Oxidation of p-[125I]Iodobenzoic Acid and p-[211At]Astatobenzoic Acid Derivatives and Evaluation In Vivo
Abstract
:1. Introduction
2. Results
2.1. Syntheses of Compounds
2.2. Radiohalogen Labeling and Oxidation of Radioiodine and Astatine Compounds
2.3. Biodistribution Studies
3. Discussion
4. Materials and Methods
4.1. General
4.2. Radioactive Materials
4.3. Chromatography Equipment and Conditions
4.4. Spectral Analyses
4.5. Compound Syntheses and Radiolabeling
4.5.1. Para-Tri-n-Butylstannylbenzoic Acid Methyl Ester, 4
4.5.2. Para-[125I]Iodobenzoic Acid Methyl Ester, [125I]5
4.5.3. Para-Iodoxybenzoic Acid Methyl Ester, 6
4.5.4. Para-[125I]Iodoxybenzoate Methyl Ester, [125I]6
4.5.5. Para-[211At]Astatobenzoic Acid Methyl Ester, [211At]7
4.5.6. Para-[211At]Astatoxybenzoic Acid Methyl Ester, [211At]8
4.5.7. Para-Iodobenzoic Acid TFP Ester, 14
4.5.8. Para-Tri-n-Butylstannylbenzoic Acid TFP Ester, 15
4.5.9. Para-Tri-n-Butylstannylbenzamidyl-dPEG4-Carboxylic Acid, 17a
4.5.10. Para-Iodobenzamidyl-dPEG4-Carboxylic Acid, 17b
4.5.11. Para-Tri-n-Butylstannylbenzamidyl-dPEG4-Carboxylic Acid TFP Ester, 18a
4.5.12. Para-Tri-n-Butylstannylbenzamidyl-dPEG4-Carboxylic Acid Methyl Ester, 9
4.5.13. Para-Iodobenzamidyl-dPEG4-Carboxyic Acid TFP Ester, 18b
4.5.14. Para-Iodobenzamidyl-dPEG4-Carboxyic Acid Methyl Ester, 10
4.5.15. Para-[125I]Iodobenzamidyl-dPEG4-Carboxylic Acid Methyl Ester, [125I]10
4.5.16. Para-[211At]Astatobenzamidyl-dPEG4-Carboxylic Acid Methyl Ester, [211At]12
4.5.17. Para-Iodoxybenzamidyl-dPEG4-Carboxylic Acid Methyl Ester, 11
4.5.18. Oxidation of [125I]10 to Prepare [125I]11
4.5.19. Oxidation of [211At]12 to Prepare [211At]13
4.5.20. Preparation of [125I]NaIO3
4.5.21. Preparation of [211At]NaAtO3
4.6. Biodistribution Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radchenko, V.; Morgenstern, A.; Jalilian, A.R.; Ramogida, C.F.; Cutler, C.; Duchemin, C.; Hoehr, C.; Haddad, F.; Bruchertseifer, F.; Gausemel, H.; et al. Production and Supply of alpha-Particle-Emitting Radionuclides for Targeted alpha-Therapy. J. Nucl. Med. 2021, 62, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Makvandi, M.; Dupis, E.; Engle, J.W.; Nortier, F.M.; Fassbender, M.E.; Simon, S.; Birnbaum, E.R.; Atcher, R.W.; John, K.D.; Rixe, O.; et al. Alpha-Emitters and Targeted Alpha Therapy in Oncology: From Basic Science to Clinical Investigations. Target. Oncol. 2018, 13, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Wilbur, D.S. Chemical and Radiochemical Considerations in Radiolabeling with α-Emitting Radionuclides. Curr. Radiopharm. 2011, 4, 214–247. [Google Scholar] [CrossRef]
- Wilbur, D.S. [211At]Astatine-Labeled Compound Stability: Issues with Released [211At]Astatide and Development of Labeling Reagents to Increase Stability. Curr. Radiopharm. 2008, 1, 144–176. [Google Scholar] [CrossRef]
