Identification of Loci Governing Agronomic Traits and Mutation Hotspots via a GBS-Based Genome-Wide Association Study in a Soybean Mutant Diversity Pool
Abstract
:1. Introduction
2. Results
2.1. Characterization and Distribution of SNPs in the 192-MDP Soybean Genome
2.2. Genetic Relationships and Population Structure
2.3. GWAS for Agronomic and Phytochemical Traits
2.4. Candidate Genes for Four Traits (DF, FC, NN, and SCC)
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Phenotyping
4.2. DNA Extraction and GBS Analysis
4.3. Genetic Diversity and Population Structure Analyses
4.4. GWAS Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bachlava, E.; Burton, J.W.; Brownie, C.; Wang, S.; Auclair, J.; Cardinal, A.J. Heritability of Oleic Acid Content in Soybean Seed Oil and Its Genetic Correlation with Fatty Acid and Agronomic Traits. Crop Sci. 2008, 48, 1764–1772. [Google Scholar] [CrossRef]
- Qiu, L.-J.; Xing, L.-L.; Guo, Y.; Wang, J.; Jackson, S.A.; Chang, R.-Z. A platform for soybean molecular breeding: The utilization of core collections for food security. Plant Mol. Biol. 2013, 83, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Jeong, D. Korean traditional fermented soybean products: Jang. J. Ethn. Foods 2015, 2, 2–7. [Google Scholar] [CrossRef]
- Ray, C.; Shipe, E.; Bridges, W. Planting Date Influence on Soybean Agronomic Traits and Seed Composition in Modified Fatty Acid Breeding Lines. Crop Sci. 2008, 48, 181–188. [Google Scholar] [CrossRef]
- Bado, S.; Forster, B.P.; Nielen, S.; Ali, A.M.; Lagoda, P.J.; Till, B.J.; Laimer, M. Plant mutation breeding: Current progress and future assessment. Plant Breed. Rev. 2015, 39, 23–88. [Google Scholar]
- Jiang, S.-Y.; Ramachandran, S. Natural and artificial mutants as valuable resources for functional genomics and molecular breeding. Int. J. Biol. Sci. 2010, 6, 228–251. [Google Scholar] [CrossRef]
- Ahloowalia, B.; Maluszynski, M. Induced mutations–A new paradigm in plant breeding. Euphytica 2001, 118, 167–173. [Google Scholar] [CrossRef]
- Song, H.; Kang, S. Application of natural variation and induced mutation in breeding and functional genomics: Papers for International Symposium; Current Status and Future of Plant Mutation Breeding. Korean J. Breed. Sci 2003, 35, 24–34. [Google Scholar]
- Brash, D.E.; Haseltine, W.A. UV-induced mutation hotspots occur at DNA damage hotspots. Nature 1982, 298, 189–192. [Google Scholar] [CrossRef]
- Tan, Y.; Sun, X.; Fang, B.; Sheng, X.; Li, Z.; Sun, Z.; Yu, D.; Liu, H.; Liu, L.; Duan, M. The Cds.71 on TMS5 May Act as a Mutation Hotspot to Originate a TGMS Trait in Indica Rice Cultivars. Front. Plant Sci. 2020, 11, 1189. [Google Scholar] [CrossRef]
- Xiong, H.; Zhou, C.; Guo, H.; Xie, Y.; Zhao, L.; Gu, J.; Zhao, S.; Ding, Y.; Liu, L. Transcriptome sequencing reveals hotspot mutation regions and dwarfing mechanisms in wheat mutants induced by γ-ray irradiation and EMS. J. Radiat. Res. 2020, 61, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Bansal, K.C.; Lenka, S.; Mondal, T.K. Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant Breed. 2014, 133, 1–11. [Google Scholar] [CrossRef]
