The Rheology and Physicochemical Characteristics of Hyaluronic Acid Fillers: Their Clinical Implications
Abstract
:1. Introduction
2. A Review of Rheology and Physicochemical Characteristics of HA Fillers
2.1. Rheological and Biophysical HA Filler Characteristics
2.2. The Manufacturing Technology of Fillers
2.3. Rheology of Fillers
2.3.1. The Elastic/Storage Modulus (G′)
2.3.2. Viscous/Loss Modulus (G″)
2.3.3. Complex Modulus (G*)
2.3.4. Tan Delta (tan δ)
2.3.5. Cohesivity
2.3.6. Viscosity
2.3.7. Normal Forces
2.3.8. Thixotropy
2.4. Physicochemical Properties
2.4.1. Hyaluronic Acid Concentration
2.4.2. Molecular Weight and Polydispersity
2.4.3. Swelling Factor or Hydration Capacity
3. Important Factors When Using Hyaluronic Acid Fillers for Dermatological Surgery
3.1. The Injection Phase
3.2. Tissue Integration
3.3. Volume Restoration
3.4. Hydration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- American Society of Plastic Surgeons Plastic Surgery Statistics Report 2020. Available online: https://www.plasticsurgery.org/documents/News/Statistics/2020/cosmetic-procedure-trends-2020.pdf (accessed on 15 May 2022).
- Saljoughian, M. Benefits and Risk of Facial Fillers. US Pharm. 2019, 44, 9–12. [Google Scholar]
- Signorini, M.; Liew, S.; Sundaram, H.; De Boulle, K.L.; Goodman, G.J.; Monheit, G.; Wu, Y.; Trindade de Almeida, A.R.; Swift, A.; Vieira Braz, A.; et al. Global Aesthetics Consensus: Avoidance and Management of Complications from Hyaluronic Acid Fillers—Evidence- and Opinion-Based Review and Consensus Recommendations. Plast. Reconstr. Surg. 2016, 137, 961e–971e. [Google Scholar] [CrossRef] [PubMed]
- Falcone, S.J.; Doerfler, A.M.; Berg, R.A. Novel Synthetic Dermal Fillers Based on Sodium Carboxymethylcellulose: Comparison with Crosslinked Hyaluronic Acid-Based Dermal Fillers. Dermatol. Surg. 2007, 33 (Suppl. 2), S136–S143. [Google Scholar] [CrossRef]
- Yeom, J.; Bhang, S.H.; Kim, B.-S.; Seo, M.S.; Hwang, E.J.; Cho, I.H.; Park, J.K.; Hahn, S.K. Effect of Cross-Linking Reagents for Hyaluronic Acid Hydrogel Dermal Fillers on Tissue Augmentation and Regeneration. Bioconjugate Chem. 2010, 21, 240–247. [Google Scholar] [CrossRef]
- Zerbinati, N.; D’Este, E.; Farina, A.; Rauso, R.; Cherubino, M.; Calligaro, A. Morphological Evidences Following Pegylated Filler Treatment in Human Skin. J. Biol. Regul. Homeost. Agents 2017, 31, 79–85. [Google Scholar]
- Gold, M.H. Use of Hyaluronic Acid Fillers for the Treatment of the Aging Face. Clin. Interv. Aging 2007, 2, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Gold, M. The Science and Art of Hyaluronic Acid Dermal Filler Use in Esthetic Applications. J. Cosmet. Dermatol. 2009, 8, 301–307. [Google Scholar] [CrossRef]
- Symon, K.R. Mechanics, 3rd ed.; Addison-Wesley: Reading, MA, USA, 1971. [Google Scholar]
- La Gatta, A.; De Rosa, M.; Frezza, M.A.; Catalano, C.; Meloni, M.; Schiraldi, C. Biophysical and Biological Characterization of a New Line of Hyaluronan-Based Dermal Fillers: A Scientific Rationale to Specific Clinical Indications. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 565–572. [Google Scholar] [CrossRef]
- Edsman, K.; Nord, L.I.; Öhrlund, Å.P.; Lärkner, H.; Kenne, A.H. Gel Properties of Hyaluronic Acid Dermal Fillers. Dermatol. Surg. 2012, 38, 1170–1179. [Google Scholar] [CrossRef]
- Öhrlund, J.Å.; Edsman, K.L.M. The Myth of the “Biphasic” Hyaluronic Acid Filler. Dermatol. Surg. 2015, 41 (Suppl. 1), S358–S364. [Google Scholar] [CrossRef]
