Comparison between Immunocytochemistry, FISH and NGS for ALK and ROS1 Rearrangement Detection in Cytological Samples
Abstract
:1. Introduction
2. Results
2.1. NGS Results
2.2. Immunohistochemistry and FISH Results
2.3. ICC and FISH Sensitivity and Specificity
2.4. Additive Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Immunocytochemistry
4.3. FISH
4.4. Next-Generation Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer Today. Available online: http://gco.iarc.fr/today/home (accessed on 29 April 2022).
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch. Pathol. Lab. Med. 2018, 142, 321–346. [Google Scholar] [CrossRef]
- Bergethon, K.; Shaw, A.T.; Ou, S.-H.I.; Katayama, R.; Lovly, C.M.; McDonald, N.T.; Massion, P.P.; Siwak-Tapp, C.; Gonzalez, A.; Fang, R.; et al. ROS1 Rearrangements Define a Unique Molecular Class of Lung Cancers. J. Clin. Oncol. 2012, 30, 863–870. [Google Scholar] [CrossRef]
- Cai, W.; Li, X.; Su, C.; Fan, L.; Zheng, L.; Fei, K.; Zhou, C.; Manegold, C.; Schmid-Bindert, G. ROS1 Fusions in Chinese Patients with Non-Small-Cell Lung Cancer. Ann. Oncol. 2013, 24, 1822–1827. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Hsieh, M.-S.; Wu, S.-G.; Chang, Y.-L.; Shih, J.-Y.; Liu, Y.-N.; Tsai, M.-F.; Tsai, T.-H.; Yu, C.-J.; Yang, J.C.-H.; et al. Clinical and the Prognostic Characteristics of Lung Adenocarcinoma Patients with ROS1 Fusion in Comparison with Other Driver Mutations in East Asian Populations. J. Thorac. Oncol. 2014, 9, 1171–1179. [Google Scholar] [CrossRef]
- Rodig, S.J.; Mino-Kenudson, M.; Dacic, S.; Yeap, B.Y.; Shaw, A.; Barletta, J.A.; Stubbs, H.; Law, K.; Lindeman, N.; Mark, E.; et al. Unique Clinicopathologic Features Characterize ALK-Rearranged Lung Adenocarcinoma in the Western Population. Clin. Cancer Res. 2009, 15, 5216–5223. [Google Scholar] [CrossRef]
- Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; et al. Identification of the Transforming EML4-ALK Fusion Gene in Non-Small-Cell Lung Cancer. Nature 2007, 448, 561–566. [Google Scholar] [CrossRef]
- Bozzetti, C.; Nizzoli, R.; Tiseo, M.; Squadrilli, A.; Lagrasta, C.; Buti, S.; Gasparro, D.; Zanoni, D.; Majori, M.; De Filippo, M.; et al. ALK and ROS1 Rearrangements Tested by Fluorescence in Situ Hybridization in Cytological Smears from Advanced Non-Small Cell Lung Cancer Patients. Diagn. Cytopathol. 2015, 43, 941–946. [Google Scholar] [CrossRef]
- Rogers, T.-M.; Russell, P.A.; Wright, G.; Wainer, Z.; Pang, J.-M.; Henricksen, L.A.; Singh, S.; Stanislaw, S.; Grille, J.; Roberts, E.; et al. Comparison of Methods in the Detection of ALK and ROS1 Rearrangements in Lung Cancer. J. Thorac. Oncol. 2015, 10, 611–618. [Google Scholar] [CrossRef]
- Marchetti, A.; Di Lorito, A.; Pace, M.V.; Iezzi, M.; Felicioni, L.; D’Antuono, T.; Filice, G.; Guetti, L.; Mucilli, F.; Buttitta, F. ALK Protein Analysis by IHC Staining after Recent Regulatory Changes: A Comparison of Two Widely Used Approaches, Revision of the Literature, and a New Testing Algorithm. J. Thorac. Oncol. 2016, 11, 487–495. [Google Scholar] [CrossRef]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the Use of Next-Generation Sequencing (NGS) for Patients with Metastatic Cancers: A Report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef]
- Pisapia, P.; Lozano, M.D.; Vigliar, E.; Bellevicine, C.; Pepe, F.; Malapelle, U.; Troncone, G. ALK and ROS1 Testing on Lung Cancer Cytologic Samples: Perspectives. Cancer Cytopathol. 2017, 125, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Frankel, D.; Bourlard, D.; Garcia, S.; Robaglia-Schlupp, A.; Peker, E.; Groliere, A.; Kaspi, E.; Roll, P. Mise en évidence du réarrangement d’ALK et ROS1 en immunocytochimie sur liquides de ponction. Ann. Pathol. 2019, 39, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Kron, A.; Alidousty, C.; Scheffler, M.; Merkelbach-Bruse, S.; Seidel, D.; Riedel, R.; Ihle, M.A.; Michels, S.; Nogova, L.; Fassunke, J.; et al. Impact of TP53 Mutation Status on Systemic Treatment Outcome in ALK-Rearranged Non-Small-Cell Lung Cancer. Ann. Oncol. 2018, 29, 2068–2075. [Google Scholar] [CrossRef] [PubMed]