- Shirasawa, K.; Monna, L.; Kishitani, S.; Nishio, T. Single Nucleotide Polymorphisms in Randomly Selected Genes among japonica Rice (Oryza sativa L.) Varieties Identified by PCR-RF-SSCP. DNA Res. 2004, 11, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Suwarno, W.B.; Pixley, K.V.; Palacios-Rojas, N.; Kaeppler, S.M.; Babu, R. Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor. Appl. Genet. 2015, 128, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, W.; Qin, N.; Ding, P.; Zhang, H.; Yang, C.; Mu, Y.; Tang, H.; Liu, Y.; Li, W. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor. Appl. Genet. 2018, 131, 2439–2450. [Google Scholar] [CrossRef]
- Sung, M.; Van, K.; Lee, S.; Nelson, R.; LaMantia, J.; Taliercio, E.; McHale, L.K.; Mian, M.A.R. Identification of SNP markers associated with soybean fatty acids contents by genome-wide association analyses. Mol. Breed. 2021, 41, 27. [Google Scholar] [CrossRef]
- Sim, S.-C.; Van Deynze, A.; Stoffel, K.; Douches, D.S.; Zarka, D.; Ganal, M.W.; Chetelat, R.T.; Hutton, S.F.; Scott, J.W.; Gardner, R.G.; et al. High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding. PLoS ONE 2012, 7, e45520. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef]
- Taranto, F.; D’Agostino, N.; Tripodi, P. An Overview of Genotyping by Sequencing in Crop Species and Its Application in Pepper. Dyn. Math. Models Biol. 2016, 101–116. [Google Scholar] [CrossRef]
- Sonah, H.; Bastien, M.; Iquira, E.; Tardivel, A.; Légaré, G.; Boyle, B.; Normandeau, É.; Laroche, J.; Larose, S.; Jean, M. An Improved Genotyping by Sequencing (GBS) Approach Offering Increased Versatility and Efficiency of SNP Discovery and Genotyping. PLoS ONE 2013, 8, e54603. [Google Scholar] [CrossRef]
- Poland, J.A.; Brown, P.J.; Sorrells, M.E.; Jannink, J.-L. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. PLoS ONE 2012, 7, e32253. [Google Scholar] [CrossRef] [PubMed]
- Poland, J.; Endelman, J.; Dawson, J.; Rutkoski, J.; Wu, S.; Manes, Y.; Dreisigacker, S.; Crossa, J.; Sánchez-Villeda, H.; Sorrells, M. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 2012, 5, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Romay, M.C.; Millard, M.J.; Glaubitz, J.C.; Peiffer, J.A.; Swarts, K.L.; Casstevens, T.M.; Elshire, R.J.; Acharya, C.B.; Mitchell, S.E.; Flint-Garcia, S.A. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 2013, 14, R55. [Google Scholar] [CrossRef] [PubMed]
- Iquira, E.; Humira, S.; François, B. Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biol. 2015, 15, 5. [Google Scholar] [CrossRef]
- Kim, W.J.; Ryu, J.; Im, J.; Kim, S.H.; Kang, S.-Y.; Lee, J.-H.; Jo, S.-H.; Ha, B.-K. Molecular characterization of proton beam-induced mutations in soybean using genotyping-by-sequencing. Mol. Genet. Genom. 2018, 293, 1169–1180. [Google Scholar] [CrossRef]
