Hoshino, K.; Takeuchi, O.; Kobayashi, M.; Fujita, T.; et al. Essential Role for TIRAP in Activation of the Signalling Cascade Shared by TLR2 and TLR4. Nature 2002, 420, 324–329. [Google Scholar] [CrossRef]
- Kawai, T.; Adachi, O.; Ogawa, T.; Takeda, K.; Akira, S. Unresponsiveness of MyD88-Deficient Mice to Endotoxin. Immunity 1999, 11, 115–122. [Google Scholar] [CrossRef]
- Lee, I.M.; Huang, T.Y.; Yang, F.L.; Johansson, V.; Hsu, C.R.; Hsieh, P.F.; Chen, S.T.; Yang, Y.J.; Konradsson, P.; Sheu, J.H.; et al. A hexasaccharide from capsular polysaccharide of carbapenem-resistant Klebsiella pneumoniae KN2 is a ligand of Toll-like receptor 4. Carbohydr. Polym. 2022, 278, 118944. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fischle, W.; Verdin, E.; Greene, W.C. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 2001, 293, 1653–1657. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yu, Y.; Eugene Chin, Y.; Xia, Q. The role of acetylation in TLR4-mediated innate immune responses. Immunol. Cell Biol. 2013, 91, 611–614. [Google Scholar] [CrossRef]
- Seong, S.Y.; Matzinger, P. Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 2004, 4, 469–478. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Li, C.; You, L.; Fu, X.; Huang, Q.; Yu, S.; Liu, R.H. Structural characterization and immunomodulatory activity of a new heteropolysaccharide from Prunella vulgaris. Food Funct. 2015, 6, 1557–1567. [Google Scholar] [CrossRef]
- Kim, J.B.; Carpita, N.C. Changes in esterification of the uronic acid groups of cell wall polysaccharides during eongation of maize coleoptiles. Plant Physiol. 1992, 98, 646–653. [Google Scholar] [CrossRef]
- Chen, B. Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro. Carbohydr. Polym. 2010, 81, 420–424. [Google Scholar] [CrossRef]
- Ramberg, J.E.; Nelson, E.D.; Sinnott, R.A. Immunomodulatory dietary polysaccharides: A systematic review of the literature. Nut. J. 2010, 9, 54. [Google Scholar] [CrossRef]
- Shen, T.; Duan, C.; Chen, B.; Li, M.; Ruan, Y.; Xu, D.; Shi, D.; Yu, D.; Li, J.; Wang, C. Tremella Fuciformis Polysaccharide Suppresses Hydrogen Peroxide-Triggered Injury of Human Skin Fibroblasts via Upregulation of SIRT1. Mol. Med. Rep. 2017, 16, 1340–1346. [Google Scholar] [CrossRef]
- Liu, H.; He, L. Comparison of the moisture retention capacity of Tremella polysaccharides and hyaluronic acid. J. Anhui Agric. Sci. 2012, 40, 13093–13094. [Google Scholar]
- Feldman, M.F.; Bridwell, A.E.M.; Scott, N.E.; Vinogradov, E.; McKee, S.R.; Chavez, S.M.; Twentyman, J.; Stallings, C.L.; Rosen, D.A.; Harding, C.M. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae. Proc. Natl. Acad. Sci. USA 2019, 116, 18655–18663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Residues and Linkage | H-1/C-1 | H-2/C-2 | H-3/C-3 | H-4/C-4 | H-5/C-5 | H-6/C-6 |
---|---|---|---|---|---|---|
A. →2)-β-D-Xylp-(1→ | 4.37/101.7 | 3.50/74.1 | 3.59/77.7 | 3.55/71.8 | 3.94; 3.21/65.1 | -/- |
B.-β-D-GlcAp-(1→ | 4.44/102.2 | 3.33/72.6 | 3.41/75.3 | 3.53/71.8 | 3.65/77.0 | -/175.7 |
C. →2, 3)-α-D-Manp-(1→ | 5.06/101.3 | 4.15/78.1 | 3.94/76.1 | 3.70/66.3 | 3.75/73.5 | 3.86; 3.46/61.6 |
D. →3)-α-D-Manp-(1→ | 5.10/102.3 | 4.17/69.9 | 3.94/79.1 | 3.71/66.3 | 3.78/73.6 | 3.82; 3.70/61.4 |
E. →2, 3)-α-D-Manp-(1→ | 5.13/100.7 | 4.23/77.9 | 4.03/77.2 | 3.77/66.4 | 3.78/73.6 | 3.78; 3.78/60.6 |
F. -α-L-Fucp-(1→ | 5.47/97.4 | 3.72/68.2 | 3.78/69.4 | 3.71/72.2 | 4.29/66.6 | 1.15/15.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-Y.; Yang, F.-L.; Chiu, H.-W.; Chao, H.-C.; Yang, Y.-J.; Sheu, J.-H.; Hua, K.-F.; Wu, S.-H. An Immunological Polysaccharide from Tremella fuciformis: Essential Role of Acetylation in Immunomodulation. Int. J. Mol. Sci. 2022, 23, 10392. https://doi.org/10.3390/ijms231810392
Huang T-Y, Yang F-L, Chiu H-W, Chao H-C, Yang Y-J, Sheu J-H, Hua K-F, Wu S-H. An Immunological Polysaccharide from Tremella fuciformis: Essential Role of Acetylation in Immunomodulation. International Journal of Molecular Sciences. 2022; 23(18):10392. https://doi.org/10.3390/ijms231810392
Chicago/Turabian StyleHuang, Tzu-Yin, Feng-Ling Yang, Hsiao-Wen Chiu, Hong-Chu Chao, Yen-Ju Yang, Jyh-Horng Sheu, Kuo-Feng Hua, and Shih-Hsiung Wu. 2022. "An Immunological Polysaccharide from Tremella fuciformis: Essential Role of Acetylation in Immunomodulation" International Journal of Molecular Sciences 23, no. 18: 10392. https://doi.org/10.3390/ijms231810392
APA StyleHuang, T. -Y., Yang, F. -L., Chiu, H. -W., Chao, H. -C., Yang, Y. -J., Sheu, J. -H., Hua, K. -F., & Wu, S. -H. (2022). An Immunological Polysaccharide from Tremella fuciformis: Essential Role of Acetylation in Immunomodulation. International Journal of Molecular Sciences, 23(18), 10392. https://doi.org/10.3390/ijms231810392