A Comprehensive Characterization of Stemness in Cell Lines and Primary Cells of Pancreatic Ductal Adenocarcinoma
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Putative Stem Phenotypes in PDAC Cell Lines
2.2. Growth Kinetics, Clonogenicity, Chemosensitivity, and Tumorigenicity according to the Degree of Stemness
2.3. Gene Expression of Factors Involved in Pancreatic Organogenesis and Differentiated Tissues Commitment according to the Degrees of Stemness
2.4. Expression of Factors Relevant to the Biological Behavior of Cancer Cells according to the Degrees of Stemness
2.5. Evaluation of Secretome according to the Degrees of Stemness
2.6. Evaluation of Putative Stem Phenotypes in PDAC Patients
3. Discussion
4. Materials and Methods
4.1. Cell Lines
4.2. Cytofluorimetric Analysis of Surface Markers
4.3. Growth Kinetics and Cell-Cycle Analysis
4.4. Clonogenicity Assay In Vitro
4.5. Chemoresistance Assay
4.6. Tumorigenic Capacity in Mice
4.7. Gene Expression Analysis by Real Time PCR
4.8. Secretome by Luminex Xmap Technology
4.9. Cohort of PDAC Patients and Tissue Processing
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Zhu, H.; Li, T.; Du, Y.; Li, M. Pancreatic cancer: Challenges and opportunities. BMC Med. 2018, 16, 214. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Heidt, D.G.; Dalerba, P.; Burant, C.F.; Zhang, L.; Adsay, V.; Wicha, M.; Clarke, M.F.; Simeone, D.M. Identification of pancreatic cancer stem cells. Cancer Res. 2007, 67, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Huang, Y.; Chen, J. Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacol. Sinica 2013, 34, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Ajani, J.A.; Song, S.; Hochster, H.S.; Steinberg, I.B. Seminars in oncology. In Cancer Stem Cells: The Promise and the Potential; Elsevier: Amsterdam, The Netherlands, 2015; pp. S3–S17. [Google Scholar]
- Valle, S.; Martin-Hijano, L.; Alcalá, S.; Alonso-Nocelo, M.; Sainz, B., Jr. The ever-evolving concept of the cancer stem cell in pancreatic cancer. Cancers 2018, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-M.; Zhang, J.-G.; Zhang, X.; Li, Q. Targeting cancer stem cells for reversing therapy resistance: Mechanism, signaling, and prospective agents. Signal Transduct. Target. Ther. 2021, 6, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, C.; Brandi, J.; Cecconi, D. Pancreatic cancer stem cells: Perspectives on potential therapeutic approaches of pancreatic ductal adenocarcinoma. World J. Stem Cells 2018, 10, 172. [Google Scholar] [CrossRef]
- Sergeant, G.; Vankelecom, H.; Gremeaux, L.; Topal, B. Role of cancer stem cells in pancreatic ductal adenocarcinoma. Nat. Rev. Clin. Oncol. 2009, 6, 580–586. [Google Scholar] [CrossRef]
- Xia, P.; Liu, D.-H. Cancer stem cell markers for liver cancer and pancreatic cancer. Stem Cell Res. 2022, 60, 102701. [Google Scholar] [CrossRef]
- Immervoll, H.; Hoem, D.; Sakariassen, P.Ø.; Steffensen, O.J.; Molven, A. Expression of the” stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 2008, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wu, J.J.; Hynes, M.; Dosch, J.; Sarkar, B.; Welling, T.H.; di Magliano, M.P.; Simeone, D.M. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 2011, 141, 2218–2227.e5. [Google Scholar] [CrossRef]