- Lemay, M.-A.; Torkamaneh, D.; Rigaill, G.; Boyle, B.; Stec, A.O.; Stupar, R.M.; Belzile, F. Screening populations for copy number variation using genotyping-by-sequencing: A proof of concept using soybean fast neutron mutants. BMC Genom. 2019, 20, 634. [Google Scholar] [CrossRef]
- Bastien, M.; Sonah, H.; Belzile, F. Genome wide association mapping of Sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. Plant Genome 2014, 7, 1–13. [Google Scholar] [CrossRef]
- Hwang, E.-Y.; Song, Q.; Jia, G.; Specht, J.E.; Hyten, D.L.; Costa, J.; Cregan, P.B. A genome-wide association study of seed protein and oil content in soybean. BMC Genom. 2014, 15, 1. [Google Scholar] [CrossRef]
- Copley, T.R.; Duceppe, M.-O.; O’Donoughue, L.S. Identification of novel loci associated with maturity and yield traits in early maturity soybean plant introduction lines. BMC Genom. 2018, 19, 167. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, D.; Zhang, G.; Kan, G.; Hong, D.; Yu, D. Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.). Breed. Sci. 2014, 63, 441–449. [Google Scholar] [CrossRef]
- Zhang, J.; Song, Q.; Cregan, P.B.; Nelson, R.L.; Wang, X.; Wu, J.; Jiang, G.-L. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genom. 2015, 16, 217. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Q.; Hou, J.; Zhou, B.; Wen, Z.; Zhang, S.; Gai, J.; Xing, H. Identification of QTL s for growth period traits in soybean using association analysis and linkage mapping. Plant Breed. 2013, 132, 317–323. [Google Scholar] [CrossRef]
- Sonah, H.; O’Donoughue, L.; Cober, E.; Rajcan, I.; Belzile, F. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol. J. 2014, 13, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Jiang, Y.; Wang, Z.; Gou, Z.; Lyu, J.; Li, W.; Yu, Y.; Shu, L.; Zhao, Y.; Ma, Y.; et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 2015, 33, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Ma, Y.; Wu, S.; Liu, Z.; Wang, Z.; Yang, R.; Hu, G.; Zhou, Z.; Yu, H.; Zhang, M.; et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol. 2017, 18, 161. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef]
- Verslues, P.E.; Lasky, J.R.; Juenger, T.E.; Liu, T.-W.; Kumar, M.N. Genome-Wide Association Mapping Combined with Reverse Genetics Identifies New Effectors of Low Water Potential-Induced Proline Accumulation in Arabidopsis. Plant Physiol. 2013, 164, 144–159. [Google Scholar] [CrossRef]
- Li, H.; Peng, Z.; Yang, X.; Wang, W.; Fu, J.; Wang, J.; Han, Y.; Chai, Y.; Guo, T.; Yang, N.; et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 2013, 45, 43–50. [Google Scholar] [CrossRef]
- Chen, W.; Gao, Y.; Xie, W.; Gong, L.; Lu, K.; Wang, W.; Li, Y.; Liu, X.; Zhang, H.; Dong, H.; et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat. Genet. 2014, 46, 714–721. [Google Scholar] [CrossRef]