- Kablik, J.; Monheit, G.D.; Yu, L.; Chang, G.; Gershkovich, J. Comparative Physical Properties of Hyaluronic Acid Dermal Fillers. Dermatol. Surg. 2009, 35 (Suppl. 1), 302–312. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, H.; Voigts, B.; Beer, K.; Meland, M. Comparison of the Rheological Properties of Viscosity and Elasticity in Two Categories of Soft Tissue Fillers: Calcium Hydroxylapatite and Hyaluronic Acid. Dermatol. Surg. 2010, 36 (Suppl. 3), 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Borrell, M.; Leslie, D.B.; Tezel, A. Lift Capabilities of Hyaluronic Acid Fillers. J. Cosmet. Laser Ther. 2011, 13, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Coletta, L.C.D.; Talarico, A.S.; Fidelis, M.C.; de Souza Weimann, E.T. Rheological Characteristics of Hyaluronic Acidbased Dermal Fillers before and after Flowing through Needles. Surg. Cosmet. Dermatol. 2013, 5, 88–91. [Google Scholar]
- Kwon, H.J.; Ko, E.J.; Choi, S.Y.; Choi, E.J.; Jang, Y.-J.; Kim, B.J.; Lee, Y.W. The Efficacy and Safety of a Monophasic Hyaluronic Acid Filler in the Correction of Nasolabial Folds: A Randomized, Multicenter, Single Blinded, Split-Face Study. J. Cosmet. Dermatol. 2018, 17, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Schiraldi, C. Biotechnological Production and Application of Hyaluronan; Schiraldi, C., la Gatta, A., de Rosa, M., Eds.; IntechOpen: Rijeka, Croatia, 2010; Chapter 20. [Google Scholar]
- Brown, M.B.; Jones, S.A. Hyaluronic Acid: A Unique Topical Vehicle for the Localized Delivery of Drugs to the Skin. J. Eur. Acad. Dermatol. Venereol. 2005, 19, 308–318. [Google Scholar] [CrossRef] [PubMed]
- De Boulle, K.; Glogau, R.; Kono, T.; Nathan, M.; Tezel, A.; Roca-Martinez, J.-X.; Paliwal, S.; Stroumpoulis, D. A Review of the Metabolism of 1,4-Butanediol Diglycidyl Ether-Crosslinked Hyaluronic Acid Dermal Fillers. Dermatol. Surg. 2013, 39, 1758–1766. [Google Scholar] [CrossRef]
- Agerup, B.; Berg, P.; Akermark, C. Non-Animal Stabilized Hyaluronic Acid: A New Formulation for the Treatment of Osteoarthritis. BioDrugs 2005, 19, 23–30. [Google Scholar] [CrossRef]
- Foureman, P.; Mason, J.M.; Valencia, R.; Zimmering, S. Chemical Mutagenesis Testing in Drosophila. IX. Results of 50 Coded Compounds Tested for the National Toxicology Program. Environ. Mol. Mutagen. 1994, 23, 51–63. [Google Scholar] [CrossRef]
- Tezel, A.; Fredrickson, G.H. The Science of Hyaluronic Acid Dermal Fillers. J. Cosmet. Laser Ther. 2008, 10, 35–42. [Google Scholar] [CrossRef]
- Kenne, L.; Gohil, S.; Nilsson, E.M.; Karlsson, A.; Ericsson, D.; Helander Kenne, A.; Nord, L.I. Modification and Cross-Linking Parameters in Hyaluronic Acid Hydrogels—Definitions and Analytical Methods. Carbohydr. Polym. 2013, 91, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Wongprasert, P.; Dreiss, C.A.; Murray, G. Evaluating Hyaluronic Acid Dermal Fillers: A Critique of Current Characterization Methods. Dermatol. Ther. 2022, 35, e15453. [Google Scholar] [CrossRef] [PubMed]
- La Gatta, A.; Schiraldi, C.; Papa, A.; De Rosa, M. Comparative Analysis of Commercial Dermal Fillers Based on Crosslinked Hyaluronan: Physical Characterization and in Vitro Enzymatic Degradation. Polym. Degrad. Stab. 2011, 96, 630–636. [Google Scholar] [CrossRef]
- Schanté, C.E.; Zuber, G.; Herlin, C.; Vandamme, T.F. Improvement of Hyaluronic Acid Enzymatic Stability by the Grafting of Amino-Acids. Carbohydr. Polym. 2012, 87, 2211–2216. [Google Scholar] [CrossRef]
- Funt, D.; Pavicic, T. Dermal Fillers in Aesthetics: An Overview of Adverse Events and Treatment Approaches. Clin. Cosmet. Investig. Dermatol. 2013, 6, 295–316. [Google Scholar] [CrossRef] [PubMed]