- Rasheed, Z.A.; Yang, J.; Wang, Q.; Kowalski, J.; Freed, I.; Murter, C.; Hong, S.-M.; Koorstra, J.-B.; Rajeshkumar, N.; He, X. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J. Natl. Cancer Inst. 2010, 102, 340–351. [Google Scholar] [CrossRef]
- Amsterdam, A.; Raanan, C.; Schreiber, L.; Polin, N.; Givol, D. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer. Biochem. Biophys. Res. Commun. 2013, 433, 157–162. [Google Scholar] [CrossRef]
- Ito, H.; Tanaka, S.; Akiyama, Y.; Shimada, S.; Adikrisna, R.; Matsumura, S.; Aihara, A.; Mitsunori, Y.; Ban, D.; Ochiai, T. Dominant expression of DCLK1 in human pancreatic cancer stem cells accelerates tumor invasion and metastasis. PLoS ONE 2016, 11, e0146564. [Google Scholar] [CrossRef]
- Morita, T.; Kodama, Y.; Shiokawa, M.; Kuriyama, K.; Marui, S.; Kuwada, T.; Sogabe, Y.; Matsumori, T.; Kakiuchi, N.; Tomono, T. CXCR4 in tumor epithelial cells mediates desmoplastic reaction in pancreatic ductal adenocarcinomaroles of CXCR4 in pancreatic ductal adenocarcinoma. Cancer Res. 2020, 80, 4058–4070. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Luo, B.; Wang, X.; Sun, H.; Liu, S.; Cui, Y.; Xu, X. A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics. Neoplasma 2009, 56, 371–378. [Google Scholar] [CrossRef]
- Hermann, P.C.; Huber, S.L.; Herrler, T.; Aicher, A.; Ellwart, J.W.; Guba, M.; Bruns, C.J.; Heeschen, C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007, 1, 313–323. [Google Scholar] [CrossRef]
- Hermann, P.C.; Sainz, B. Pancreatic cancer stem cells: A state or an entity? Semin. Cancer Biol. 2018, 53, 223–231. [Google Scholar] [CrossRef]
- Moore, P.S.; Sipos, B.; Orlandini, S.; Sorio, C.; Real, F.X.; Lemoine, N.R.; Gress, T.; Bassi, C.; Klöppel, G.; Kalthoff, H. Genetic profile of 22 pancreatic carcinoma cell lines. Virchows Arch. 2001, 439, 798–802. [Google Scholar] [CrossRef]
- Monti, P.; Marchesi, F.; Reni, M.; Mercalli, A.; Sordi, V.; Zerbi, A.; Balzano, G.; Di Carlo, V.; Allavena, P.; Piemonti, L. A comprehensive in vitro characterization of pancreatic ductal carcinoma cell line biological behavior and its correlation with the structural and genetic profile. Virchows Arch. 2004, 445, 236–247. [Google Scholar] [CrossRef]
- Sipos, B.; Möser, S.; Kalthoff, H.; Török, V.; Löhr, M.; Klöppel, G. A comprehensive characterization of pancreatic ductal carcinoma cell lines: Towards the establishment of an in vitro research platform. Virchows Arch. 2003, 442, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Dugnani, E.; Sordi, V.; Pellegrini, S.; Chimienti, R.; Marzinotto, I.; Pasquale, V.; Liberati, D.; Balzano, G.; Doglioni, C.; Reni, M. Gene expression analysis of embryonic pancreas development master regulators and terminal cell fate markers in resected pancreatic cancer: A correlation with clinical outcome. Pancreatology 2018, 18, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, F.; Piemonti, L.; Fedele, G.; Destro, A.; Roncalli, M.; Albarello, L.; Doglioni, C.; Anselmo, A.; Doni, A.; Bianchi, P. The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res. 2008, 68, 9060–9069. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, F.; Monti, P.; Leone, B.E.; Zerbi, A.; Vecchi, A.; Piemonti, L.; Mantovani, A.; Allavena, P. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res. 2004, 64, 8420–8427. [Google Scholar] [CrossRef]
