Modulation of Immune Cells as a Therapy for Cutaneous Lupus Erythematosus
Abstract
:1. Introduction
2. Factors Triggering the Development of SLE
3. SLE Can Induce Cutaneous Lesions in Patients
3.1. Acute Cutaneous Lupus Erythematosus (ACLE)
3.2. Subacute Cutaneous Lupus Erythematosus (SCLE)
3.3. Chronic Cutaneous Lupus Erythematosus (CCLE)
4. Immunological Involvement in the Development of CLE
5. Current Treatments against Cutaneous Lupus
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mccarty, D.J.; Manzi, S.; Medsger, T.A.; Ramsey-Goldman, R.; Laporte, R.E.; Kwoh, C.K. Incidence of Systemic Lupus Erythematosus. Race and Gender Differences. Arthritis Rheum. 1995, 38, 1260–1270. [Google Scholar] [CrossRef]
- Tanaka, Y. State-of-the-Art Treatment of Systemic Lupus Erythematosus. Int. J. Rheum. Dis. 2020, 23, 465–471. [Google Scholar] [CrossRef]
- Fulgeri, C.; Carpio, J.D.; Ardiles, L. Kidney Injury in Systemic Lupus Erythematosus: Lack of Correlation between Clinical and Histological Data. Nefrologia 2018, 38, 386–393. [Google Scholar] [CrossRef]
- Rees, F.; Doherty, M.; Grainge, M.J.; Lanyon, P.; Zhang, W. The Worldwide Incidence and Prevalence of Systemic Lupus Erythematosus: A Systematic Review of Epidemiological Studies. Rheumatology 2017, 56, 1945–1961. [Google Scholar] [CrossRef]
- Grönhagen, C.M.; Fored, C.M.; Granath, F.; Nyberg, F. Cutaneous Lupus Erythematosus and the Association with Systemic Lupus Erythematosus: A Population-Based Cohort of 1088 Patients in Sweden. Br. J. Dermatol. 2011, 164, 1335–1341. [Google Scholar] [CrossRef]
- Lee, S.K.; Baek, J.; Roh, J.Y.; Kim, H.J. Clinical Characteristics of Pediatric Cutaneous Lupus Erythematosus: Experience from a Tertiary Referral Center in Korea. Lupus 2019, 28, 888–892. [Google Scholar] [CrossRef]
- Curtiss, P.; Walker, A.M.; Chong, B.F. A Systematic Review of the Progression of Cutaneous Lupus to Systemic Lupus Erythematosus. Front. Immunol. 2022, 13, 982. [Google Scholar] [CrossRef]
- Durosaro, O.; Davis, M.D.P.; Reed, K.B.; Rohlinger, A.L. Incidence of Cutaneous Lupus Erythematosus, 1965-2005: A Population-Based Study. Arch. Dermatol. 2009, 145, 249–253. [Google Scholar] [CrossRef]
- Yell, J.A.; Burge, S.M. The Effect of Hormonal Changes on Cutaneous Disease in Lupus Erythematosus. Br. J. Dermatol. 1993, 129, 18–22. [Google Scholar] [CrossRef]
- Patsinakidis, N.; Gambichler, T.; Lahner, N.; Moellenhoff, K.; Kreuter, A. Cutaneous Characteristics and Association with Antinuclear Antibodies in 402 Patients with Different Subtypes of Lupus Erythematosus. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 2097–2104. [Google Scholar] [CrossRef]
- Popovic, K.; Brauner, S.; Ek, M.; Wahren-Herlenius, M.; Nyberg, F. Fine Specificity of the Ro/SSA Autoantibody Response in Relation to Serological and Clinical Findings in 96 Patients with Self-Reported Cutaneous Symptoms Induced by the Sun. Lupus 2007, 16, 10–17. [Google Scholar] [CrossRef]
- Vera-Recabarren, M.A.; García-Carrasco, M.; Ramos-Casals, M.; Herrero, C. Cutaneous Lupus Erythematosus: Clinical and Immunological Study of 308 Patients Stratified by Gender. Clin. Exp. Dermatol. 2010, 35, 729–735. [Google Scholar] [CrossRef]
- Anti C1q Antibodies in Cutaneous Lupus Erythematosus—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/21428180/ (accessed on 19 June 2022).