- Kim, D.-G.; Lyu, J.I.; Lee, M.-K.; Kim, J.-M.; Hung, N.N.; Hong, M.J.; Kim, J.-B.; Bae, C.-H.; Kwon, S.-J. Construction of Soybean Mutant Diversity Pool (MDP) Lines and an Analysis of Their Genetic Relationships and Associations Using TRAP Markers. Agronomy 2020, 10, 253. [Google Scholar] [CrossRef]
- Kim, D.-G.; Lyu, J.-I.; Lim, Y.-J.; Kim, J.-M.; Hung, N.-N.; Eom, S.-H.; Kim, S.-H.; Kim, J.-B.; Bae, C.-H.; Kwon, S.-J. Differential Gene Expression Associated with Altered Isoflavone and Fatty Acid Contents in Soybean Mutant Diversity Pool. Plants 2021, 10, 1037. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Jung, J.-W.; Moon, J.-K.; Woo, S.-H.; Cho, Y.-G.; Jong, S.-K.; Kim, H.-S. Genetic diversity and relationship by SSR markers of Korean soybean cultivars. Korean J. Crop Sci. 2006, 51, 248–258. [Google Scholar]
- Kim, S.; Hong, E.; Kim, Y.; Lee, S.; Park, K.; Kim, H.; Ryu, Y.; Park, R.; Kim, Y.; Seong, Y. A new high protein and good seed quality soybean variety “Danbaegkong”. RDA J. Agric. Sci. 1996, 38, 228–232. [Google Scholar]
- Park, K.; Moon, J.; Yun, H.; Lee, Y.; Kim, S.; Ryu, Y.; Kim, Y.; Ku, J.; Roh, J.; Lee, E. A new soybean cultivar for fermented soyfood and tofu with high yield, “Daepung”. Korean J. Breed. 2005, 37, 111–112. [Google Scholar]
- Mao, T.; Li, J.; Wen, Z.; Wu, T.; Wu, C.; Sun, S.; Jiang, B.; Hou, W.; Li, W.; Song, Q. Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genom. 2017, 18, 415. [Google Scholar] [CrossRef]
- Contreras-Soto, R.I.; Mora, F.; De Oliveira, M.A.R.; Higashi, W.; Scapim, C.A.; Schuster, I. A Genome-Wide Association Study for Agronomic Traits in Soybean Using SNP Markers and SNP-Based Haplotype Analysis. PLoS ONE 2017, 12, e0171105. [Google Scholar] [CrossRef]
- Meng, S.; He, J.; Zhao, T.; Xing, G.; Li, Y.; Yang, S.; Lu, J.; Wang, Y.; Gai, J. Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theor. Appl. Genet. 2016, 129, 1557–1576. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Lu, Y.; Bhusal, S.J.; Song, Q.; Cregan, P.B.; Yen, Y.; Brown, M.; Jiang, G.-L. Genome-wide Scan for Seed Composition Provides Insights into Soybean Quality Improvement and the Impacts of Domestication and Breeding. Mol. Plant 2018, 11, 460–472. [Google Scholar] [CrossRef]
- Leamy, L.J.; Zhang, H.; Li, C.; Chen, C.Y.; Song, B.-H. A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genom. 2017, 18, 18. [Google Scholar] [CrossRef]
- Priolli, R.H.G.; Campos, J.; Stabellini, N.; Pinheiro, J.B.; Vello, N.A. Association mapping of oil content and fatty acid components in soybean. Euphytica 2014, 203, 83–96. [Google Scholar] [CrossRef]
- Lu, Z.; Cui, J.; Wang, L.; Teng, N.; Zhang, S.; Lam, H.-M.; Zhu, Y.; Xiao, S.; Ke, W.; Lin, J. Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures. Genome Biol. 2021, 22, 160. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.W.; Charlesworth, B.; Charlesworth, D.; Crow, J.F. Rates of Spontaneous Mutation. Genetics 1998, 148, 1667–1686. [Google Scholar] [CrossRef] [PubMed]