- Micheels, P.; Sarazin, D.; Tran, C.; Salomon, D. Effect of Different Crosslinking Technologies on Hyaluronic Acid Behavior: A Visual and Microscopic Study of Seven Hyaluronic Acid Gels. J. Drugs Dermatol. 2016, 15, 600–606. [Google Scholar] [PubMed]
- Moon, H.-J.; Gao, Z.-W.; Hu, Z.-Q.; Wang, H.; Wang, X.-J. Expert Consensus on Hyaluronic Acid Filler Facial Injection for Chinese Patients. Plast. Reconstr. Surg.-Glob. Open 2020, 8, e3219. [Google Scholar] [CrossRef]
- Salti, G.; Fundarò, S.P. Evaluation of the Rheologic and Physicochemical Properties of a Novel Hyaluronic Acid Filler Range with EXcellent Three-Dimensional Reticulation (XTRTM) Technology. Polymers 2020, 12, 1644. [Google Scholar] [CrossRef]
- Flynn, T.C.; Sarazin, D.; Bezzola, A.; Terrani, C.; Micheels, P. Comparative Histology of Intradermal Implantation of Mono and Biphasic Hyaluronic Acid Fillers. Dermatol. Surg. 2011, 37, 637–643. [Google Scholar] [CrossRef]
- Beasley, K.L.; Weiss, M.A.; Weiss, R.A. Hyaluronic Acid Fillers: A Comprehensive Review. Facial Plast. Surg. 2009, 25, 86–94. [Google Scholar] [CrossRef]
- Park, K.Y.; Kim, H.K.; Kim, B.J. Comparative Study of Hyaluronic Acid Fillers by in Vitro and in Vivo Testing. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Lupo, M.P.; Smith, S.R.; Thomas, J.A.; Murphy, D.K.; Beddingfield, F.C., III. Effectiveness of Juvéderm Ultra Plus Dermal Filler in the Treatment of Severe Nasolabial Folds. Plast. Reconstr. Surg. 2008, 121, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Jones, D. Volumizing the Face with Soft Tissue Fillers. Clin. Plast. Surg. 2011, 38, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Stocks, D.; Sundaram, H.; Michaels, J.; Durrani, M.J.; Wortzman, M.S.; Nelson, D.B. Rheological Evaluation of the Physical Properties of Hyaluronic Acid Dermal Fillers. J. Drugs Dermatol. 2011, 10, 974–980. [Google Scholar] [PubMed]
- Sundaram, H.; Cassuto, D. Biophysical Characteristics of Hyaluronic Acid Soft-Tissue Fillers and Their Relevance to Aesthetic Applications. Plast. Reconstr. Surg. 2013, 132, 5S–21S. [Google Scholar] [CrossRef]
- Monheit, G.D.; Baumann, L.S.; Gold, M.H.; Goldberg, D.J.; Goldman, M.P.; Narins, R.S.; Bachtell, N.; Garcia, E.; Kablik, J.; Gershkovich, J.; et al. Novel Hyaluronic Acid Dermal Filler: Dermal Gel Extra Physical Properties and Clinical Outcomes. Dermatol. Surg. 2010, 36 (Suppl. 3), 1833–1841. [Google Scholar] [CrossRef]
- Hee, C.K.; Shumate, G.T.; Narurkar, V.; Bernardin, A.; Messina, D.J. Rheological Properties and In Vivo Performance Characteristics of Soft Tissue Fillers. Dermatol. Surg. 2015, 41 (Suppl. 1), S373–S381. [Google Scholar] [CrossRef]
- Sarker, D. Strange but True: The Physics of Glass, Gels and Jellies Is All Related through Rheology. Sch. Sci. Rev. 2017, 99, 102–113. [Google Scholar]
- Beris, A.; Giacomin, A.J. Everything Flows. Appl. Rheol. 2014, 24, 52918. [Google Scholar] [CrossRef]
- Doraiswamy, D. The Origins of Rheology: A Short Historical Excursion. Rheol. Bull. 2002, 71, 1–9. [Google Scholar]
- Lee, W.; Hwang, S.-G.; Oh, W.; Kim, C.-Y.; Lee, J.-L.; Yang, E.-J. Practical Guidelines for Hyaluronic Acid Soft-Tissue Filler Use in Facial Rejuvenation. Dermatol. Surg. 2020, 46, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Santoro, S.; Russo, L.; Argenzio, V.; Borzacchiello, A. Rheological Properties of Cross-Linked Hyaluronic Acid Dermal Fillers. J. Appl. Biomater. Biomech. 2011, 9, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Muntz, L.J.; Burgoyne, A.D. Rheometer Market Analysis. Available online: https://web.wpi.edu/Pubs/E-project/Available/E-project-043017-164455/unrestricted/Rheometer_Market_Analysis_Final_Draft.pdf (accessed on 15 May 2021).