- Hayashi, A.; Nagafuchi, H.; Ito, I.; Hirota, K.; Yoshida, M.; Ozaki, S. Lupus Antibodies to the HMGB1 Chromosomal Protein: Epitope Mapping and Association with Disease Activity. Mod. Rheumatol. 2009, 19, 283–292. [Google Scholar] [CrossRef]
- Caricchio, R.; McPhie, L.; Cohen, P.L. Ultraviolet B Radiation-Induced Cell Death: Critical Role of Ultraviolet Dose in Inflammation and Lupus Autoantigen Redistribution. J. Immunol. 2003, 171, 5778–5786. [Google Scholar] [CrossRef]
- Kuhn, A.; Wenzel, J.; Bijl, M. Lupus Erythematosus Revisited. Semin. Immunopathol. 2016, 38, 97–112. [Google Scholar] [CrossRef]
- Tsokos, G.C.; Lo, M.S.; Reis, P.C.; Sullivan, K.E. New Insights into the Immunopathogenesis of Systemic Lupus Erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef]
- Bentham, J.; Morris, D.L.; Cunninghame Graham, D.S.; Pinder, C.L.; Tombleson, P.; Behrens, T.W.; Martín, J.; Fairfax, B.P.; Knight, J.C.; Chen, L.; et al. Genetic Association Analyses Implicate Aberrant Regulation of Innate and Adaptive Immunity Genes in the Pathogenesis of Systemic Lupus Erythematosus. Nat. Genet. 2015, 47, 1457–1464. [Google Scholar] [CrossRef]
- Cooper, G.S.; Wither, J.; Bernatsky, S.; Claudio, J.O.; Clarke, A.; Rioux, J.D.; Fortin, P.R. Occupational and Environmental Exposures and Risk of Systemic Lupus Erythematosus: Silica, Sunlight, Solvents. Rheumatology 2010, 49, 2172–2180. [Google Scholar] [CrossRef]
- Pan, L.; Lu, M.P.; Wang, J.H.; Xu, M.; Yang, S.R. Immunological Pathogenesis and Treatment of Systemic Lupus Erythematosus. World J. Pediatrics 2020, 16, 19–30. [Google Scholar] [CrossRef]
- Han, G.M.; Chen, S.L.; Shen, N.; Ye, S.; Bao, C.D.; Gu, Y.Y. Analysis of Gene Expression Profiles in Human Systemic Lupus Erythematosus Using Oligonucleotide Microarray. Genes Immun. 2003, 4, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Prchal, M.; Pilz, A.; Simma, O.; Lingnau, K.; von Gabain, A.; Strobl, B.; Müller, M.; Decker, T. Type I Interferons as Mediators of Immune Adjuvants for T- and B Cell-Dependent Acquired Immunity. Vaccine 2009, 27 (Suppl. S6), G17–G20. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Takaoka, A. The Interferon-Alpha/Beta System in Antiviral Responses: A Multimodal Machinery of Gene Regulation by the IRF Family of Transcription Factors. Curr. Opin. Immunol. 2002, 14, 111–116. [Google Scholar] [CrossRef]
- Alarcón-Riquelme, M.E.; Möller, G.; Fernández, C. Age-Dependent Responsiveness to Interleukin-6 in B Lymphocytes from a Systemic Lupus Erythematosus-Prone (NZB × NZW)F1 Hybrid. Clin. Immunol. Immunopathol. 1992, 62, 264–269. [Google Scholar] [CrossRef]
- Ding, J.; Su, S.; You, T.; Xia, T.; Lin, X.; Chen, Z.; Zhang, L. Serum Interleukin-6 Level Is Correlated with the Disease Activity of Systemic Lupus Erythematosus: A Meta-Analysis. Clinics 2020, 75, e1801. [Google Scholar] [CrossRef]
- Herrada, A.A.; Escobedo, N.; Iruretagoyena, M.; Valenzuela, R.A.; Burgos, P.I.; Cuitino, L.; Llanos, C. Innate Immune Cells’ Contribution to Systemic Lupus Erythematosus. Front. Immunol. 2019, 10, 772. [Google Scholar] [CrossRef]
- Chan, O.T.M.; Hannum, L.G.; Haberman, A.M.; Madaio, M.P.; Shlomchik, M.J. A Novel Mouse with B Cells but Lacking Serum Antibody Reveals an Antibody-Independent Role for B Cells in Murine Lupus. J. Exp. Med. 1999, 189, 1639–1647. [Google Scholar] [CrossRef]
- Frieri, M. Mechanisms of Disease for the Clinician: Systemic Lupus Erythematosus. Ann. Allergy Asthma Immunol. 2013, 110, 228–232. [Google Scholar] [CrossRef]
- Yell, J.A.; Mbuagbaw, J.; Burge, S.M. Cutaneous Manifestations of Systemic Lupus Erythematosus. Br. J. Dermatol. 1996, 135, 156–164. [Google Scholar] [CrossRef]
- Jarukitsopa, S.; Hoganson, D.D.; Crowson, C.S.; Sokumbi, O.; Davis, M.D.; Michet, C.J.; Matteson, E.L.; Maradit Kremers, H.; Chowdhary, V.R. Epidemiology of Systemic Lupus Erythematosus and Cutaneous Lupus in a Predominantly White Population in the United States. Arthritis Care Res. 2015, 67, 817. [Google Scholar] [CrossRef]
- Ribero, S.; Sciascia, S.; Borradori, L.; Lipsker, D. The Cutaneous Spectrum of Lupus Erythematosus. Clin. Rev. Allergy Immunol. 2017, 53, 291–305. [Google Scholar] [CrossRef]
