Molecular Characteristics, Receptor Specificity, and Pathogenicity of Avian Influenza Viruses Isolated from Wild Ducks in Russia
Abstract
:1. Introduction
2. Results
2.1. Molecular Characteristics
2.2. The Receptor Specificity of Moscow AIVs in Comparison with Duck, Gull, Poultry, Swine, and Human Influenza Viruses
2.3. Pathogenicity of Viruses for Mice and Chickens
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Viruses
4.3. Competitive Binding Assay
4.4. Molecular Models
4.5. Animals
4.6. Ethics Statement
4.7. Infection of Mice
4.8. Oral Administration of the Viruses to Chickens
4.9. Measurement of Antibodies against Influenza Viruses in Mouse and Chicken Sera
4.10. Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capua, I.; Alexander, D.J. Avian influenza: Recent developments. Avian Pathol. 2004, 33, 393–404. [Google Scholar] [CrossRef] [PubMed]
- De Vleeschauwer, A.; Atanasova, K.; Van Borm, S.; van den Berg, T.; Rasmussen, T.B.; Uttenthal, A.; Van Reeth, K. Comparative pathogenesis of an avian H5N2 and a swine H1N1 influenza virus in pigs. PLoS ONE 2009, 4, e6662. [Google Scholar] [CrossRef] [PubMed]
- Hofer, U. Equine flu after the jump. Nat. Rev. Microbiol. 2022, 3, 126. [Google Scholar] [CrossRef] [PubMed]
- Olsen, B.; Munster, V.J.; Wallensten, A.; Waldenström, J.; Osterhaus, A.D.; Fouchier, R.A. Global patterns of influenza a virus in wild birds. Science 2006, 312, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Curtis, P.E.; Marsh, N.W. Cannibalism in laying hens. Vet. Rec. 1993, 132, 47–48. [Google Scholar] [CrossRef]
- Couceiro, J.N.S.S.; Paulson, J.C.; Baum, L.G. Influenza virus strains electively recognize sialyloligosaccharides on human respiratory epithelium: The role of the host cell in selection of hemagglutinin receptor specificity. Virus Res. 1993, 29, 155–165. [Google Scholar] [CrossRef]
- Connor, R.J.; Kawaoka, Y.; Webster, R.G.; Paulson, J.C. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 1994, 205, 17–23. [Google Scholar] [CrossRef]
- Matrosovich, M.N.; Matrosovich, T.Y.; Gray, T.; Roberts, N.A.; Klenk, H.D. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc. Natl. Acad. Sci. USA 2004, 101, 4620–4624. [Google Scholar] [CrossRef]
- Richard, M.; Fouchier, R.A. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiol. Rev. 2016, 1, 68–85. [Google Scholar] [CrossRef]
- Subbarao, K.; Klimov, A.; Katz, J.; Regnery, H.; Lim, W.; Hall, H.; Perdue, M.; Swayne, D.; Bender, C.; Huang, J.; et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 1998, 279, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Gambaryan, A.S.; Tuzikov, A.B.; Pazynina, G.V.; Desheva, J.A.; Bovin, N.V.; Matrosovich, M.N.; Klimov, A.I. 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry. Virol. J. 2008, 5, 85. [Google Scholar] [CrossRef] [PubMed]
- Gambaryan, A.S.; Tuzikov, A.B.; Pazynina, G.V.; Webster, R.G.; Matrosovich, M.N.; Bovin, N.V. H5N1 chicken influenza viruses display a high binding affinity for Neu5Acalpha2-3Galbeta1-4(6-HSO3)GlcNAc-containing receptors. Virology 2004, 326, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Matrosovich, M.; Krauss, S.; Webster, R. H9N2 influenza A viruses from poultry in Asia have human-virus-like receptor specificity. Virology 2001, 281, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Gambaryan, A.S.; Matrosovich, T.Y.; Boravleva, E.Y.; Lomakina, N.F.; Yamnikova, S.S.; Tuzikov, A.B.; Pazynina, G.V.; Bovin, N.V.; Fouchier, R.A.M.; Klenk, F.-D.; et al. Receptor-binding properties of influenza viruses isolated from gulls. Virology 2018, 522, 37–45. [Google Scholar] [CrossRef]