- Nakata, B.; Fukunaga, S.; Noda, E.; Amano, R.; Yamada, N.; Hirakawa, K. Chemokine receptor CCR7 expression correlates with lymph node metastasis in pancreatic cancer. Oncology 2008, 74, 69–75. [Google Scholar] [CrossRef]
- Penchev, V.R.; Rasheed, Z.A.; Maitra, A.; Matsui, W. Heterogeneity and targeting of pancreatic cancer stem cells. Clin. Cancer Res. 2012, 18, 4277–4284. [Google Scholar] [CrossRef]
- Vaz, A.P.; Ponnusamy, M.P.; Seshacharyulu, P.; Batra, S.K. A concise review on the current understanding of pancreatic cancer stem cells. J. Cancer Stem Cell Res. 2014, 2, e1004. [Google Scholar] [CrossRef]
- Bünger, S.; Barow, M.; Thorns, C.; Freitag-Wolf, S.; Danner, S.; Tiede, S.; Pries, R.; Görg, S.; Bruch, H.-P.; Roblick, U. Pancreatic carcinoma cell lines reflect frequency and variability of cancer stem cell markers in clinical tissue. Eur. Surg. Res. 2012, 49, 88–98. [Google Scholar] [CrossRef]
- Shah, A.N.; Summy, J.M.; Zhang, J.; Park, S.I.; Parikh, N.U.; Gallick, G.E. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann. Surg. Oncol. 2007, 14, 3629–3637. [Google Scholar] [CrossRef]
- Lee, C.J.; Simeone, D.M.; Lee, C.; Zielske, S.; Dosch, J.; Ljungman, M. 140. Pancreatic cancer stem cells are resistant to ionizing radiation and the chemotherapeutic agent gemcitabine. J. Surg. Res. 2008, 144, 238. [Google Scholar] [CrossRef]
- Yao, H.; Yang, Z.; Liu, Z.; Miao, X.; Yang, L.; Li, D.; Zou, Q.; Yuan, Y. Glypican-3 and KRT19 are markers associating with metastasis and poor prognosis of pancreatic ductal adenocarcinoma. Cancer Biomark. 2016, 17, 397–404. [Google Scholar] [CrossRef]
- Rhee, H.; Kim, H.-Y.; Choi, J.-H.; Woo, H.G.; Yoo, J.E.; Nahm, J.H.; Choi, J.-S.; Park, Y.N. Keratin 19 Expression in hepatocellular carcinoma is regulated by fibroblast-derived HGF via a MET-ERK1/2-AP1 and SP1 AxisKRT19 in HCC is regulated by CAF via HGF-MET-AP1 and SP1. Cancer Res. 2018, 78, 1619–1631. [Google Scholar] [CrossRef]
- Muraguchi, T.; Tanaka, S.; Yamada, D.; Tamase, A.; Nakada, M.; Nakamura, H.; Hoshii, T.; Ooshio, T.; Tadokoro, Y.; Naka, K. NKX2. 2 suppresses self-renewal of glioma-initiating cells. Cancer Res. 2011, 71, 1135–1145. [Google Scholar] [CrossRef]
- Delitto, D.; Perez, C.; Han, S.; Gonzalo, D.H.; Pham, K.; Knowlton, A.E.; Graves, C.L.; Behrns, K.E.; Moldawer, L.L.; Thomas, R.M. Downstream mediators of the intratumoral interferon response suppress antitumor immunity, induce gemcitabine resistance and associate with poor survival in human pancreatic cancer. Cancer Immunol. Immunother. 2015, 64, 1553–1563. [Google Scholar] [CrossRef]
- Lunardi, S.; Jamieson, N.B.; Lim, S.Y.; Griffiths, K.L.; Carvalho-Gaspar, M.; Al-Assar, O.; Yameen, S.; Carter, R.C.; McKay, C.J.; Spoletini, G. IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget 2014, 5, 11064. [Google Scholar] [CrossRef]