- Gilliam, J.N.; Sontheimer, R.D. Distinctive Cutaneous Subsets in the Spectrum of Lupus Erythematosus. J. Am. Acad. Dermatol. 1981, 4, 471–475. [Google Scholar] [CrossRef]
- Hersh, A.O.; Arkin, L.M.; Prahalad, S. Immunogenetics of Cutaneous Lupus Erythematosus. Curr. Opin. Pediatrics 2016, 28, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, F.; Perricone, C.; Borgiani, P.; Ciccacci, C.; Rufini, S.; Cipriano, E.; Alessandri, C.; Spinelli, F.R.; Sili Scavalli, A.; Novelli, G.; et al. Genetic Factors in Systemic Lupus Erythematosus: Contribution to Disease Phenotype. J. Immunol. Res. 2015, 2015, 745647. [Google Scholar] [CrossRef] [PubMed]
- Kim-Howard, X.; Maiti, A.K.; Anaya, J.M.; Bruner, G.R.; Brown, E.; Merrill, J.T.; Edberg, J.C.; Petri, M.A.; Reveille, J.D.; Ramsey-Goldman, R.; et al. ITGAM Coding Variant (Rs1143679) Influences the Risk of Renal Disease, Discoid Rash and Immunological Manifestations in Patients with Systemic Lupus Erythematosus with European Ancestry. Ann. Rheum. Dis. 2010, 69, 1329–1332. [Google Scholar] [CrossRef]
- Järvinen, T.M.; Hellquist, A.; Koskenmies, S.; Einarsdottir, E.; Panelius, J.; Hasan, T.; Julkunen, H.; Padyukov, L.; Kvarnström, M.; Wahren-Herlenius, M.; et al. Polymorphisms of the ITGAM Gene Confer Higher Risk of Discoid Cutaneous than of Systemic Lupus Erythematosus. PLoS ONE 2010, 5, e14212. [Google Scholar] [CrossRef]
- Oh, S.H.; Roh, H.J.; Kwon, J.E.; Lee, S.H.; Kim, J.Y.; Choi, H.J.; Lim, B.J. Expression of Interleukin-17 Is Correlated with Interferon-α Expression in Cutaneous Lesions of Lupus Erythematosus. Clin. Exp. Dermatol. 2011, 36, 512–520. [Google Scholar] [CrossRef]
- Sanchez, E.; Nadig, A.; Richardson, B.C.; Freedman, B.I.; Kaufman, K.M.; Kelly, J.A.; Niewold, T.B.; Kamen, D.L.; Gilkeson, G.S.; Ziegler, J.T.; et al. Phenotypic Associations of Genetic Susceptibility Loci in Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2011, 70, 1752–1757. [Google Scholar] [CrossRef]
- de Azevêdo Silva, J.; Fernandes, K.M.; Pancotto, J.A.T.; Fragoso, T.S.; Donadi, E.A.; Crovella, S.; Sandrin-Garcia, P. Vitamin D Receptor (VDR) Gene Polymorphisms and Susceptibility to Systemic Lupus Erythematosus Clinical Manifestations. Lupus 2013, 22, 1110–1117. [Google Scholar] [CrossRef]
- Fischer, G.F.; Pickl, W.F.; Faé, I.; Anegg, B.; Milota, S.; Volc-Platzer, B. Association between Chronic Cutaneous Lupus Erythematosus and HLA Class II Alleles. Hum. Immunol. 1994, 41, 280–284. [Google Scholar] [CrossRef]
- Millard, T.P.; Hawk, J.L.M.; Kondeatis, E.; Vaughan, R.W.; Lewis, C.M.; Khamashta, M.A.; Hughes, G.R.V.; McGregor, J.M. Polymorphic Light Eruption and the HLA DRB1*0301 Extended Haplotype Are Independent Risk Factors for Cutaneous Lupus Erythematosus. Lupus 2001, 10, 473–479. [Google Scholar] [CrossRef]
- Nakamura, K.; Jinnin, M.; Kudo, H.; Inoue, K.; Nakayama, W.; Honda, N.; Kajihara, I.; Masuguchi, S.; Fukushima, S.; Ihn, H. The Role of PSMB9 Upregulated by Interferon Signature in the Pathophysiology of Cutaneous Lesions of Dermatomyositis and Systemic Lupus Erythematosus. Br. J. Dermatol. 2016, 174, 1030–1041. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Drenker, M.; Eiz-Vesper, B.; Werfel, T.; Wittmann, M. Evidence for a Pathogenetic Role of Interleukin-18 in Cutaneous Lupus Erythematosus. Arthritis Rheum. 2008, 58, 3205–3215. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.M.; Sharma, M.R.; Werth, V.P. UVB and Proinflammatory Cytokines Synergistically Activate TNF-Alpha Production in Keratinocytes through Enhanced Gene Transcription. J. Investig. Dermatol. 2009, 129, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, J.; Wörenkämper, E.; Freutel, S.; Henze, S.; Haller, O.; Bieber, T.; Tüting, T. Enhanced Type I Interferon Signalling Promotes Th1-Biased Inflammation in Cutaneous Lupus Erythematosus. J. Pathol. 2005, 205, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Lipsker, D. The Need to Revisit the Nosology of Cutaneous Lupus Erythematosus: The Current Terminology and Morphologic Classification of Cutaneous LE: Difficult, Incomplete and Not Always Applicable. Lupus 2010, 19, 1047–1049. [Google Scholar] [CrossRef]