- Guerard, F.; Gestin, J.F.; Brechbiel, M.W. Production of [(211)At]-astatinated radiopharmaceuticals and applications in targeted alpha-particle therapy. Cancer Biother. Radiopharm. 2013, 28, 1–20. [Google Scholar] [CrossRef]
- Zalutsky, M.R.; Narula, A.S. Astatination of Proteins using an N-Succinimidyl Tri-n-Butylstannyl Benzoate Intermediate. Appl. Radiat. Isot. 1988, 39, 227–232. [Google Scholar] [CrossRef]
- Hadley, S.W.; Wilbur, D.S.; Gray, M.A.; Atcher, R.W. Astatine-211 labeling of an antimelanoma antibody and its Fab fragment using N-succinimidyl p-astatobenzoate: Comparisons in vivo with the p-[125I]iodobenzoyl conjugate. Bioconjug. Chem. 1991, 2, 171–179. [Google Scholar] [CrossRef]
- Yordanov, A.T.; Garmestani, K.; Zhang, M.; Zhang, Z.; Yao, Z.; Phillips, K.E.; Herring, B.; Horak, E.; Beitzel, M.P.; Schwarz, U.P.; et al. Preparation and in vivo evaluation of linkers for 211At labeling of humanized anti-Tac. Nucl. Med. Biol. 2001, 28, 845–856. [Google Scholar] [CrossRef]
- Suzuki, H.; Kaizuka, Y.; Tatsuta, M.; Tanaka, H.; Washiya, N.; Shirakami, Y.; Ooe, K.; Toyoshima, A.; Watabe, T.; Teramoto, T.; et al. Neopentyl Glycol as a Scaffold to Provide Radiohalogenated Theranostic Pairs of High In Vivo Stability. J. Med. Chem. 2021, 64, 15846–15857. [Google Scholar] [CrossRef]
- Vaidyanathan, G.; Strickland, D.; Zalutsky, M.R. Meta-[211At]Astatobenzylguanidine: Further Evaluation of a Potential Therapeutic Agent. Int. J. Cancer 1994, 57, 908–913. [Google Scholar] [CrossRef]
- Vaidyanathan, G.; Friedman, H.S.; Keir, S.T.; Zalutsky, M.R. Evaluation of Meta-[211At]Astatobenzylguanidine in an Athymic Mouse Human Neuroblastoma Xenograft Model. Nucl. Med. Biol. 1996, 23, 851–856. [Google Scholar] [CrossRef]
- Ukon, N.; Zhao, S.; Washiyama, K.; Oriuchi, N.; Tan, C.; Shimoyama, S.; Aoki, M.; Kubo, H.; Takahashi, K.; Ito, H. Human dosimetry of free (211)At and meta-[(211)At]astatobenzylguanidine ((211)At-MABG) estimated using preclinical biodistribution from normal mice. EJNMMI Phys. 2020, 7, 58. [Google Scholar] [CrossRef]
- Wilbur, D.S.; Chyan, M.K.; Hamlin, D.K.; Kegley, B.B.; Risler, R.; Pathare, P.M.; Quinn, J.; Vessella, R.L.; Foulon, C.; Zalutsky, M.; et al. Reagents for astatination of biomolecules: Comparison of the in vivo distribution and stability of some radioiodinated/astatinated benzamidyl and nido-carboranyl compounds. Bioconjug. Chem. 2004, 15, 203–223. [Google Scholar] [CrossRef]
- Zhdankin, V.V.; Stang, P.J. Recent Developments in the Chemistry of Polyvalent Iodine Compounds. Chem. Rev. 2002, 102, 2523–2584. [Google Scholar] [CrossRef]
- Zhdankin, V.V. Organoiodine(V) reagents in organic synthesis. J. Org. Chem. 2011, 76, 1185–1197. [Google Scholar] [CrossRef]
- Bothnerby, A.A.; Medalia, A.I. The Ionization Constants at 50-Degrees of Meta-Iodoxybenzoic and Para-Iodoxybenzoic Acids. J. Am. Chem. Soc. 1952, 74, 4402–4404. [Google Scholar] [CrossRef]