- Gharibi, A.; La Kim, S.; Molnar, J.; Brambilla, D.; Adamian, Y.; Hoover, M.; Hong, J.; Lin, J.; Wolfenden, L.; Kelber, J.A. ITGA1 is a pre-malignant biomarker that promotes therapy resistance and metastatic potential in pancreatic cancer. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Tang, K.-D.; Holzapfel, B.M.; Liu, J.; Lee, T.K.-W.; Ma, S.; Jovanovic, L.; An, J.; Russell, P.J.; Clements, J.A.; Hutmacher, D.W. Tie-2 regulates the stemness and metastatic properties of prostate cancer cells. Oncotarget 2016, 7, 2572. [Google Scholar] [CrossRef]
- Lee, O.-H.; Xu, J.; Fueyo, J.; Fuller, G.N.; Aldape, K.D.; Alonso, M.M.; Piao, Y.; Liu, T.-J.; Lang, F.F.; Bekele, B.N. Expression of the receptor tyrosine kinase Tie2 in neoplastic glial cells is associated with integrin β1-dependent adhesion to the extracellular matrix. Mol. Cancer Res. 2006, 4, 915–926. [Google Scholar] [CrossRef]
- Martin, V.; Xu, J.; Pabbisetty, S.; Alonso, M.; Liu, D.; Lee, O.; Gumin, J.; Bhat, K.; Colman, H.; Lang, F. Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene 2009, 28, 2358–2363. [Google Scholar] [CrossRef]
- Addison, C.L.; Daniel, T.O.; Burdick, M.D.; Liu, H.; Ehlert, J.E.; Xue, Y.Y.; Buechi, L.; Walz, A.; Richmond, A.; Strieter, R.M. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J. Immunol. 2000, 165, 5269–5277. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.A.; Volpert, O.V.; Woods, J.M.; Kumar, P.; Harlow, L.A.; Koch, A.E. Migration inhibitory factor mediates angiogenesis via mitogen-activated protein kinase and phosphatidylinositol kinase. Circ. Res. 2003, 93, 321–329. [Google Scholar] [CrossRef]
- Cabebe, E.; Fisher, G.A. Clinical trials of VEGF receptor tyrosine kinase inhibitors in pancreatic cancer. Expert Opin. Investig. Drugs 2007, 16, 467–476. [Google Scholar] [CrossRef]
- Fu, S.; Chen, X.; Lin, H.-J.; Lin, J. Inhibition of interleukin 8/C-XC chemokine receptor 1,/2 signaling reduces malignant features in human pancreatic cancer cells. Int. J. Oncol. 2018, 53, 349–357. [Google Scholar] [CrossRef]
- Wen, Z.; Liu, Q.; Wu, J.; Xu, B.; Wang, J.; Liang, L.; Guo, Y.; Peng, M.; Zhao, Y.; Liao, Q. Fibroblast activation protein α-positive pancreatic stellate cells promote the migration and invasion of pancreatic cancer by CXCL1-mediated Akt phosphorylation. Ann. Transl. Med. 2019, 7, 532. [Google Scholar] [CrossRef]
- Feng, L.; Qi, Q.; Wang, P.; Chen, H.; Chen, Z.; Meng, Z.; Liu, L. Serum levels of IL-6, IL-8, and IL-10 are indicators of prognosis in pancreatic cancer. J. Int. Med. Res. 2018, 46, 5228–5236. [Google Scholar] [CrossRef]
- Gao, H.-F.; Cheng, C.-S.; Tang, J.; Li, Y.; Chen, H.; Meng, Z.-Q.; Chen, Z.; Chen, L.-Y. CXCL9 chemokine promotes the progression of human pancreatic adenocarcinoma through STAT3-dependent cytotoxic T lymphocyte suppression. Aging 2020, 12, 502. [Google Scholar] [CrossRef]
- Masui, T.; Hosotani, R.; Doi, R.; Miyamoto, Y.; Tsuji, S.; Nakajima, S.; Kobayashi, H.; Koizumi, M.; Toyoda, E.; Tulachan, S.S.; et al. Expression of IL-6 receptor in pancreatic cancer: Involvement in VEGF induction. Anticancer Res. 2002, 22, 4093–4100. [Google Scholar]
- Miyamoto, Y.; Hosotani, R.; Doi, R.; Wada, M.; Ida, J.; Tsuji, S.; Kawaguchi, M.; Nakajima, S.; Kobayashi, H.; Masui, T.; et al. Interleukin-6 inhibits radiation induced apoptosis in pancreatic cancer cells. Anticancer Res. 2001, 21, 2449–2456. [Google Scholar]