- Kuhn, A.; Sticherling, M.; Bonsmann, G. Clinical Manifestations of Cutaneous Lupus Erythematosus. J. Dtsch. Dermatol. Ges. 2007, 5, 1124–1137. [Google Scholar] [CrossRef]
- Wenzel, J. Cutaneous Lupus Erythematosus: New Insights into Pathogenesis and Therapeutic Strategies. Nat. Rev. Rheumatol. 2019, 15, 519–532. [Google Scholar] [CrossRef]
- Okon, L.G.; Werth, V.P. Cutaneous Lupus Erythematosus: Diagnosis and Treatment. Best Pract. Res. Clin. Rheumatol. 2013, 27, 391–404. [Google Scholar] [CrossRef]
- Tebbe, B.; Mansmann, U.; Wollina, U.; Auer-Grumbach, P.; Licht-Mbalyohere, A.; Arensmeier, M.; Orfanos, C.E. Markers in Cutaneous Lupus Erythematosus Indicating Systemic Involvement. A Multicenter Study on 296 Patients. Acta Derm. Venereol. 1997, 77, 305–308. [Google Scholar] [CrossRef]
- Biazar, C.; Sigges, J.; Patsinakidis, N.; Ruland, V.; Amler, S.; Bonsmann, G.; Kuhn, A.; Haust, M.; Nyberg, F.; Bata, Z.; et al. Cutaneous Lupus Erythematosus: First Multicenter Database Analysis of 1002 Patients from the European Society of Cutaneous Lupus Erythematosus (EUSCLE). Autoimmun. Rev. 2013, 12, 444–454. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhu, H.; Li, Q.; Liao, W.; Chen, K.; Yang, M.; Long, D.; He, Z.; Zhao, M.; Wu, H.; et al. Skin CD4+ Trm Cells Distinguish Acute Cutaneous Lupus Erythematosus from Localized Discoid Lupus Erythematosus/Subacute Cutaneous Lupus Erythematosus and Other Skin Diseases. J. Autoimmun. 2022, 128, 102811. [Google Scholar] [CrossRef] [PubMed]
- Vital, E.M.; Wittmann, M.; Edward, S.; Md Yusof, M.Y.; MacIver, H.; Pease, C.T.; Goodfield, M.; Emery, P. Brief Report: Responses to Rituximab Suggest B Cell-Independent Inflammation in Cutaneous Systemic Lupus Erythematosus. Arthritis Rheumatol. 2015, 67, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Herzum, A.; Gasparini, G.; Cozzani, E.; Burlando, M.; Parodi, A. Atypical and Rare Forms of Cutaneous Lupus Erythematosus: The Importance of the Diagnosis for the Best Management of Patients. Dermatology 2022, 238, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Genetic Background of Cutaneous Forms of Lupus Erythematosus: Update on Current Evidence—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/14960770/ (accessed on 11 June 2022).
- Colasanti, T.; Maselli, A.; Conti, F.; Sanchez, M.; Alessandri, C.; Barbati, C.; Vacirca, D.; Tinari, A.; Chiarotti, F.; Giovannetti, A.; et al. Autoantibodies to Estrogen Receptor α Interfere with T Lymphocyte Homeostasis and Are Associated with Disease Activity in Systemic Lupus Erythematosus. Arthritis Rheum. 2012, 64, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, H.; Zhou, S.; Zhao, M.; Lu, Q. An Update on the Pathogenesis of Skin Damage in Lupus. Curr. Rheumatol. Rep. 2020, 22, 16. [Google Scholar] [CrossRef]
- Werth, V.P. Clinical Manifestations of Cutaneous Lupus Erythematosus. Autoimmun. Rev. 2005, 4, 296–302. [Google Scholar] [CrossRef]
- Boeckler, P.; Milea, M.; Meyer, A.; Uring-Lambert, B.; Heid, E.; Hauptmann, G.; Cribier, B.; Lipsker, D. The Combination of Complement Deficiency and Cigarette Smoking as Risk Factor for Cutaneous Lupus Erythematosus in Men; a Focus on Combined C2/C4 Deficiency. Br. J. Dermatol. 2005, 152, 265–270. [Google Scholar] [CrossRef]
- Petersen, M.P.; Möller, S.; Bygum, A.; Voss, A.; Bliddal, M. Epidemiology of Cutaneous Lupus Erythematosus and the Associated Risk of Systemic Lupus Erythematosus: A Nationwide Cohort Study in Denmark. Lupus 2018, 27, 1424–1430. [Google Scholar] [CrossRef]
- Vera-Recabarren, M.A.; García-Carrasco, M.; Ramos-Casals, M.; Herrero, C. Comparative Analysis of Subacute Cutaneous Lupus Erythematosus and Chronic Cutaneous Lupus Erythematosus: Clinical and Immunological Study of 270 Patients. Br. J. Dermatol. 2010, 162, 91–101. [Google Scholar] [CrossRef]
- MILLARD, L.G.; ROWELL, N.R.; RAJAH, S.M. Histocompatibility Antigens in Discoid and Systemic Lupus Erythematosus. Br. J. Dermatol. 1977, 96, 139–144. [Google Scholar] [CrossRef]