- Matrosovich, M.N.; Gambaryan, A.S.; Teneberg, S.; Piskarev, V.E.; Yamnikova, S.S.; Lvov, D.K.; Robertson, J.S.; Karlsson, K.A. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 1997, 233, 224–234. [Google Scholar] [CrossRef]
- Yamnikova, S.S.; Gambaryan, A.S.; Tuzikov, A.B.; Bovin, N.V.; Matrosovich, M.N.; Fedyakina, I.T.; Grinev, A.A.; Blinov, V.M.; Lvov, D.K.; Suarez, D.L.; et al. Differences between HA receptor-binding sites of avian influenza viruses isolated from Laridae and Anatidae. Avian Dis. 2003, 47, 1164–1168. [Google Scholar] [CrossRef]
- Subbarao, E.K.; London, W.; Murphy, B.R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 1993, 67, 1761–1764. [Google Scholar] [CrossRef]
- Gabriel, G.; Herwig, A.; Klenk, H.D. Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog. 2008, 4, e11. [Google Scholar] [CrossRef]
- Gabriel, G.; Czudai-Matwich, V.; Klenk, H.D. Adaptive mutations in the H5N1 polymerase complex. Virus Res. 2013, 178, 53–62. [Google Scholar] [CrossRef]
- Carrique, L.; Fan, H.; Walker, A.P.; Keown, J.R.; Sharps, J.; Staller, E.; Barclay, W.S.; Fodor, E.; Grimes, J.M. Host ANP32A mediates the assembly of the influenza virus replicase. Nature 2020, 587, 638–643. [Google Scholar] [CrossRef]
- Czudai-Matwich, V.; Otte, A.; Matrosovich, M.; Gabriel, G.; Klenk, H.D. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J. Virol. 2014, 88, 8735–8742. [Google Scholar] [CrossRef] [PubMed]
- Schrauwen, E.J.; De Graaf, M.; Herfst, S.; Rimmelzwaan, G.F.; Osterhaus, A.D.; Fouchier, R.A. Determinants of virulence of influenza A virus. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.T.; Ramos, I.; Hai, R.; Schmolke, M.; Garcia-Sastre, A.; Fernandez-Sesma, A.; Palese, P. The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein. PLoS Pathog. 2011, 7, e1002067. [Google Scholar] [CrossRef] [PubMed]
- Conenello, G.M.; Zamarin, D.; Perrone, L.A.; Tumpey, T.; Palese, P. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog. 2007, 3, 1414–1421. [Google Scholar] [CrossRef]
- Garcia-Sastre, A.; Egorov, A.; Matassov, D.; Brandt, S.; Levy, D.E.; Durbin, J.E.; Palese, P.; Muster, T. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 1998, 252, 324–330. [Google Scholar] [CrossRef]
- Seo, S.H.; Hoffmann, E.; Webster, R.G. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat. Med. 2002, 8, 950–954. [Google Scholar] [CrossRef]
- Peiris, J.S.; Yu, W.C.; Leung, C.W.; Cheung, C.Y.; Ng, W.F.; Nicholls, J.M.; Ng, T.K.; Chan, K.H.; Lai, S.T.; Lim, W.L.; et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 2004, 363, 617–619. [Google Scholar] [CrossRef]
- Jackson, D.; Hossain, M.J.; Hickman, D.; Perez, D.R.; Lamb, R.A. A new influenza virus virulence determinant: The NS1 protein four C-terminal residues modulate pathogenicity. Proc. Natl. Acad. Sci. USA 2008, 105, 4381–4386. [Google Scholar] [CrossRef]
- FIC. Flu in China & Flu Information Center. Available online: http://www.flu.org.cn/en/news-21020-21026.html (accessed on 29 May 2022).