- Roy-Chowdhuri, S.; Stewart, J. Preanalytic Variables in Cytology: Lessons Learned From Next-Generation Sequencing-The MD Anderson Experience. Arch. Pathol. Lab. Med. 2016, 140, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, K.; Kobayashi, K. Importance of the Cytological Samples for the Epidermal Growth Factor Receptor Gene Mutation Test for Non-Small Cell Lung Cancer. Cancer Sci. 2013, 104, 291–297. [Google Scholar] [CrossRef]
- Velizheva, N.P.; Rechsteiner, M.P.; Wong, C.E.; Zhong, Q.; Rössle, M.; Bode, B.; Moch, H.; Soltermann, A.; Wild, P.J.; Tischler, V. Cytology Smears as Excellent Starting Material for Next-Generation Sequencing-Based Molecular Testing of Patients with Adenocarcinoma of the Lung. Cancer Cytopathol. 2017, 125, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Conde, E.; Rojo, F.; Gómez, J.; Enguita, A.B.; Abdulkader, I.; González, A.; Lozano, D.; Mancheño, N.; Salas, C.; Salido, M.; et al. Molecular Diagnosis in Non-Small-Cell Lung Cancer: Expert Opinion on ALK and ROS1 Testing. J. Clin. Pathol. 2022, 75, 145–153. [Google Scholar] [CrossRef]
- McCoach, C.E.; Le, A.T.; Gowan, K.; Jones, K.; Schubert, L.; Doak, A.; Estrada-Bernal, A.; Davies, K.D.; Merrick, D.T.; Bunn, P.A.; et al. Resistance Mechanisms to Targeted Therapies in ROS1+ and ALK+ Non-Small Cell Lung Cancer. Clin. Cancer Res. 2018, 24, 3334–3347. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhang, J.; Han, Y.; Shao, J.; Zhu, L.; Xiang, C.; Zhang, Q.; Teng, H.; Qin, G.; Zhao, L.; et al. Clinicopathological Features of ALK Expression in 9889 Cases of Non-Small-Cell Lung Cancer and Genomic Rearrangements Identified by Capture-Based Next-Generation Sequencing: A Chinese Retrospective Analysis. Mol. Diagn. Ther. 2019, 23, 395–405. [Google Scholar] [CrossRef]
- Sabir, S.R.; Yeoh, S.; Jackson, G.; Bayliss, R. EML4-ALK Variants: Biological and Molecular Properties, and the Implications for Patients. Cancers 2017, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, S.; Shi, X.; Liang, Z.; Zeng, X. ALK Detection in Lung Cancer: Identification of Atypical and Cryptic ALK Rearrangements Using an Optimal Algorithm. J. Cancer Res. Clin. Oncol. 2020, 146, 1307–1320. [Google Scholar] [CrossRef] [PubMed]
- Batra, U.; Nathany, S.; Sharma, M.; Pasricha, S.; Bansal, A.; Jain, P.; Mehta, A. IHC versus FISH versus NGS to Detect ALK Gene Rearrangement in NSCLC: All Questions Answered? J. Clin. Pathol. 2022, 75, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Salido, M.; Pijuan, L.; Martínez-Avilés, L.; Galván, A.B.; Cañadas, I.; Rovira, A.; Zanui, M.; Martínez, A.; Longarón, R.; Sole, F.; et al. Increased ALK Gene Copy Number and Amplification Are Frequent in Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2011, 6, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Baum, J.E.; Zhang, P.; Hoda, R.S.; Geraghty, B.; Rennert, H.; Narula, N.; Fernandes, H.D. Accuracy of Next-Generation Sequencing for the Identification of Clinically Relevant Variants in Cytology Smears in Lung Adenocarcinoma. Cancer Cytopathol. 2017, 125, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Sun, Y.; Wang, W.; Ye, J.; Zhang, D.; Gong, Z.; Yang, M. Multiplexed Molecular Profiling of Lung Cancer with Malignant Pleural Effusion Using next Generation Sequencing in Chinese Patients. Oncol. Lett. 2020, 19, 3495–3505. [Google Scholar] [CrossRef]