- Abernathy-Close, L.; Lazar, S.; Stannard, J.; Tsoi, L.C.; Eddy, S.; Rizvi, S.M.; Yee, C.M.; Myers, E.M.; Namas, R.; Lowe, L.; et al. B Cell Signatures Distinguish Cutaneous Lupus Erythematosus Subtypes and the Presence of Systemic Disease Activity. Front. Immunol. 2021, 12, 775353. [Google Scholar] [CrossRef] [PubMed]
- Jenks, S.A.; Wei, C.; Bugrovsky, R.; Hill, A.; Wang, X.; Rossi, F.M.; Cashman, K.; Woodruff, M.C.; Aspey, L.D.; Lim, S.S.; et al. B Cell Subset Composition Segments Clinically and Serologically Distinct Groups in Chronic Cutaneous Lupus Erythematosus. Ann. Rheum. Dis. 2021, 80, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Flores, S.; Furuzawa-Carballeda, J.; Hernández-Molina, G.; Ramírez-Martinez, G.; Regino-Zamarripa, N.E.; Ortiz-Quintero, B.; Jiménez-Alvarez, L.; Cruz-Lagunas, A.; Zúñiga, J. MicroRNA Expression in Cutaneous Lupus: A New Window to Understand Its Pathogenesis. Mediat. Inflamm. 2019, 2019, 5049245. [Google Scholar] [CrossRef] [PubMed]
- Domingo, S.; Solé, C.; Moliné, T.; Ferrer, B.; Cortés-Hernández, J. MicroRNAs in Several Cutaneous Autoimmune Diseases: Psoriasis, Cutaneous Lupus Erythematosus and Atopic Dermatitis. Cells 2020, 9, 2656. [Google Scholar] [CrossRef] [PubMed]
- Solé, C.; Domingo, S.; Ferrer, B.; Moliné, T.; Ordi-Ros, J.; Cortés-Hernández, J. MicroRNA Expression Profiling Identifies MiR-31 and MiR-485-3p as Regulators in the Pathogenesis of Discoid Cutaneous Lupus. J. Investig. Dermatol. 2019, 139, 51–61. [Google Scholar] [CrossRef]
- Itoh, K.; Itoh, Y.; Frank, M.B. Protein Heterogeneity in the Human Ro/SSA Ribonucleoproteins. The 52- and 60-KD Ro/SSA Autoantigens Are Encoded by Separate Genes. J. Clin. Investig. 1991, 87, 177–186. [Google Scholar] [CrossRef]
- Garelli, C.J.; Refat, M.A.; Nanaware, P.P.; Ramirez-Ortiz, Z.G.; Rashighi, M.; Richmond, J.M. Current Insights in Cutaneous Lupus Erythematosus Immunopathogenesis. Front. Immunol. 2020, 11, 1353. [Google Scholar] [CrossRef]
- Shipman, W.D.; Chyou, S.; Ramanathan, A.; Izmirly, P.M.; Sharma, S.; Pannellini, T.; Dasoveanu, D.C.; Qing, X.; Magro, C.M.; Granstein, R.D.; et al. A Protective Langerhans Cell-Keratinocyte Axis That Is Dysfunctional in Photosensitivity. Sci. Transl. Med. 2018, 10, eaap9527. [Google Scholar] [CrossRef]
- Mori, M.; Pimpinelli, N.; Romagnoli, P.; Bernacchi, E.; Fabbri, P.; Giannotti, B. Dendritic Cells in Cutaneous Lupus Erythematosus: A Clue to the Pathogenesis of Lesions. Histopathology 1994, 24, 311–321. [Google Scholar] [CrossRef]
- Berthier, C.C.; Tsoi, L.C.; Reed, T.J.; Stannard, J.N.; Myers, E.M.; Namas, R.; Xing, X.; Lazar, S.; Lowe, L.; Kretzler, M.; et al. Molecular Profiling of Cutaneous Lupus Lesions Identifies Subgroups Distinct from Clinical Phenotypes. J. Clin. Med. 2019, 8, 1244. [Google Scholar] [CrossRef] [Green Version]
- Holze, E.; Plewig, G.; Renate Von Kries, G.; Lehmann, P. Polymorphous Light Eruption. J. Investig. Dermatol. 1987, 88, 32s–38s. [Google Scholar] [CrossRef] [PubMed]
- Kolivras, A.; Thompson, C. Clusters of CD123+ Plasmacytoid Dendritic Cells Help Distinguish Lupus Alopecia from Lichen Planopilaris. J. Am. Acad. Dermatol. 2016, 74, 1267–1269. [Google Scholar] [CrossRef] [PubMed]
- McNiff, J.M.; Kaplan, D.H. Plasmacytoid Dendritic Cells Are Present in Cutaneous Dermatomyositis Lesions in a Pattern Distinct from Lupus Erythematosus. J. Cutan. Pathol. 2008, 35, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Farkas, L.; Beiske, K.; Lund-Johansen, F.; Brandtzaeg, P.; Jahnsen, F.L. Plasmacytoid Dendritic Cells (Natural Interferon- Alpha/Beta-Producing Cells) Accumulate in Cutaneous Lupus Erythematosus Lesions. Am. J. Pathol. 2001, 159, 237–243. [Google Scholar] [CrossRef]
- Yin, Q.; Xu, X.; Lin, Y.; Lv, J.; Zhao, L.; He, R. Ultraviolet B Irradiation Induces Skin Accumulation of Plasmacytoid Dendritic Cells: A Possible Role for Chemerin. Autoimmunity 2014, 47, 185–192. [Google Scholar] [CrossRef]
- Jacquemin, C.; Rambert, J.; Guillet, S.; Thiolat, D.; Boukhedouni, N.; Doutre, M.S.; Darrigade, A.S.; Ezzedine, K.; Blanco, P.; Taieb, A.; et al. Heat Shock Protein 70 Potentiates Interferon Alpha Production by Plasmacytoid Dendritic Cells: Relevance for Cutaneous Lupus and Vitiligo Pathogenesis. Br. J. Dermatol. 2017, 177, 1367–1375. [Google Scholar] [CrossRef]