- Kazmierczak, P.; Skulski, L.; Kraszkiewicz, L. Syntheses of (Diacetoxyiodo)arenes or Iodylarenes from Iodoarenes, with Sodium Periodate as the Oxidant. Molecules 2001, 6, 881–891. [Google Scholar] [CrossRef]
- Ladziata, U.; Willging, J.; Zhdankin, V.V. Facile preparation and reactivity of polymer-supported N-(2-Iodyl-phenyl)-acylamide, an efficient oxidizing system. Org. Lett. 2006, 8, 167–170. [Google Scholar] [CrossRef]
- Karimov, R.R.; Kazhkenov, Z.G.; Modjewski, M.J.; Peterson, E.M.; Zhdankin, V.V. Preparation and reactivity of polymer-supported 2-iodylphenol ethers, an efficient recyclable oxidizing system. J. Org. Chem. 2007, 72, 8149–8151. [Google Scholar] [CrossRef]
- Wilbur, D.S.; Hadley, S.W.; Hylarides, M.D.; Abrams, P.G.; Beaumier, P.A.; Morgan, A.C.; Reno, J.M.; Fritzberg, A.R. Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer. J. Nucl. Med. 1989, 30, 216–226. [Google Scholar]
- Zhdankin, V.V.; Stang, P.J. Chemistry of polyvalent iodine. Chem. Rev. 2008, 108, 5299–5358. [Google Scholar] [CrossRef] [Green Version]
- Adam, M.J.; Wilbur, D.S. Radiohalogens for imaging and therapy. Chem. Soc. Rev. 2005, 34, 153–163. [Google Scholar] [CrossRef]
- Dubost, E.; McErlain, H.; Babin, V.; Sutherland, A.; Cailly, T. Recent Advances in Synthetic Methods for Radioiodination. J. Org. Chem. 2020, 85, 8300–8310. [Google Scholar] [CrossRef]
- Ali, H.; van Lier, J.E. Synthesis of radiopharmaceuticals via organotin intermediates. Synthesis 1996, 4, 423–445. [Google Scholar] [CrossRef]
- Luongo, C.; Dentice, M.; Salvatore, D. Deiodinases and their intricate role in thyroid hormone homeostasis. Nat. Rev. Endocrinol. 2019, 15, 479–488. [Google Scholar] [CrossRef]
- van Pee, K.H.; Unversucht, S. Biological dehalogenation and halogenation reactions. Chemosphere 2003, 52, 299–312. [Google Scholar] [CrossRef]
- Agarwal, V.; Miles, Z.D.; Winter, J.M.; Eustaquio, A.S.; El Gamal, A.A.; Moore, B.S. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem. Rev. 2017, 117, 5619–5674. [Google Scholar] [CrossRef]
- Pimviriyakul, P.; Wongnate, T.; Tinikul, R.; Chaiyen, P. Microbial degradation of halogenated aromatics: Molecular mechanisms and enzymatic reactions. Microb. Biotechnol. 2020, 13, 67–86. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, U.; Steegborn, C. New insights into the structure and mechanism of iodothyronine deiodinases. J. Mol. Endocrinol. 2015, 55, R37–R52. [Google Scholar] [CrossRef] [PubMed]
- Cavina, L.; van der Born, D.; Klaren, P.H.M.; Feiters, M.C.; Boerman, O.C.; Rutjes, F. Design of Radioiodinated Pharmaceuticals: Structural Features Affecting Metabolic Stability towards in Vivo Deiodination. Eur. J. Org. Chem. 2017, 2017, 3387–3414. [Google Scholar] [CrossRef] [PubMed]
- Seevers, R.H.; Counsell, R.E. Radioiodination Techniques for Small Organic Molecules. Chem. Rev. 1982, 82, 575–590. [Google Scholar] [CrossRef]