- Coulondre, C.; Miller, J.H.; Farabaugh, P.; Gilbert, W. Molecular basis of base substitution hotspots in Escherichia coli. Nature 1978, 274, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Drakakaki, G.; Zabotina, O.; Delgado, I.; Robert, S.; Keegstra, K.; Raikhel, N. Arabidopsis Reversibly Glycosylated Polypeptides 1 and 2 Are Essential for Pollen Development. Plant Physiol. 2006, 142, 1480–1492. [Google Scholar] [CrossRef] [PubMed]
- Zavaliev, R.; Sagi, G.; Gera, A.; Epel, B.L. The constitutive expression of Arabidopsis plasmodesmal-associated class 1 reversibly glycosylated polypeptide impairs plant development and virus spread. J. Exp. Bot. 2010, 61, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Ambawat, S.; Sharma, P.; Yadav, N.R.; Yadav, R.C. MYB transcription factor genes as regulators for plant responses: An overview. Physiol. Mol. Biol. Plants 2013, 19, 307–321. [Google Scholar] [CrossRef]
- Wei, Z.-Z.; Hu, K.-D.; Zhao, D.-L.; Tang, J.; Huang, Z.-Q.; Jin, P.; Li, Y.-H.; Han, Z.; Hu, L.-Y.; Yao, G.-F. MYB44 competitively inhibits the formation of the MYB340-bHLH2-NAC56 complex to regulate anthocyanin biosynthesis in purple-fleshed sweet potato. BMC Plant Biol. 2020, 20, 258. [Google Scholar] [CrossRef]
- Song, L.; Wang, X.; Han, W.; Qu, Y.; Wang, Z.; Zhai, R.; Yang, C.; Ma, F.; Xu, L. PbMYB120 Negatively Regulates Anthocyanin Accumulation in Pear. Int. J. Mol. Sci. 2020, 21, 1528. [Google Scholar] [CrossRef]
- Kranz, H.D.; Denekamp, M.; Greco, R.; Jin, H.; Leyva, A.; Meissner, R.C.; Petroni, K.; Urzainqui, A.; Bevan, M.; Martin, C. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J. 1998, 16, 263–276. [Google Scholar] [CrossRef]
- Mandaokar, A.; Thines, B.; Shin, B.; Lange, B.M.; Choi, G.; Koo, Y.J.; Yoo, Y.J.; Choi, Y.D.; Choi, G.; Browse, J. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 2006, 46, 984–1008. [Google Scholar] [CrossRef]
- Huang, X.; Han, B. Natural Variations and Genome-Wide Association Studies in Crop Plants. Annu. Rev. Plant Biol. 2014, 65, 531–551. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-H.; Reif, J.C.; Ma, Y.-S.; Hong, H.-L.; Liu, Z.-X.; Chang, R.-Z.; Qiu, L.-J. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean. BMC Genom. 2015, 16, 841. [Google Scholar] [CrossRef] [PubMed]
- Ulukapi, K.; Nasircilar, A.G. Induced mutation: Creating genetic diversity in plants. In Genetic Diversity in Plant Species-Characterization and Conservation; IntechOpen: London, UK, 2018. [Google Scholar]
- Vuong, T.; Sonah, H.; Meinhardt, C.; Deshmukh, R.; Kadam, S.; Nelson, R.; Shannon, J.; Nguyen, H. Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genom. 2015, 16, 593. [Google Scholar] [CrossRef] [PubMed]