- Billi, A.C.; Ma, F.; Plazyo, O.; Gharaee-Kermani, M.; Wasikowski, R.; Hile, G.A.; Xing, X.; Yee, C.M.; Rizvi, S.M.; Maz, M.P.; et al. Nonlesional Lupus Skin Contributes to Inflammatory Education of Myeloid Cells and Primes for Cutaneous Inflammation. Sci. Transl. Med. 2022, 14, eabn2263. [Google Scholar] [CrossRef]
- Sarkar, M.K.; Hile, G.A.; Tsoi, L.C.; Xing, X.; Liu, J.; Liang, Y.; Berthier, C.C.; Swindell, W.R.; Patrick, M.T.; Shao, S.; et al. Photosensitivity and Type I IFN Responses in Cutaneous Lupus Are Driven by Epidermal-Derived Interferon Kappa. Ann. Rheum. Dis. 2018, 77, 1653–1664. [Google Scholar] [CrossRef]
- Han, X.; Vesely, M.D.; Yang, W.; Sanmamed, M.F.; Badri, T.; Alawa, J.; López-Giráldez, F.; Gaule, P.; Lee, S.W.; Zhang, J.P.; et al. PD-1H (VISTA)-Mediated Suppression of Autoimmunity in Systemic and Cutaneous Lupus Erythematosus. Sci. Transl. Med. 2019, 11, eaax1159. [Google Scholar] [CrossRef]
- Gambichler, T.; Pätzholz, J.; Schmitz, L.; Lahner, N.; Kreuter, A. FOXP3+ and CD39+ Regulatory T Cells in Subtypes of Cutaneous Lupus Erythematosus. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1972–1977. [Google Scholar] [CrossRef]
- Yazdani, M.R.; Aflaki, E.; Gholijani, N. Inflammatory and T Helper 17/ Regulatory T Cells Related Cytokines Balance in Cutaneous Lupus Erythematosus (CLE). Iran. J. Allergy Asthma Immunol. 2020, 19, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Vorwerk, G.; Zahn, S.; Bieber, T.; Wenzel, J. NKG2D and Its Ligands as Cytotoxic Factors in Cutaneous Lupus Erythematosus. Exp. Dermatol. 2021, 30, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Maasho, K.; Opoku-Anane, J.; Marusina, A.I.; Coligan, J.E.; Borrego, F. NKG2D Is a Costimulatory Receptor for Human Naive CD8+ T Cells. J. Immunol. 2005, 174, 4480–4484. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, L.I.R.; Ogasawara, K.; Hamerman, J.A.; Takaki, R.; Zingoni, A.; Allison, J.P.; Lanier, L.L. Engagement of NKG2D by Cognate Ligand or Antibody Alone Is Insufficient to Mediate Costimulation of Human and Mouse CD8+ T Cells. J. Immunol. 2005, 174, 1922–1931. [Google Scholar] [CrossRef]
- van Nguyen, H.; di Girolamo, N.; Jackson, N.; Hampartzoumian, T.; Bullpitt, P.; Tedla, N.; Wakefield, D. Ultraviolet Radiation-Induced Cytokines Promote Mast Cell Accumulation and Matrix Metalloproteinase Production: Potential Role in Cutaneous Lupus Erythematosus. Scand. J. Rheumatol. 2011, 40, 197–204. [Google Scholar] [CrossRef]
- Patel, N.; Mohammadi, A.; Rhatigan, R. A Comparative Analysis of Mast Cell Quantification in Five Common Dermatoses: Lichen Simplex Chronicus, Psoriasis, Lichen Planus, Lupus, and Insect Bite/Allergic Contact Dermatitis/Nummular Dermatitis. ISRN Dermatol. 2012, 2012, 759630. [Google Scholar] [CrossRef]
- Andoh, A.; Deguchi, Y.; Inatomi, O.; Yagi, Y.; Bamba, S.; Tsujikawa, T.; Fujiyama, Y. Immunohistochemical Study of Chymase-Positive Mast Cells in Inflammatory Bowel Disease. Oncol. Rep. 2006, 16, 103–107. [Google Scholar] [CrossRef]
- Buckley, M.G.; McEuen, A.R.; Walls, A.F. The Detection of Mast Cell Subpopulations in Formalin-fixed Human Tissues Using a New Monoclonal Antibody Specific for Chymase. J. Pathol. 1999, 189, 138–143. Available online: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-9896(199909)189:1%3C138::AID-PATH400%3E3.0.CO;2-H (accessed on 25 June 2022). [CrossRef]
- Harvima, I.T.; Nilsson, G. Mast Cells as Regulators of Skin Inflammation and Immunity. Acta Derm. Venereol. 2011, 91, 644–650. [Google Scholar] [CrossRef]
- Kaczmarczyk-Sekuła, K.; Dyduch, G.; Kostański, M.; Wielowieyska-Szybińska, D.; Szpor, J.; Białas, M.; Okoń, K. Mast Cells in Systemic and Cutaneous Lupus Erythematosus. Pol. J. Pathol. 2016, 66, 397–402. [Google Scholar] [CrossRef]
- Zhou, S.; Li, Q.; Zhou, S.; Zhao, M.; Lu, L.; Wu, H.; Lu, Q. A Novel Humanized Cutaneous Lupus Erythematosus Mouse Model Mediated by IL-21-Induced Age-Associated B Cells. J. Autoimmun. 2021, 123, 102686. [Google Scholar] [CrossRef] [PubMed]