- Yamamoto, G.; Kikuchi, M.; Kobayashi, S.; Arai, Y.; Fujiyoshi, K.; Wakatsuki, T.; Kakuta, M.; Yamane, Y.; Iijima, Y.; Mizutani, H.; et al. Routine Genetic Testing of Lung Cancer Specimens Derived from Surgery, Bronchoscopy and Fluid Aspiration by next Generation Sequencing. Int. J. Oncol. 2017, 50, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Frankel, D.; Nanni-Metellus, I.; Robaglia-Schlupp, A.; Tomasini, P.; Guinde, J.; Barlesi, F.; Astoul, P.; Ouafik, L.; Amatore, F.; Secq, V.; et al. Detection of EGFR, KRAS and BRAF Mutations in Metastatic Cells from Cerebrospinal Fluid. Clin. Chem. Lab. Med. 2018, 56, 748–753. [Google Scholar] [CrossRef]
- Schluckebier, L.; Caetano, R.; Garay, O.U.; Montenegro, G.T.; Custodio, M.; Aran, V.; Gil Ferreira, C. Cost-Effectiveness Analysis Comparing Companion Diagnostic Tests for EGFR, ALK, and ROS1 versus next-Generation Sequencing (NGS) in Advanced Adenocarcinoma Lung Cancer Patients. BMC Cancer 2020, 20, 875. [Google Scholar] [CrossRef]
- Makarem, M.; Ezeife, D.A.; Smith, A.C.; Li, J.J.N.; Law, J.H.; Tsao, M.-S.; Leighl, N.B. Reflex ROS1 IHC Screening with FISH Confirmation for Advanced Non-Small Cell Lung Cancer-A Cost-Efficient Strategy in a Public Healthcare System. Curr. Oncol. 2021, 28, 3268–3279. [Google Scholar] [CrossRef]
- Martín-López, J.; Rojo, F.; Martínez-Pozo, A.; Hernández-Iglesias, T.; Carcedo, D.; de Alda, L.R.; García, J.F.; Salas, C. Biomarker Testing Strategies in Non-Small Cell Lung Cancer in the Real-World Setting: Analysis of Methods in the Prospective Central Lung Cancer Biomarker Registry (LungPath) from the Spanish Society of Pathology (SEAP). J. Clin. Pathol. 2021, 13, 208034. [Google Scholar] [CrossRef]
- Frankel, D.; Kaspi, E.; Roll, P. Immunocytochemical Detection of ALK and ROS1 Rearrangements in Lung Cancer Cytological Samples. Methods Mol. Biol. 2021, 2279, 157–164. [Google Scholar] [CrossRef] [PubMed]
Parameter | n (%) | |
---|---|---|
Age (years) | Mean ± SD | 67.4 ± 12 |
Range | 36–90 | |
Gender | Male | 73 (55.7) |
Female | 58 (44.3) | |
Histopathological type | Lung adenocarcinoma | 105 (80.2) |
NSCLC NOS | 26 (19.8) | |
Smoking status | Never | 33 (25.2) |
Current/former | 92 (70.2) | |
Unknown | 6 (4.6) | |
Stage | I | 2 (1.5) |
II | 5 (3.8) | |
III | 21 (16.0) | |
IV | 100 (76.3) | |
Unknown | 3 (2.3) |
Technique | ALK | ROS1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | FP | FN | TN | Se | Spe | TP | FP | FN | TN | Se | Spe | |
ICC | 11 | 7 | 3 | 69 | 0.79 | 0.91 | 3 | 12 | 0 | 78 | 1 | 0.87 |
FISH | 13 | 0 | 0 | 14 | 1 | 1 | 2 | 0 | 0 | 13 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frankel, D.; Nanni, I.; Ouafik, L.; Camilla, C.; Pellegrino, E.; Beaufils, N.; Greillier, L.; Dutau, H.; Astoul, P.; Kaspi, E.; et al. Comparison between Immunocytochemistry, FISH and NGS for ALK and ROS1 Rearrangement Detection in Cytological Samples. Int. J. Mol. Sci. 2022, 23, 10556. https://doi.org/10.3390/ijms231810556
Frankel D, Nanni I, Ouafik L, Camilla C, Pellegrino E, Beaufils N, Greillier L, Dutau H, Astoul P, Kaspi E, et al. Comparison between Immunocytochemistry, FISH and NGS for ALK and ROS1 Rearrangement Detection in Cytological Samples. International Journal of Molecular Sciences. 2022; 23(18):10556. https://doi.org/10.3390/ijms231810556
Chicago/Turabian StyleFrankel, Diane, Isabelle Nanni, L’Houcine Ouafik, Clara Camilla, Eric Pellegrino, Nathalie Beaufils, Laurent Greillier, Hervé Dutau, Philippe Astoul, Elise Kaspi, and et al. 2022. "Comparison between Immunocytochemistry, FISH and NGS for ALK and ROS1 Rearrangement Detection in Cytological Samples" International Journal of Molecular Sciences 23, no. 18: 10556. https://doi.org/10.3390/ijms231810556
APA StyleFrankel, D., Nanni, I., Ouafik, L., Camilla, C., Pellegrino, E., Beaufils, N., Greillier, L., Dutau, H., Astoul, P., Kaspi, E., & Roll, P. (2022). Comparison between Immunocytochemistry, FISH and NGS for ALK and ROS1 Rearrangement Detection in Cytological Samples. International Journal of Molecular Sciences, 23(18), 10556. https://doi.org/10.3390/ijms231810556