- Li, X.; Zhao, H.; Gu, J.; Zheng, L. Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): A systematic review and meta-analysis. Int. J. Clin. Exp. Pathol. 2015, 8, 12084. [Google Scholar]
- Maeda, S.; Shinchi, H.; Kurahara, H.; Mataki, Y.; Maemura, K.; Sato, M.; Natsugoe, S.; Aikou, T.; Takao, S. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br. J. Cancer 2008, 98, 1389–1397. [Google Scholar] [CrossRef]
- Ikenaga, N.; Ohuchida, K.; Mizumoto, K.; Yu, J.; Kayashima, T.; Hayashi, A.; Nakata, K.; Tanaka, M. Characterization of CD24 expression in intraductal papillary mucinous neoplasms and ductal carcinoma of the pancreas. Hum. Pathol. 2010, 41, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Marechal, R.; Demetter, P.; Nagy, N.; Berton, A.; Decaestecker, C.; Polus, M.; Closset, J.; Devière, J.; Salmon, I.; Van Laethem, J.-L. High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma. Br. J. Cancer 2009, 100, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Sleightholm, R.L.; Neilsen, B.K.; Li, J.; Steele, M.M.; Singh, R.K.; Hollingsworth, M.A.; Oupicky, D. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol. Ther. 2017, 179, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, O.; Shimizu, K.; Semba, S.; Chiba, S.; Ku, Y.; Yokozaki, H.; Hori, Y. Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1α-dependent manner in pancreatic cancer cells. Pathobiology 2011, 78, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Nomura, A.; Banerjee, S.; Chugh, R.; Dudeja, V.; Yamamoto, M.; Vickers, S.M.; Saluja, A.K. CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget 2015, 6, 8313. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Arora, S.; Bhardwaj, A.; Srivastava, S.K.; Kadakia, M.P.; Wang, B.; Grizzle, W.E.; Owen, L.B.; Singh, S. CXCL12/CXCR4 protein signaling axis induces sonic hedgehog expression in pancreatic cancer cells via extracellular regulated kinase-and Akt kinase-mediated activation of nuclear factor κB: Implications for bidirectional tumor-stromal interactions. J. Biol. Chem. 2012, 287, 39115–39124. [Google Scholar] [CrossRef] [PubMed]
- Lubeseder-Martellato, C.; Hidalgo-Sastre, A.; Hartmann, C.; Alexandrow, K.; Kamyabi-Moghaddam, Z.; Sipos, B.; Wirth, M.; Neff, F.; Reichert, M.; Heid, I. Membranous CD24 drives the epithelial phenotype of pancreatic cancer. Oncotarget 2016, 7, 49156. [Google Scholar] [CrossRef]
- Ding, Q.; Miyazaki, Y.; Tsukasa, K.; Matsubara, S.; Yoshimitsu, M.; Takao, S. CD133 facilitates epithelial-mesenchymal transition through interaction with the ERK pathway in pancreatic cancer metastasis. Mol. Cancer 2014, 13, 15. [Google Scholar] [CrossRef]
- Banerjee, S.; Nomura, A.; Sangwan, V.; Chugh, R.; Dudeja, V.; Vickers, S.M.; Saluja, A. CD133+ tumor initiating cells in a syngenic murine model of pancreatic cancer respond to minnelidepancreatic TICs in a syngenic murine model. Clin. Cancer Res. 2014, 20, 2388–2399. [Google Scholar] [CrossRef]
- Gzil, A.; Zarębska, I.; Bursiewicz, W.; Antosik, P.; Grzanka, D.; Szylberg, Ł. Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Mol. Biol. Rep. 2019, 46, 6629–6645. [Google Scholar] [CrossRef]
- Patil, K.; Khan, F.B.; Akhtar, S.; Ahmad, A.; Uddin, S. The plasticity of pancreatic cancer stem cells: Implications in therapeutic resistance. Cancer Metastasis Rev. 2021, 40, 691–720. [Google Scholar] [CrossRef]