- Lerman, I.; Bawany, F.; Whitt, W.; Esaa, F.; Yon, J.; Babkowski, N.; Rapp, M.B.; Scott, G.A.; Anolik, J.H.; Richardson, C.T. Prominent B Cell Signature Differentiates Discoid from Subacute Cutaneous Lupus Erythematosus. J. Investig. Dermatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Chen, Q.; Feng, Y.; Wang, Y.; Wang, J.; Liang, J.; Xu, J. Bioinformatic Analysis of Key Biomarkers and Immune Filtration of Skin Biopsy in Discoid Lupus Erythematosus. Lupus 2021, 30, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.Y.; Werth, V.P. Treatment of Cutaneous Lupus. Curr. Rheumatol. Rep. 2011, 13, 300–307. [Google Scholar] [CrossRef]
- Barikbin, B.; Givrad, S.; Yousefi, M.; Eskandari, F. Pimecrolimus 1% Cream versus Betamethasone 17-Valerate 0.1% Cream in the Treatment of Facial Discoid Lupus Erythematosus: A Double-Blind, Randomized Pilot Study. Clin. Exp. Dermatol. 2009, 34, 776–780. [Google Scholar] [CrossRef]
- Kuhn, A.; Gensch, K.; Haust, M.; Schneider, S.W.; Bonsmann, G.; Gaebelein-Wissing, N.; Lehmann, P.; Wons, A.; Reitmeir, P.; Ruland, V.; et al. Efficacy of Tacrolimus 0.1% Ointment in Cutaneous Lupus Erythematosus: A Multicenter, Randomized, Double-Blind, Vehicle-Controlled Trial. J. Am. Acad. Dermatol. 2011, 65, 54–64.e2. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Luo, J.; Wu, Z.; Mei, Y.; Wang, Y.; Li, X.; Wang, W.; Zhou, H. Tacrolimus 0.03% Ointment in Labial Discoid Lupus Erythematosus: A Randomized, Controlled Clinical Trial. J. Clin. Pharmacol. 2015, 55, 1221–1228. [Google Scholar] [CrossRef]
- Yokogawa, N.; Eto, H.; Tanikawa, A.; Ikeda, T.; Yamamoto, K.; Takahashi, T.; Mizukami, H.; Sato, T.; Yokota, N.; Furukawa, F. Effects of Hydroxychloroquine in Patients With Cutaneous Lupus Erythematosus: A Multicenter, Double-Blind, Randomized, Parallel-Group Trial. Arthritis Rheumatol. 2017, 69, 791–799. [Google Scholar] [CrossRef]
- Lu, Q.; Long, H.; Chow, S.; Hidayat, S.; Danarti, R.; Listiawan, Y.; Deng, D.; Guo, Q.; Fang, H.; Tao, J.; et al. Guideline for the Diagnosis, Treatment and Long-Term Management of Cutaneous Lupus Erythematosus. J. Autoimmun. 2021, 123, 102707. [Google Scholar] [CrossRef]
- Zeidi, M.; Chen, K.L.; Patel, J.; Desai, K.; Kim, H.J.; Chakka, S.; Lim, R.; Werth, V.P. Increased CD69+CCR7+ Circulating Activated T Cells and STAT3 Expression in Cutaneous Lupus Erythematosus Patients Recalcitrant to Antimalarials. Lupus 2022, 31, 472–481. [Google Scholar] [CrossRef]
- Patel, J.; Vazquez, T.; Chin, F.; Keyes, E.; Yan, D.; Diaz, D.; Grinnell, M.; Sharma, M.; Li, Y.; Feng, R.; et al. Multidimensional Immune Profiling of Cutaneous Lupus Erythematosus in Vivo Stratified by Patient Responses to Antimalarials. Arthritis Rheumatol. 2022. [Google Scholar] [CrossRef]
- Domingo, S.; Solé, C.; Moliné, T.; Ferrer, B.; Ordi-Ros, J.; Cortés-Hernández, J. Efficacy of Thalidomide in Discoid Lupus Erythematosus: Insights into the Molecular Mechanisms. Dermatology 2020, 236, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Chasset, F.; Tounsi, T.; Cesbron, E.; Barbaud, A.; Francès, C.; Arnaud, L. Efficacy and Tolerance Profile of Thalidomide in Cutaneous Lupus Erythematosus: A Systematic Review and Meta-Analysis. J. Am. Acad. Dermatol. 2018, 78, 342–350.e4. [Google Scholar] [CrossRef] [PubMed]
- Yuki, E.F.N.; Silva, C.A.; Aikawa, N.E.; Romiti, R.; Heise, C.O.; Bonfa, E.; Pasoto, S.G. Thalidomide and Lenalidomide for Refractory Systemic/Cutaneous Lupus Erythematosus Treatment: A Narrative Review of Literature for Clinical Practice. J. Clin. Rheumatol. 2021, 27, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Bae, S.C.; Bass, D.; Chu, M.; Egginton, S.; Gordon, D.; Roth, D.A.; Zheng, J.; Tanaka, Y. A Pivotal Phase III, Randomised, Placebo-Controlled Study of Belimumab in Patients with Systemic Lupus Erythematosus Located in China, Japan and South Korea. Ann. Rheum. Dis. 2018, 77, 355–363. [Google Scholar] [CrossRef]
- Salle, R.; Chasset, F.; Kottler, D.; Picard-Dahan, C.; Jannic, A.; Mekki, N.; de Risi-Pugliese, T.; Monfort, J.B.; Barbaud, A.; Francès, C.; et al. Belimumab for Refractory Manifestations of Cutaneous Lupus: A Multicenter, Retrospective Observational Study of 16 Patients. J. Am. Acad. Dermatol. 2020, 83, 1816–1819. [Google Scholar] [CrossRef]