- Herten, K.; Hestand, M.S.; Vermeesch, J.R.; Van Houdt, J.K. GBSX: A toolkit for experimental design and demultiplexing genotyping by sequencing experiments. BMC Bioinform. 2015, 16, 73. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows—Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.; Stephens, M.; Pritchard, J.K. fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics 2014, 197, 573–589. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, B.A.; Hoffman, G.E.; Mezey, J.G. A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis. BMC Bioinform. 2010, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ersoz, E.; Lai, C.-Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A.; Bradbury, P.J.; Yu, J.; Arnett, D.K.; Ordovas, J.M. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010, 42, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef] [Green Version]
Chromosome | Length (bp) | No. of SNPs | Kbs/SNP | SNPs/Mb |
---|---|---|---|---|
Gm01 | 56,831,624 | 1738 | 32.7 | 30.6 |
Gm02 | 48,577,505 | 1719 | 28.3 | 35.4 |
Gm03 | 45,779,781 | 1619 | 28.3 | 35.4 |
Gm04 | 52,389,146 | 1884 | 27.8 | 36.0 |
Gm05 | 42,234,498 | 1532 | 27.6 | 36.3 |
Gm06 | 51,416,486 | 2155 | 23.9 | 41.9 |
Gm07 | 44,630,646 | 1627 | 27.4 | 36.5 |
Gm08 | 47,837,940 | 2092 | 22.9 | 43.7 |
Gm09 | 50,189,764 | 1852 | 27.1 | 36.9 |
Gm10 | 51,566,898 | 1935 | 26.6 | 37.5 |
Gm11 | 34,766,867 | 1323 | 26.3 | 38.1 |
Gm12 | 40,091,314 | 1252 | 32.0 | 31.2 |
Gm13 | 45,874,162 | 2277 | 20.1 | 49.6 |
Gm14 | 49,042,192 | 1949 | 25.2 | 39.7 |
Gm15 | 51,756,343 | 2025 | 25.6 | 39.1 |
Gm16 | 37,887,014 | 1801 | 21.0 | 47.5 |
Gm17 | 41,641,366 | 1915 | 21.7 | 46.0 |
Gm18 | 58,018,742 | 2877 | 20.2 | 49.6 |
Gm19 | 50,746,916 | 1799 | 28.2 | 35.5 |
Gm20 | 47,904,181 | 1878 | 25.5 | 39.2 |
Scaffolds | 29,311,887 | 424 | 69.1 | 14.5 |
Total | 978,495,272 | 37,673 | 26.0 | 38.5 |
Traits | Total SNPs | Chr. No. | Significant Region | p-Value | Chr. No. | Regions | p-Value | References | ||
---|---|---|---|---|---|---|---|---|---|---|
Start | End | Start | End | |||||||
DF | 20 | 6 | 18,004,005 | 24,274,106 | 2.20 × 10−10 | 6 | 6,077,874 | 16,773,415 | 1.50 × 10−7 | [28] |
1 | 1 | 3,427,092 | 8.22 × 10−5 | 6 | 12,336,492 | 12,336,709 | 0.00589 | [27] | ||
2 | 2 | 13,487,773 | 40,934,117 | 8.55 × 10−6 | 6 | 2,104,472 | 2,108,449 | [42] | ||
1 | 7 | 4,104,188 | 0.00011 | 6 | 19,178,035 | 20,299,454 | 7.08 × 10−8 | [32] | ||
1 | 11 | 9,299,855 | 3.58 × 10−6 | 6 | 23,848,501 | 46,820,673 | [29] | |||
1 | 12 | 9,786,525 | 7.24 × 10−5 | 6 | 19,919,551 | 20,263,848 | [26] | |||
2 | 13 | 41,504,580 | 42,826,870 | 4.30 × 10−5 | ||||||
1 | 15 | 48,448,735 | 2.50 × 10−5 | |||||||
3 | 19 | 18,391,540 | 18,391,588 | 5.62 × 10−6 | ||||||
1 | 20 | 8,663,045 | 1.52 × 10−5 | |||||||
FC | 14 | 13 | 17,064,149 | 18,508,058 | 1.02 × 10−10 | 13 | 16,609,051 | 19,868,544 | 6.76 × 10−166 | [32] |
1 | 12 | 1,967,332 | 2.51 × 10−5 | 13 | 18,224,539 | 4.89 × 10−29 | [31] | |||
1 | 5 | 2,807,049 | 1.64 × 10−5 | 13 | 2,514,518 | 4,818,964 | 3.39 × 10−17 | [30] | ||
NN | 5 | 19 | 45,317,378 | 45,367,407 | 2.37 × 10−7 | 19 | 43,990,450 | 47,335,622 | 5.89 × 10−36 | [32] |