- Lorenc, Z.P.; Öhrlund, Å.; Edsman, K. Factors Affecting the Rheological Measurement of Hyaluronic Acid Gel Fillers. J. Drugs Dermatol. 2017, 16, 876–882. [Google Scholar] [PubMed]
- Borzacchiello, A.; Russo, L.; Malle, B.M.; Schwach-Abdellaoui, K.; Ambrosio, L. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications. Biomed Res. Int. 2015, 2015, 871218. [Google Scholar] [CrossRef]
- Fagien, S.; Bertucci, V.; von Grote, E.; Mashburn, J.H. Rheologic and Physicochemical Properties Used to Differentiate Injectable Hyaluronic Acid Filler Products. Plast. Reconstr. Surg. 2019, 143, 707e–720e. [Google Scholar] [CrossRef]
- Gavard Molliard, S.; Bon Bétemps, J.; Hadjab, B.; Topchian, D.; Micheels, P.; Salomon, D. Key Rheological Properties of Hyaluronic Acid Fillers: From Tissue Integration to Product Degradation. Plast. Aesthet. Res. 2018, 5, 17. [Google Scholar] [CrossRef]
- Pierre, S.; Liew, S.; Bernardin, A. Basics of Dermal Filler Rheology. Dermatol. Surg. 2015, 41 (Suppl. 1), S120–S126. [Google Scholar] [CrossRef]
- Falcone, S.J.; Berg, R.A. Crosslinked Hyaluronic Acid Dermal Fillers: A Comparison of Rheological Properties. J. Biomed. Mater. Res. Part A 2008, 87, 264–271. [Google Scholar] [CrossRef]
- Edsman, K.L.M.; Wiebensjö, Å.M.; Risberg, A.M.; Öhrlund, J.Å. Is There a Method That Can Measure Cohesivity? Cohesion by Sensory Evaluation Compared With Other Test Methods. Dermatol. Surg. 2015, 41 (Suppl. 1), S365–S372. [Google Scholar] [CrossRef]
- Sundaram, H.; Rohrich, R.J.; Liew, S.; Sattler, G.; Talarico, S.; Trévidic, P.; Molliard, S.G. Cohesivity of Hyaluronic Acid Fillers: Development and Clinical Implications of a Novel Assay, Pilot Validation with a Five-Point Grading Scale, and Evaluation of Six U.S. Food and Drug Administration-Approved Fillers. Plast. Reconstr. Surg. 2015, 136, 678–686. [Google Scholar] [CrossRef]
- Tran, C.; Carraux, P.; Micheels, P.; Kaya, G.; Salomon, D. In Vivo Bio-Integration of Three Hyaluronic Acid Fillers in Human Skin: A Histological Study. Dermatology 2014, 228, 47–54. [Google Scholar] [CrossRef]
- Chang, D.P.; Abu-Lail, N.I.; Guilak, F.; Jay, G.D.; Zauscher, S. Conformational Mechanics, Adsorption, and Normal Force Interactions of Lubricin and Hyaluronic Acid on Model Surfaces. Langmuir 2008, 24, 1183–1193. [Google Scholar] [CrossRef]
- Lee, C.H.; Moturi, V.; Lee, Y. Thixotropic Property in Pharmaceutical Formulations. J. Control Release 2009, 136, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Snetkov, P.; Zakharova, K.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers 2020, 12, 1800. [Google Scholar] [CrossRef]
- Duranti, F.; Salti, G.; Bovani, B.; Calandra, M.; Rosati, M.L. Injectable Hyaluronic Acid Gel for Soft Tissue Augmentation: A Clinical and Histological Study. Dermatol. Surg. 1998, 24, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.; Kogan, G.; Jedrzejas, M.J.; Šoltés, L. The Many Ways to Cleave Hyaluronan. Biotechnol. Adv. 2007, 25, 537–557. [Google Scholar] [CrossRef] [PubMed]
- La Gatta, A.; Salzillo, R.; Catalano, C.; D’Agostino, A.; Pirozzi, A.V.A.; De Rosa, M.; Schiraldi, C. Hyaluronan-Based Hydrogels as Dermal Fillers: The Biophysical Properties That Translate into a “Volumetric” Effect. PLoS ONE 2019, 14, e0218287. [Google Scholar] [CrossRef] [PubMed]