- Quelhas Da Costa, R.; Aguirre-Alastuey, M.E.; Isenberg, D.A.; Saracino, A.M. Assessment of Response to B-Cell Depletion Using Rituximab in Cutaneous Lupus Erythematosus. JAMA Dermatol. 2018, 154, 1432–1440. [Google Scholar] [CrossRef]
- Freitas, S.; Mozo Ruiz, M.; Costa Carneiro, A.; Isenberg, D.A. Why Do Some Patients with Systemic Lupus Erythematosus Fail to Respond to B-Cell Depletion Using Rituximab? Clin. Exp. Rheumatol. 2020, 38, 262–266. [Google Scholar] [CrossRef]
- de Souza, A.; Ali-Shaw, T.; Strober, B.E.; Franks, A.G. Successful Treatment of Subacute Lupus Erythematosus with Ustekinumab. Arch. Dermatol. 2011, 147, 896–898. [Google Scholar] [CrossRef]
- van Vollenhoven, R.F.; Hahn, B.H.; Tsokos, G.C.; Wagner, C.L.; Lipsky, P.; Touma, Z.; Werth, V.P.; Gordon, R.M.; Zhou, B.; Hsu, B.; et al. Efficacy and Safety of Ustekinumab, an IL-12 and IL-23 Inhibitor, in Patients with Active Systemic Lupus Erythematosus: Results of a Multicentre, Double-Blind, Phase 2, Randomised, Controlled Study. Lancet 2018, 392, 1330–1339. [Google Scholar] [CrossRef]
- Furie, R.; Werth, V.P.; Merola, J.F.; Stevenson, L.; Reynolds, T.L.; Naik, H.; Wang, W.; Christmann, R.; Gardet, A.; Pellerin, A.; et al. Monoclonal Antibody Targeting BDCA2 Ameliorates Skin Lesions in Systemic Lupus Erythematosus. J. Clin. Investig. 2019, 129, 1359–1371. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Gudjonsson, J.E.; Kahlenberg, J.M. Treatment of Cutaneous Lupus Erythematosus: Current Approaches and Future Strategies. Curr. Opin. Rheumatol. 2020, 32, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.J.; Furie, R.A.; Tanaka, Y.; Kalunian, K.C.; Mosca, M.; Petri, M.A.; Dörner, T.; Cardiel, M.H.; Bruce, I.N.; Gomez, E.; et al. Baricitinib for Systemic Lupus Erythematosus: A Double-Blind, Randomised, Placebo-Controlled, Phase 2 Trial. Lancet 2018, 392, 222–231. [Google Scholar] [CrossRef]
- Dörner, T.; van Vollenhoven, R.F.; Doria, A.; Jia, B.; Ross Terres, J.A.; Silk, M.E.; de Bono, S.; Fischer, P.; Wallace, D.J. Baricitinib Decreases Anti-DsDNA in Patients with Systemic Lupus Erythematosus: Results from a Phase II Double-Blind, Randomized, Placebo-Controlled Trial. Arthritis Res. Ther. 2022, 24, 112. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, A.; Licciardi-Fernandez, M.J.; Burmann, S.N.; Paschos, A.; Michalowitz, A.L. Baricitinib for Recalcitrant Subacute Cutaneous Lupus Erythematosus with Concomitant Frontal Fibrosing Alopecia. Clin. Exp. Dermatol. 2022, 47, 787–788. [Google Scholar] [CrossRef]
- Fornaro, M.; Coladonato, L.; Venerito, V.; Cacciapaglia, F.; Lopalco, G.; Iannone, F. Efficacy of Baricitinib on Refractory Skin Papulosquamous Rash in a Patient with Systemic Lupus Erythematosus. Rheumatology 2020, 59, 1188. [Google Scholar] [CrossRef]
- Zimmermann, N.; Wolf, C.; Schwenke, R.; Lüth, A.; Schmidt, F.; Engel, K.; Lee-Kirsch, M.A.; Günther, C. Assessment of Clinical Response to Janus Kinase Inhibition in Patients With Familial Chilblain Lupus and TREX1 Mutation. JAMA Dermatol. 2019, 155, 342–346. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto, J.A.; Melo-González, F.; Riedel, C.A.; Bueno, S.M.; Kalergis, A.M. Modulation of Immune Cells as a Therapy for Cutaneous Lupus Erythematosus. Int. J. Mol. Sci. 2022, 23, 10706. https://doi.org/10.3390/ijms231810706
Soto JA, Melo-González F, Riedel CA, Bueno SM, Kalergis AM. Modulation of Immune Cells as a Therapy for Cutaneous Lupus Erythematosus. International Journal of Molecular Sciences. 2022; 23(18):10706. https://doi.org/10.3390/ijms231810706
Chicago/Turabian StyleSoto, Jorge A., Felipe Melo-González, Claudia A. Riedel, Susan M. Bueno, and Alexis M. Kalergis. 2022. "Modulation of Immune Cells as a Therapy for Cutaneous Lupus Erythematosus" International Journal of Molecular Sciences 23, no. 18: 10706. https://doi.org/10.3390/ijms231810706
APA StyleSoto, J. A., Melo-González, F., Riedel, C. A., Bueno, S. M., & Kalergis, A. M. (2022). Modulation of Immune Cells as a Therapy for Cutaneous Lupus Erythematosus. International Journal of Molecular Sciences, 23(18), 10706. https://doi.org/10.3390/ijms231810706