1 | 9 | 33,307,361 | 1.40 × 10−5 | |||||||
SCC | 6 | 8 | 9,589,829 | 21,840,533 | 1.16 × 10−7 | 8 | 7,800,853 | 9,079,037 | 2.63 × 10−35 | [32] |
3 | 20 | 444,347 | 33,593,731 | 5.92 × 10−6 | 8 | 8,241,052 | 20,702,756 | 1.20 × 10−17 | [31] | |
2 | 1 | 51,636,235 | 53,677,289 | 2.43 × 10−6 |
Traits | Candidate Gene | Lead SNP | Allele | Location Site | p-Value | R2 | Symbols |
---|---|---|---|---|---|---|---|
DF | Glyma.02g130700 | Chr02_13487773 | A/C | Intron | 8.55 × 10−6 | 0.439 | ATPPC4, PPC4 |
Glyma.02g221900 | Chr02_40934117 | A/G | Nonsynonymous | 4.64 × 10−5 | 0.501 | ||
Glyma.06g198100 | Chr06_18004005 | C/T | Synonymous | 5.24 × 10−5 | 0.512 | ||
Glyma.06g204600 | Chr06_19310425 | T/C | Nonsynonymous | 0.0001 | 0.507 | ||
Chr06_19315351 | A/T | Nonsynonymous | 3.87 × 10−6 | 0.526 | |||
Glyma.06g205600 | Chr06_19461588 | T/C | Nonsynonymous | 2.20 × 10−10 | 0.531 | RGP3, RGP | |
Glyma.06g205900 | Chr06_19677827 | T/A | Nonsynonymous | 1.21 × 10−7 | 0.499 | GAUT11 | |
Glyma.06g208300 | Chr06_20321899 | C/T | Synonymous | 6.57 × 10−5 | 0.529 | TET11 | |
Glyma.06g211600 | Chr06_21142419 | C/T | Synonymous | 2.65 × 10−7 | 0.520 | ||
Glyma.07g048500 | Chr07_4104188 | C/T | Synonymous | 0.0001 | 0.485 | LHY, LHY1 | |
Glyma.11g121700 | Chr11_9299855 | C/T | Downstream | 3.58 × 10−6 | 0.489 | GLB1, AHB1, ARATH GLB1, NSHB1, ATGLB1, HB1 | |
Glyma.13g320800 | Chr13_41504580 | A/C | UTR5 | 4.30 × 10−5 | 0.423 | ATMGT10, GMN10, MGT10, MRS2-11 | |
Glyma.15g255200 | Chr15_48448735 | G/A | Synonymous | 2.50 × 10−5 | 0.465 | ||
Glyma.19g066800 | Chr19_18391540 | T/G | Intron | 5.62 × 10−6 | 0.496 | ATX4, SDG16 | |
Chr19_18391584 | A/G | Intron | 5.62 × 10−6 | 0.496 | ATX4, SDG16 | ||
Chr19_18391588 | T/C | Intron | 5.62 × 10−6 | 0.496 | ATX4, SDG16 | ||
Glyma.20g046800 | Chr20_8663045 | G/A | Downstream | 1.52 × 10−5 | 0.441 | ATCDPMEK, PDE277, ISPE, CDPMEK | |
FC | Glyma.12g027300 | Chr12_1967332 | C/A | Downstream | 2.51 × 10−5 | 0.730 | MOD1, ENR1 |
Glyma.13g070400 | Chr13_17064149 | G/A | Intron | 7.48 × 10−10 | 0.769 | ||
Glyma.13g070800 | Chr13_17112561 | C/T | Downstream | 1.42 × 10−5 | 0.732 | ||
Glyma.13g070900 | Chr13_17120843 | C/T | Nonsynonymous | 5.00 × 10−9 | 0.761 | ALPHA-DOX1, DOX1, DIOX1, PADOX-1 | |
Glyma.13g071400 | Chr13_17168452 | A/C | Nonsynonymous | 1.59 × 10−9 | 0.766 | ATHSP22.0 | |
Glyma.13g072000 | Chr13_17304314 | T/C | Synonymous | 6.75 × 10−10 | 0.769 | SHT | |
Glyma.13g072600 | Chr13_17394477 | G/C | Downstream | 3.41 × 10−5 | 0.729 | ||
Glyma.13g073400 | Chr13_17554641 | C/T | Nonsynonymous | 1.02 × 10−10 | 0.776 | MYB33, ATMYB33 | |
Glyma.13g073500 | Chr13_17622554 | A/T | Nonsynonymous | 5.22 × 10−9 | 0.761 | ||
Glyma.13g076300 | Chr13_18038564 | G/C | Synonymous | 5.02 × 10−6 | 0.736 | ||
Glyma.13g076800 | Chr13_18150461 | A/T | Intron | 1.57 × 10−8 | 0.757 | EIN3, AtEIN3 | |