- Gutowski, K.A. Hyaluronic Acid Fillers: Science and Clinical Uses. Clin. Plast. Surg. 2016, 43, 489–496. [Google Scholar] [CrossRef]
- Chun, C.; Lee, D.Y.; Kim, J.-T.; Kwon, M.-K.; Kim, Y.-Z.; Kim, S.-S. Effect of Molecular Weight of Hyaluronic Acid (HA) on Viscoelasticity and Particle Texturing Feel of HA Dermal Biphasic Fillers. Biomater. Res. 2016, 20, 24. [Google Scholar] [CrossRef]
- Hee, C.K.; Messina, D.J. In Vitro Inflammatory and Immune Response to Uncrosslinked Hyaluronic Acid (HA) and HA Fillers. J. Immunol. Regen. Med. 2022, 17, 100065. [Google Scholar] [CrossRef]
- Lee, D.Y.; Cheon, C.; Son, S.; Kim, Y.-Z.; Kim, J.-T.; Jang, J.-W.; Kim, S.-S. Influence of Molecular Weight on Swelling and Elastic Modulus of Hyaluronic Acid Dermal Fillers. Polym. Korea 2015, 39, 976–980. [Google Scholar] [CrossRef]
- Edsman, K.L.M.; Öhrlund, Å. Cohesion of Hyaluronic Acid Fillers: Correlation Between Cohesion and Other Physicochemical Properties. Dermatol. Surg. 2018, 44, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Micheels, P.; Sarazin, D.; Besse, S.; Sundaram, H.; Flynn, T.C. A Blanching Technique for Intradermal Injection of the Hyaluronic Acid Belotero. Plast. Reconstr. Surg. 2013, 132, 59S–68S. [Google Scholar] [CrossRef] [PubMed]
- Micheels, P.; Besse, S.; Sarazin, D. Two Crosslinking Technologies for Superficial Reticular Dermis Injection: A Comparative Ultrasound and Histologic Study. J. Clin. Aesthet. Dermatol. 2017, 10, 29–36. [Google Scholar]
- Kleine-Börger, L.; Kalies, A.; Meyer, R.S.A.; Kerscher, M. Physicochemical Properties of Injectable Hyaluronic Acid: Skin Quality Boosters. Macromol. Mater. Eng. 2021, 306, 2100134. [Google Scholar] [CrossRef]
- Ferraz, R.M.; Sandkvist, U.; Lundgren, B. Degradation of Hylauronic Acid Fillers Using Hyaluronidase in an In Vivo Model. J. Drugs Dermatol. 2018, 17, 548–553. [Google Scholar] [PubMed]
Rheological Characteristics | |
---|---|
Storage/Elastic modulus (G′) |
|
Loss/Viscous modulus (G″) |
|
Complex modulus (G*) |
|
Tangential delta (tan δ) |
|
Cohesivity |
|
Complex viscosity (η*) |
|
Physicochemical characteristics | |
Swelling ratio (mL/g) or hydration capacity (mL/mL0) |
|
HA concentration (mg/mL) |
|
Degree of modification and degree of crosslinking |
|
Filler’s Brands (Europe) | Company | Crosslinking Technology | Notes |
---|---|---|---|
Juvederm Ultra 2,3,4 | Allergan | Hylacross technology | Lasts 12 months; contain a high ratio of high MW HA vs. lower MW HA |
Juvederm Volux, Voluma, Volift, Volbella, Volite | Allergan | Vycross technology | Lasts up to 18 months; contain a higher proportion of low MW HA vs. higher MW HA |
Saypha Filler, Volume, Volume Plus | Croma | Supreme Monophasic and Reticulated Technology (SMART) | - |
Restylane Vital, Vital light, Restylane, Restylane Lyft | Galderma | Non-animal stabilized hyaluronic acid technology (NASHA) | Lasts 6 months on average, with retreatment every 6–9 months; addition of small amounts of BDDE introduces minute amounts of crosslinks between the individual chains, leading to entangled matrix |