- Furukawa, T.; Duguid, W.P.; Rosenberg, L.; Viallet, J.; Galloway, D.A.; Tsao, M.-S. Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am. J. Pathol. 1996, 148, 1763. [Google Scholar]
- Ricordi, C.; Lacy, P.E.; Scharp, D.W. Automated islet isolation from human pancreas. Diabetes 1989, 38, 140–142. [Google Scholar] [CrossRef]
- Roth, V. Doubling Time Computing. 2006. Available online: http://www.doubling-time.com/comput.php (accessed on 15 July 2022).
All 17 lines | N | LS | N | MS | N | HS | N | p | |
---|---|---|---|---|---|---|---|---|---|
pg/mL/24 h | pg/mL/24 h | pg/mL/24 h | pg/mL/24 h | ||||||
High-abundance secreted proteins >1000 pg/mL | |||||||||
VEGF | 13,749 (8978–36,740) | 0 | 10,112 (7488–14,906) | 0 | 36,741 (23,193–36,741) | 0 | 25,245 (8570–36,741) | 0 | 0.025 |
CXCL-1 | 7264 (8978–36,740) | 0 | 2072 (1217–13,779) | 0 | 17,593 (9661–28,839) | 0 | 5736 (4435–20,622) | 0 | 0.098 |
CXCL8 | 6917 (2272–9328) | 0 | 5420 (2272–7628) | 0 | 9365 (8738–10,404) | 0 | 4539 (766–9999) | 0 | 0.077 |
PDGF | 1700 (466–3457) | 0 | 1536 (463–2324) | 0 | 4832 (1885–6697) | 0 | 1225 (63–2474) | 0 | 0.12 |
MIF | 1637 (773–3332) | 0 | 1173 (454–3460) | 0 | 3151 (1573–3360) | 0 | 1554 (976–2382) | 0 | 0.59 |
Intermediate-abundance secreted proteins 1000—50 pg/mL | |||||||||
CXCL12 | 964 (739–1266) | 0 | 965 (601–1759) | 0 | 993 (776–1056) | 0 | 821 (202–998) | 0 | 0.52 |
SCGF-b | 821 (540–1745) | 0 | 660 (499–1857) | 0 | 866 (609–1054) | 0 | 1261 (551–18,671) | 0 | 0.81 |
CXCL10 | 619 (9.5–3537) | 6 | 158 (9–1550) | 4 | 3538 (2829–11,420) | 0 | 492 (9–29,443) | 2 | 0.08 |
IL-6 | 372 (16.2–1209) | 3 | 149 (14–441) | 2 | 1605 (1142–3008) | 0 | 55 (9–6508) | 1 | 0.044 |
IFN-g | 329 (6.4–647) | 5 | 86.9 (6–414) | 4 | 603 (511–1089) | 0 | 410 (27–913) | 1 | 0.065 |
CCL5 | 326 (143–1624) | 0 | 270 (147–1310) | 0 | 826 (370–14,137) | 0 | 143 (60–2292) | 0 | 0.18 |
IL-12p70 | 325 (254–540) | 0 | 267 (251–379) | 0 | 621 (51–677) | 0 | 426 (224–548) | 0 | 0.013 |
LIF | 108 (75–434) | 0 | 163 (75–373) | 0 | 289 (73–929) | 0 | 107 (42–426) | 0 | 0.88 |
M-CSF | 90 (25–665) | 3 | 88 (18.4–692) | 2 | 370 (144–1779) | 0 | 691 (49–896) | 1 | 0.25 |
SCF | 85 (39–199) | 0 | 91 (51–199) | 0 | 59.5 (24–84) | 0 | 244 (76–1007) | 0 | 0.14 |
IL-7 | 78 (48–229) | 0 | 52 (42–105) | 0 | 230 (211–310) | 0 | 263 (53–522) | 0 | 0.028 |
IL-1RA | 59 (20–166) | 6 | 41 (20–64) | 4 | 318 (111–4053) | 0 | 44 (20–4648) | 2 | 0.056 |
IL-13 | 59 (48–70) | 0 | 55 (43–64) | 0 | 71(68–78) | 0 | 56 (43–69) | 0 | 0.12 |
Low-abundance secreted proteins <50 pg/mL | |||||||||
G-CSF | 45 (6–124) | 3 | 20.5 (5.6–84.4) | 2 | 82.9 (41–5061) | 0 | 362 (7.7–1741) | 1 | 0.29 |
IL-4 | 13.2 (3.6–19.5) | 4 | 11 (4.6–15.4) | 2 | 18 (8.5–35) | 0 | 12 (1.3–29) | 2 | 0.48 |
CCL3 | 38 (5.7–48) | 5 | 31.4 (5.7–38.5) | 3 | 49.7 (42.4–85.8) | 0 | 26.5 (5.7–57.3) | 2 | 0.044 |
IL-10 | 30 (7.1–39.7) | 5 | 22.7 (7.1–32) | 4 | 40 (37.7–44) | 0 | 208 (13–736) | 1 | 0.025 |
CXCL9 | 6.1 (1.9–30) | 5 | 1.9 (1.9–4.6) | 5 | 19.5 (8.5–34) | 0 | 38 (15–141) | 0 | 0.01 |
IL-18 | 6.1 (3.4–8.4) | 5 | 6.1 (3.4–8.4) | 3 | 6.2 (3.9–7.04) | 1 | 16.9 (3.6–273) | 1 | 0.78 |