- Ha, Y.; Stevens, D.J.; Skehel, J.J.; Wiley, D.C. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc. Natl. Acad. Sci. USA 2001, 98, 11181–11186. [Google Scholar] [CrossRef]
- Obenauer, J.C.; Denson, J.; Mehta, P.K.; Su, X.; Mukatira, S.; Finkelstein, D.B.; Xu, X.; Wang, J.; Ma, J.; Fan, Y.; et al. Large-scale sequence analysis of avian influenza isolates. Science 2006, 311, 1576–1580. [Google Scholar] [CrossRef]
- Matrosovich, M.N.; Gambaryan, A.S. Solid-phase assays of receptor-binding specificity. Methods Mol. Biol. 2012, 865, 71–94. [Google Scholar] [PubMed]
- Poen, M.J.; Bestebroer, T.M.; Vuong, O.; Scheuer, R.D.; Van der Jeugd, H.P.; Kleyheeg, E.; Eggink, D.; Lexmond, P.; Van den Brand, J.M.A.; Begeman, L.; et al. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017. Eurosurveillance 2018, 23, 17-00449. [Google Scholar] [CrossRef] [PubMed]
- Conenello, G.M.; Tisoncik, J.R.; Rosenzweig, E.; Varga, Z.T.; Palese, P.; Katze, M.G. A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. J. Virol. 2011, 85, 652–662. [Google Scholar] [CrossRef]
- Ng, K.K.; Weis, W.I. Structure of a selectin-like mutant of mannose-binding protein complexed with sialylated and sulfated Lewis(x) oligosaccharides. Biochemistry 1997, 36, 979–988. [Google Scholar] [CrossRef] [PubMed]
Virus Subtype and Strain Numbers * | Position in Proteins | |||||||
---|---|---|---|---|---|---|---|---|
PB2 | PB1-F2 | HA | NS | |||||
627 | 701 | 66 | Cleavage Site | 222–229 ** | 92 | C-Term. | ||
H1 | 4970, 5743, 5744 | E | D | N | SIQSR-GLF | KVRGQAGR | D | ESEV |
5586, 5662 | E | D | S | SIQSR-GLF | KVRGQAGR | D | ESEV | |
H3 | 3556, 3806, 4203, 4238, 4298, 4524, 4661, 4780, 4788, 5037, 5163, 5169, 5174, 5172, 5897, 5908 | E | D | N | EKQTR-GLF | WVRGQSGR | D | ESEV |
4242, 4494, 4681 | E | D | S | EKQTR-GLF | WVRGQSGR | D | ESEV | |
5881 | E | D | T | EKQTR-GLF | WVRGQSGR | D | ESEV | |
H4 | 3661, 3735, 3740, 3799, 4518, 4528, 4641, 4643, 4771, 4781, 4843 | E | D | N | EKASR-GLF | WVRGQSGR | D | ESEV |
4652 | E | D | S | EKASR-GLF | WVRGQSGR | D | ESEV | |
H5 | 4182, 4971 | E | D | N | QRETR-GLF | KVNGQSGR | D | ESEV |
4952 | E | D | N | QREAR-GLF | KVNGQSGR | D | ESEV | |
H6 | 3100 | E | D | N | QIETR-GLF | AVSGQRGR | D | ESEV |
3720 | E | D | N | QIETR-GLF | AVNGQRGR | D | ESEV | |
4031 | E | D | S | QIETR-GLF | AVNGQRGR | D | ESEI | |
H11 | 3641 | E | D | N | AIASR-GLF | KVNGQAGR | D | ESEV |
5712 | E | D | S | AIASR-GLF | KVNGQAGR | D | ESEV |