Restylane Fynesse, Refyne, Kysse, Volyme, Defyne | Galderma | Optimal balance technology (OBT) | Thicker or thinner fillers are obtained by varying gel calibration, and firmer or softer fillers by varying crosslinking |
Yvoire Classic, Volume Contour | LGChem | High Concentration Equalized crosslinking technology (HICE) | Has a maximal rate of crosslinking, minimal alteration in HA structure, and optimization of dispersion of the crosslinking agent |
Belotero Soft, Balance, Intense, Volume, Lips-Shape, Lips-Contour | Merz | Cohesive Polydensified Matrix (CPM) | Lasts up to 12 months; monophasic polydensified gel that combines high levels of crosslinked HA with lighter levels of crosslinked HA in a cohesive matrix |
Definisse Fillers | RELIFE | eXcellent Three-dimensional Reticulation (XTR™) technology | A mixture of different lengths of HA chains are intermolecularly bound by a crosslinking agent to produce a stable three-dimensional HA matrix |
Teosyal RHA 1, 2, 3, 4, Kiss | Teoxane | Resilient Hyaluronic Acid (RHA) | Lasts 6–9 months; produces gels with long HA chains stabilized by natural and chemical crosslinks |
Stylage Hydromax, S, M, L, Lip, XL, XXL | Vivacy | Interpenetrating Network like (IPN-Like) | Use several individual crosslinked matrices, which undergo an interpenetrating network-like process to achieve a monophasic gel with an increased density of crosslinking |
Filler’s Brands (Europe) | G′ (Pa) | η (Pas) | Indications |
---|---|---|---|
Juvederm Ultra 3 | 173.28 ± 20.63 | 1629.90 ± 233.33 | Wrinkles between nose and corner of mouth |
Juvederm Ultra 4 | 102.21 ± 11.46 | 1479.10 ± 75.41 | Severe folds and lines and for facial contouring |
Juvederm Voluma | 603.14 ± 58.34 | 1033.40 ± 50.37 | For restoring volume loss (e.g., cheeks) |
Belotero Soft | 6.93 ± 0.73 | 149.09 ± 46.19 | Fine superficial folds, including crow’s feet and perioral lines |
Belotero Intense | 76.41 ± 7.90 | 1008.70 ± 115.06 | Deep folds and lip and volume augmentation |
Restylane | 301.08 ± 8.55 | 230.35 ± 61.25 | Creases, wrinkles, scars, and lip enhancement |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fundarò, S.P.; Salti, G.; Malgapo, D.M.H.; Innocenti, S. The Rheology and Physicochemical Characteristics of Hyaluronic Acid Fillers: Their Clinical Implications. Int. J. Mol. Sci. 2022, 23, 10518. https://doi.org/10.3390/ijms231810518
Fundarò SP, Salti G, Malgapo DMH, Innocenti S. The Rheology and Physicochemical Characteristics of Hyaluronic Acid Fillers: Their Clinical Implications. International Journal of Molecular Sciences. 2022; 23(18):10518. https://doi.org/10.3390/ijms231810518
Chicago/Turabian StyleFundarò, Salvatore Piero, Giovanni Salti, Dennis Malvin Hernandez Malgapo, and Silvia Innocenti. 2022. "The Rheology and Physicochemical Characteristics of Hyaluronic Acid Fillers: Their Clinical Implications" International Journal of Molecular Sciences 23, no. 18: 10518. https://doi.org/10.3390/ijms231810518
APA StyleFundarò, S. P., Salti, G., Malgapo, D. M. H., & Innocenti, S. (2022). The Rheology and Physicochemical Characteristics of Hyaluronic Acid Fillers: Their Clinical Implications. International Journal of Molecular Sciences, 23(18), 10518. https://doi.org/10.3390/ijms231810518