Glyma.13g078500 | Chr13_18457847 | T/C | Synonymous | 2.54 × 10−8 | 0.755 | ||
Glyma.13g078800 | Chr13_18508058 | C/T | Intron | 3.14 × 10−7 | 0.746 | ||
NN | Glyma.09g133900 | Chr09_33307361 | G/A | Nonsynonymous | 1.40 × 10−5 | 0.423 | |
Glyma.19g196000 | Chr19_45317378 | G/C | Nonsynonymous | 2.84 × 10−6 | 0.434 | SPY | |
Chr19_45322411 | C/T | Intron | 4.80 × 10−6 | 0.430 | SPY | ||
Chr19_45326559 | A/C | Intron | 5.03 × 10−7 | 0.448 | SPY | ||
Glyma.19g196500 | Chr19_45367388 | A/G | UTR3 | 2.37 × 10−7 | 0.453 | emb2735 | |
Chr19_45367407 | T/C | UTR3 | 2.37 × 10−7 | 0.453 | emb2735 | ||
SCC | Glyma.01g180100 | Chr01_51636235 | G/A | Synonymous | 1.44 × 10−5 | 0.506 | |
Glyma.01g203600 | Chr01_53677289 | C/A | Downstream | 2.43 × 10−6 | 0.517 | ||
Glyma.08g124900 | Chr08_9589829 | A/G | Nonsynonymous | 4.37 × 10−6 | 0.513 | ZKT | |
Glyma.08g126500 | Chr08_9744316 | G/A | Synonymous | 1.16 × 10−7 | 0.537 | ||
Chr08_9744418 | T/A | Synonymous | 1.16 × 10−7 | 0.537 | |||
Glyma.08g136600 | Chr08_10455379 | A/T | UTR5 | 2.38 × 10−5 | 0.503 | ||
Glyma.08g247500 | Chr08_21445554 | A/G | Nonsynonymous | 1.39 × 10−5 | 0.506 | ||
Glyma.08g249900 | Chr08_21840533 | C/T | UTR3 | 3.23 × 10−5 | 0.501 | RGP2, ATRGP2 | |
Glyma.20g024800 | Chr20_2681018 | A/T | Synonymous | 5.92 × 10−6 | 0.511 | ||
Glyma.20g092500 | Chr20_33593731 | T/G | Nonsynonymous | 4.33 × 10−5 | 0.499 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-G.; Lyu, J.I.; Kim, J.M.; Seo, J.S.; Choi, H.-I.; Jo, Y.D.; Kim, S.H.; Eom, S.H.; Ahn, J.-W.; Bae, C.-H.; et al. Identification of Loci Governing Agronomic Traits and Mutation Hotspots via a GBS-Based Genome-Wide Association Study in a Soybean Mutant Diversity Pool. Int. J. Mol. Sci. 2022, 23, 10441. https://doi.org/10.3390/ijms231810441
Kim D-G, Lyu JI, Kim JM, Seo JS, Choi H-I, Jo YD, Kim SH, Eom SH, Ahn J-W, Bae C-H, et al. Identification of Loci Governing Agronomic Traits and Mutation Hotspots via a GBS-Based Genome-Wide Association Study in a Soybean Mutant Diversity Pool. International Journal of Molecular Sciences. 2022; 23(18):10441. https://doi.org/10.3390/ijms231810441
Chicago/Turabian StyleKim, Dong-Gun, Jae Il Lyu, Jung Min Kim, Ji Su Seo, Hong-Il Choi, Yeong Deuk Jo, Sang Hoon Kim, Seok Hyun Eom, Joon-Woo Ahn, Chang-Hyu Bae, and et al. 2022. "Identification of Loci Governing Agronomic Traits and Mutation Hotspots via a GBS-Based Genome-Wide Association Study in a Soybean Mutant Diversity Pool" International Journal of Molecular Sciences 23, no. 18: 10441. https://doi.org/10.3390/ijms231810441
APA StyleKim, D. -G., Lyu, J. I., Kim, J. M., Seo, J. S., Choi, H. -I., Jo, Y. D., Kim, S. H., Eom, S. H., Ahn, J. -W., Bae, C. -H., & Kwon, S. -J. (2022). Identification of Loci Governing Agronomic Traits and Mutation Hotspots via a GBS-Based Genome-Wide Association Study in a Soybean Mutant Diversity Pool. International Journal of Molecular Sciences, 23(18), 10441. https://doi.org/10.3390/ijms231810441