- Wilbur, D.S. Radiohalogenation of proteins: An overview of radionuclides, labeling methods, and reagents for conjugate labeling. Bioconj. Chem. 1992, 3, 433–470. [Google Scholar] [CrossRef]
- Teze, D.; Sergentu, D.C.; Kalichuk, V.; Barbet, J.; Deniaud, D.; Galland, N.; Maurice, R.; Montavon, G. Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates. Sci. Rep. 2017, 7, 2579. [Google Scholar] [CrossRef]
- Dess, D.B.; Martin, J.C. A Useful 12-I-5 Triacetoxyperiodinane (the Dess-Martin Periodinane) for Selective Oxidation of Primary or Secondary Alcohols and a Variety of Related 12-I-5 Species. J. Am. Chem. Soc. 1991, 113, 7277–7287. [Google Scholar] [CrossRef]
- Gamper, H.B.; Reed, M.W.; Cox, T.; Virosco, J.S.; Adams, A.D.; Gall, A.A.; Scholler, J.K.; Meyer, R.B., Jr. Facile preparation of nuclease resistant 3’ modified oligodeoxynucleotides. Nucleic Acids Res. 1993, 21, 145–150. [Google Scholar] [CrossRef]
- Gagnon, K.; Risler, R.; Pal, S.; Hamlin, D.; Orzechowski, J.; Pavan, R.; Zeisler, S.; Wilbur, D.S. Design and evaluation of an external high-current target for production of 211At. J. Labl. Compd. Radiopharm. 2012, 55, 436–440. [Google Scholar] [CrossRef]
- Balkin, E.R.; Hamlin, D.K.; Gagnon, K.; Chyan, M.K.; Pal, S.; Watanabe, S.; Wilbur, D.S. Evaluation of a Wet Chemistry Method for Isolation of Cyclotron Produced [211At]Astatine. Appl. Sci. 2013, 3, 636–655. [Google Scholar] [CrossRef]
- Sajonz, P.; Bookalam, J.; Miller, R.A. Separation of Periodate, Iodate and Iodide on a C-18 Stationary Phase. Dependence of the Retention on the Temperature and Solvent Composition. Monitoring of an Oxidative Clevage Reaction. Chromatographia 2006, 64, 635–640. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Chyan, M.-K.; Hamlin, D.K.; Nguyen, H.; Corey, E.; Wilbur, D.S. Oxidation of p-[125I]Iodobenzoic Acid and p-[211At]Astatobenzoic Acid Derivatives and Evaluation In Vivo. Int. J. Mol. Sci. 2022, 23, 10655. https://doi.org/10.3390/ijms231810655
Li Y, Chyan M-K, Hamlin DK, Nguyen H, Corey E, Wilbur DS. Oxidation of p-[125I]Iodobenzoic Acid and p-[211At]Astatobenzoic Acid Derivatives and Evaluation In Vivo. International Journal of Molecular Sciences. 2022; 23(18):10655. https://doi.org/10.3390/ijms231810655
Chicago/Turabian StyleLi, Yawen, Ming-Kuan Chyan, Donald K. Hamlin, Holly Nguyen, Eva Corey, and D. Scott Wilbur. 2022. "Oxidation of p-[125I]Iodobenzoic Acid and p-[211At]Astatobenzoic Acid Derivatives and Evaluation In Vivo" International Journal of Molecular Sciences 23, no. 18: 10655. https://doi.org/10.3390/ijms231810655
APA StyleLi, Y., Chyan, M. -K., Hamlin, D. K., Nguyen, H., Corey, E., & Wilbur, D. S. (2022). Oxidation of p-[125I]Iodobenzoic Acid and p-[211At]Astatobenzoic Acid Derivatives and Evaluation In Vivo. International Journal of Molecular Sciences, 23(18), 10655. https://doi.org/10.3390/ijms231810655