Saccharide | Abbreviation |
---|---|
Siaα (2-3) Galβ1-4GlcNAcβ | 3′SLN |
Siaα (2-3) Galβ1-4-(6-Su) GlcNAcβ | Su-3′SLN |
(Siaα (2-3) Galβ1-4) (Fucα1-3) GlcNAcβ | SLex |
(Siaα (2-3) Galβ1-4) (Fucα1-3) (6-O-Su) GlcNAcβ | Su-SLex |
Siaα (2-3) Galβ1-3GlcNAcβ | SLec |
Siaα (2-6) Galβ1-4GlcNAcβ | 6′SLN |
Viruses | Polymerized Receptor Analogs * | ||||||
---|---|---|---|---|---|---|---|
SLec | 3′SLN | Su-3′SLN | SLex | Su-SLex | 6′SLN | ||
Duck/Buryatiya/1905/2000 | H4N6 | 10 ** | 20 | 20 | 100 | 100 | >1000 |
Gull/Astrakhan/227/1982 | H13N6 | 20 | 10 | 10 | 10 | 10 | >1000 |
Chicken/NJ/294598-12/2004 | H7N2 | 5 | 5 | 1 | 20 | 5 | 200 |
Chicken/HK/220/1997 | H5N1 | 10 | 3 | 0.3 | 15 | 10 | >1000 |
Swine/Kazakhstan/48/1982 | H3N6 | 15 | 10 | 3 | 40 | 3 | 800 |
Swine/Hong Kong/9/1998 | H9N2 | >200 | >200 | 2 | >200 | 2 | 50 |
A/USSR/039/1968 | H3N2 | >200 | >200 | >200 | >200 | >200 | 4 |
Duck/4970/2013 | H1N1 | 20 | 40 | 50 | 500 | 500 | >1000 |
Duck/3556/2008 | H3N1 | 4 | 10 | 10 | 200 | 200 | >1000 |
Duck/3806/2009 | H3N8 | 5 | 15 | 15 | 300 | 300 | >1000 |
Duck/3661/2008 | H4N6 | 5 | 10 | 8 | 700 | 500 | >1000 |
Duck/3740/2009 | H4N6 | 5 | 10 | 10 | 500 | 500 | >1000 |
Duck/3799/2009 | H4N6 | 5 | 10 | 10 | 500 | 500 | >1000 |
Duck/4182/2009 | H5N3 | 8 | 15 | 10 | 250 | 250 | >1000 |
Gull//3100/2006 | H6N2 | 10 | 30 | 30 | 10 | 20 | >1000 |
Duck/3720/2009 | H6N2 | 10 | 40 | 50 | 10 | 20 | >1000 |
Duck/4031/2010 | H6N2 | 10 | 40 | 50 | 10 | 20 | >1000 |
Duck/3641/2008 | H11N9 | 5 | 10 | 8 | 800 | 600 | >1000 |
Strain | Subtype | PB1-F2 | In Mice | In Chicken | ||
---|---|---|---|---|---|---|
66 (N/S) | Weight * | AB ** | Mort. *** | AB ** | ||
g/3100/06 | H6N2 | N | 110 ± 5 | 312 | 0/5 | 957 |
d/3554/08 | H3N1 | N | 90 ± 8 | 1953 | 0/10 | 2783 |
d/3556/08 | H3N1 | N | 97 ± 4 | 1865 | nd | nd |
d/3661/08 | H4N6 | N | 110 ± 4 | 1127 | nd | nd |
d/3641/08 | H11N9 | N | 115 ± 4 | 735 | nd | nd |
d/3720/09 | H6N2 | N | 108 ± 3 | 634 | 0/4 | 571 |
d/3735/09 | H4N6 | N | 105 ± 6 | 1542 | nd | nd |
d/3740/09 | H4N6 | N | 90 ± 10 | 2468 | nd | nd |
d/3799/09 | H4N6 | N | 95 ± 8 | 1652 | nd | nd |
d/3806/09 | H3N8 | N | 98 ± 6 | 946 | nd | nd |
d/4203/10 | H3N8 | N | 95 | 1645 | nd | nd |
d/4238/10 | H3N6 | N | 94 | 1852 | nd | nd |
d/4242/10 | H3N8 | S | 92 | 2523 | nd | nd |
d/4298/10 | H3N8 | N | 96 | 1193 | 0/5 | 1200 |
d/4182/10 | H5N3 | N | 98 | 1748 | 0/10 | 1534 |
d/4206/10 | H5N3 | N | 97 | 2213 | 0/10 | 928 |