IL1a | 8.7 (6.4–236) | 6 | 6.4 (6.4–97.5) | 5 | 163 (22–854) | 0 | 9.7 (6.9–530) | 1 | 0.087 |
CCL2 | 26.5 (7.2–973) | 8 | 7.2 (7.2–689) | 6 | 325 (44–6346) | 0 | 28 (7.2–1083) | 2 | 0.18 |
TNF-a | 9.7 (9.7–23) | 9 | 9.7 (9.7–10) | 7 | 22.6 (16.3–40.1) | 0 | 15 (9.7–29) | 2 | 0.073 |
HGF | 8.3 (8.3–13.8) | 9 | 8.3 (8.3–13.8) | 5 | 5.4 (8.3–10.5) | 2 | 26.7 (8.3–90.4) | 2 | 0.66 |
CCL27 | 6.9 (6.9–24) | 9 | 6.9 (6.9–20) | 5 | 6.9 (6.9–18.8) | 3 | 57.1 (8.1–152) | 1 | 0.28 |
IL-9 | 5.7 (5.7–104) | 9 | 5.7 (5.7–49) | 7 | 84 (48–128) | 0 | 38 (5.7–105) | 2 | 0.091 |
CCL4 | 5.6 (5.6–24.3) | 9 | 5.6 (5.6–13.8) | 6 | 22.6 (9.3–55.7) | 1 | 14.6 (5.6–86.6) | 2 | 0.25 |
CCL7 | 4.8 (4.8–94) | 9 | 4.8 (4.8–86.6) | 4 | 4.8 (4.8–4.8) | 3 | 74.7 (4.8–239) | 2 | 0.53 |
bNGF | 4.1 (4.1–16) | 9 | 4.1 (4.1–19.5) | 7 | 9 (4.9–17.8) | 0 | 6.1 (4.1–27.6) | 2 | 0.28 |
IL-2Ra | 2.3 (2.36–60) | 9 | 48.4 (2.36–72.3) | 3 | 2.3 (2.3–2.3) | 4 | 29 (2.3–108) | 2 | 0.14 |
Under the limit of detection | |||||||||
CCL11 | <8 | 10 | - | 8 | - | 0 | - | 2 | nt |
IL-15 | <7.3 | 11 | - | 8 | - | 1 | - | 2 | nt |
GM-CSF | <3 | 11 | - | 8 | - | 1 | - | 2 | nt |
IL-12p40 | <8.2 | 13 | - | 7 | - | 4 | - | 2 | nt |
IL1b | <10.7 | 14 | - | 8 | - | 3 | - | 3 | nt |
IL-5 | <10 | 14 | - | 8 | - | 4 | - | 2 | nt |
FGFb | <4.8 | 14 | - | 9 | - | 1 | - | 4 | nt |
IL-16 | <3.8 | 14 | - | 8 | - | 4 | - | 2 | nt |
IL-3 | <7.9 | 14 | - | 8 | - | 4 | - | 2 | nt |
IL-2 | <5.7 | 15 | - | 9 | - | 3 | - | 3 | nt |
IFNa2 | <0.86 | 15 | - | 9 | - | 4 | - | 2 | nt |
TNF-b | <6.8 | 16 | - | 9 | - | 4 | - | 3 | nt |
TRAIL | <6.3 | 16 | - | 9 | - | 4 | - | 3 | nt |
IL-17 | <7.4 | 17 | - | 9 | - | 4 | - | 4 | nt |
CXCR4/CD133 | ESA/CD24/CD44 | |||||
---|---|---|---|---|---|---|
HST (n = 22) | LST (n = 24) | p | HST (n = 20) | LST (n = 21) | p | |
Patients characteristics | ||||||
Age (years; mean ± sd) | 57.7 ± 10.5 | 59.5 ± 9.4 | 0.87 | 67.5 ± 9.1 | 65 ± 10.5 | 0.45 |
Sex (M/F) | 12/10 | 14/10 | 0.8 | 13/7 | 8/13 | 0.12 |
Neo-adjuvant CT [n, (%)] | 3 (13.6) | 0 (0) | 0.1 | 2 (10) | 1 (4.8) | 0.61 |
Adjuvant CT/RT [n, (%)] | 13/19 (68.4) | 16/20 (80) | 0.48 | 11/17 (64.7) | 17/17 (100) | 0.018 |
Overall survival (median) | 355d | 1004d | 0.008 * 0.019 § | 412d | 778d | 0.58 * 0.07 § |
Disease free survival (median) | 307d | 465d | 0.26 | 255d | 435d | 0.62 |
Local Relapse [n, (%)] | 6 (27.3) | 5 (20.8) | 0.73 | 1 (5) | 7 (33.3) | 0.045 |
Distant relapse [n, (%)] | 10 (45.5) | 11 (45.8) | 1 | 12 (60) | 7 (33.3) | 0.12 |
-Liver | 4 (40) | 9 (81.8) | 0.08 | 6 (50) | 6 (86) | 0.17 |
-Lung | 2 (20) | 1 (9.1) | 0.59 | 2 (17) | 0 (0) | 0.51 |
-Lymph nodes | 4 (40) | 4 (36.4) | 1 | 3 (25) | 4 (57) | 0.33 |
-Peritoneal Carcinomatosis | 2 (20) | 2 (18.2) | 1 | 1 (8.39 | 1 (14.3) | 1 |
-Other sites | 1 (10) | 2 (18.2) | 1 | 0 (0) | 2 (28.6) | 0.12 |
Tumor characteristics | ||||||
Tumor size (cm) | 2.5 (2–3) | 2.9 (2–3.9) | 0.34 | 2.6 (2–3) | 2.8 (2–3.5) | 0.51 |
pT1 [n, (%)] | 0 (0) | 1 (4) | 0.38 | 1 (5) | 0 (0) | 0.33 |
pT2 [n, (%)] | 0 (0) | 1 (4) | 1 (5) | 0 (0) | ||
pT3 [n, (%)] | 22 (100) | 22 (92) | 18(90) | 21 (100) | ||
pN1 [n, (%)] | 18 (81.8) | 15 (62.5) | 0.197 | 14 (70) | 15 (71.4) | 1 |
Lymph nodes pos (%) | 31 (11–50) | 33 (19–41) | 0.95 | 30 (12.5–71) | 32 (17–45) | 0.79 |
pM1 [n, (%)] | 2 (9.1) | 3 (12.5) | 1 | 1 (5) | 3 (14.3) | 0.61 |
R1 [n, (%)] | 12 (54.2) | 13 (54.2) | 1 | 10 (50) | 13 (61.9) | 0.54 |
Grading [n, (%)]: | 0.39 | 1 | ||||
G1 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||
G2 | 14 (64) | 12 (50) | 11 (55) | 12 (57) | ||
G3 | 8 (36) | 12 (50) | 9 (45) | 9 (43) | ||
CXCR4+CD133+ | 1.4 (1–1.9) | 0.32 (0.1–0.5) | <0.001 | 1 (0.17–1.6) | 0.7 (0.26–1.1) | 0.4 |
CXCR4+CD133− | 2.03 (1.2–8) | 0.9 (0.26–3.1) | 0.041 | 2.5 (1.3–6.5) | 1.9 (0.21–4.2) | 0.11 |
CXCR4−CD133+ | 4 (0.71–8.8) | 2.36 (1–4.8) | 0.38 | 2.8 (0.5–7.5) | 1.8 (0.8–4.4) | 0.75 |
CXCR4−CD133− | 90 (82–95) | 95 (93–98) | 0.01 | 93 (82–95) | 94 (86–98) | 0.18 |
CXCR4+ | 3.5 (2.4–9.6) | 1.5 (0.36–3.7) | 0.0023 | 3.5 (2–9.5) | 2.8 (0.77–4.8) | 0.2 |
CD133+ | 4.8 (2.2–11.4) | 2.7 (0.1–5.4) | 0.06 | 3.8 (0.2–11.3) | 2.97 (1.3–5.3) | 0.52 |
ESA+CD24+CD44− | 3.8 (0.62–7.9) | 1.7 (0.34–3.7) | 0.25 | 4.2 (1.4–8.3) | 1.3 (0.21–3.7) | 0.035 |
ESA+CD24+CD44+ | 1.9 (0.94–2.5) | 1.7 (0.3–2.6) | 0.52 | 2.6 (2.1–4) | 0.8 (0.1–1.36) | <0.001 |
ESA+CD24−CD44+ | 0.9 (0.25–2.7) | 2.04 (0.6–3.6) | 0.15 | 1.96 (0.5–3.4) | 0.8 (0.21–2.3) | 0.12 |
ESA+CD24−CD44− | 12.3 (7.4–36) | 0.9 (0.25–2.7) | <0.001 | 14.9 (5.9–22) | 8.7 (3–36) | 0.82 |
ESA−CD24+CD44− | 1.41 (0.3–6.2) | 1.14 (0.2–2.1) | 0.12 | 1.2 (0.3–3.1) | 1.4 (0.05–3) | 0.84 |
ESA−CD24+CD44+ | 1.36 (0.4–3) | 0.14 (0.02–0.7) | 0.005 | 1.1 (0.2–2) | 0.1 (0.01–1) | 0.027 |
ESA−CD24−CD44− | 48 (38–63) | 57 (36–70) | 0.31 | 50 (28–65) | 53 (36–68) | 0.61 |
ESA−CD24−CD44+ | 13 (6.9–18.4) | 12.3 (4.7–18) | 0.55 | 14.6 (8.7–18) | 6.6 (3–18.5) | 0.09 |
ESA+ | 18 (5–36) | 22 (11–44) | 0.35 | 25 (16–38) | 14 (5–44) | 0.26 |
CD24+ | 11.5 (5.9–31) | 6.3 (3.4–13.8) | 0.08 | 10 (6.5–17.2) | 5.2 (2–14.2) | 0.030 |
CD44+ | 19.2 (9–24.6) | 13.6 (5–22.5) | 0.27 | 21 (19–26) | 11.2 (5.6–21) | 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, B.; Dugnani, E.; Sordi, V.; Pasquale, V.; Pellegrini, S.; Reni, M.; Balzano, G.; Piemonti, L. A Comprehensive Characterization of Stemness in Cell Lines and Primary Cells of Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2022, 23, 10663. https://doi.org/10.3390/ijms231810663
Ferrara B, Dugnani E, Sordi V, Pasquale V, Pellegrini S, Reni M, Balzano G, Piemonti L. A Comprehensive Characterization of Stemness in Cell Lines and Primary Cells of Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences. 2022; 23(18):10663. https://doi.org/10.3390/ijms231810663
Chicago/Turabian StyleFerrara, Benedetta, Erica Dugnani, Valeria Sordi, Valentina Pasquale, Silvia Pellegrini, Michele Reni, Gianpaolo Balzano, and Lorenzo Piemonti. 2022. "A Comprehensive Characterization of Stemness in Cell Lines and Primary Cells of Pancreatic Ductal Adenocarcinoma" International Journal of Molecular Sciences 23, no. 18: 10663. https://doi.org/10.3390/ijms231810663
APA StyleFerrara, B., Dugnani, E., Sordi, V., Pasquale, V., Pellegrini, S., Reni, M., Balzano, G., & Piemonti, L. (2022). A Comprehensive Characterization of Stemness in Cell Lines and Primary Cells of Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 23(18), 10663. https://doi.org/10.3390/ijms231810663