d/4031/10 | H6N2 | S | 102 | 406 | 0/5 | 432 |
d/4494/11 | H3N8 | S | 89 | 3215 | nd | nd |
d/4681/11 | H3N8 | S | 96 | 1656 | 0/3 | 2832 |
d/4521/11 | H3N8 | S | 86 | 3594 | nd | nd |
d/4522/11 | H3N8 | S | 93 | 2163 | nd | nd |
d/4518/11 | H4N6 | N | 96 | 1352 | nd | nd |
d/4528/11 | H4N6 | N | 100 | 962 | 0/3 | 1589 |
d/4661/11 | H3N8 | N | 84 | 3193 | 0/3 | 4235 |
d/4641/11 | H4N6 | N | 102 | 473 | nd | nd |
d/4643/11 | H4N6 | N | 99 | 1042 | nd | nd |
d/4652/11 | H4N6 | S | 103 | 520 | nd | nd |
d/4771/12 | H4N6 | N | nd | nd | 0/2 | 2944 |
d/4772/12 | H4N6 | N | nd | nd | 0/5 | 2154 |
d/4970/13 | H1N1 | N | 93 | 1130 | 0/6 | 1714 |
d/5037/14 | H3N8 | N | 91 | 824 | 0/5 | 1664 |
d/5163/15 | H3N6 | N | nd | nd | 0/2 | 4390 |
d/5169/15 | H3N6 | N | nd | nd | 0/2 | 3171 |
d/5172/15 | H3N6 | N | nd | nd | 0/2 | 3044 |
d/5662/18 | H1N2 | S | 83 | 1943 | 0/3 | 2546 |
d/5586/18 | H1N2 | S | 81 | 1754 | 0/6 | 1724 |
d/5743/19 | H1N1 | N | 79 | 963 | 0/3 | 2832 |
d/5744/19 | H1N1 | N | 83 | 1145 | 0/6 | 3676 |
d/5712/19 | H11N6 | S | 110 | 500 | 0/3 | 1260 |
d/5881/21 | H3N2 | T | 105 | 1414 | 0/2 | 4234 |
d/5897/21 | H3N8 | N | 102 | 2048 | 0/2 | 2054 |
d/5908/21 | H3N8 | N | nd | nd | 0/2 | 3527 |
Control | 114 ± 4 | <50 | 0/10 | <200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boravleva, E.; Treshchalina, A.; Postnikova, Y.; Gambaryan, A.; Belyakova, A.; Sadykova, G.; Prilipov, A.; Lomakina, N.; Ishmukhametov, A. Molecular Characteristics, Receptor Specificity, and Pathogenicity of Avian Influenza Viruses Isolated from Wild Ducks in Russia. Int. J. Mol. Sci. 2022, 23, 10829. https://doi.org/10.3390/ijms231810829
Boravleva E, Treshchalina A, Postnikova Y, Gambaryan A, Belyakova A, Sadykova G, Prilipov A, Lomakina N, Ishmukhametov A. Molecular Characteristics, Receptor Specificity, and Pathogenicity of Avian Influenza Viruses Isolated from Wild Ducks in Russia. International Journal of Molecular Sciences. 2022; 23(18):10829. https://doi.org/10.3390/ijms231810829
Chicago/Turabian StyleBoravleva, Elizaveta, Anastasia Treshchalina, Yulia Postnikova, Alexandra Gambaryan, Alla Belyakova, Galina Sadykova, Alexey Prilipov, Natalia Lomakina, and Aydar Ishmukhametov. 2022. "Molecular Characteristics, Receptor Specificity, and Pathogenicity of Avian Influenza Viruses Isolated from Wild Ducks in Russia" International Journal of Molecular Sciences 23, no. 18: 10829. https://doi.org/10.3390/ijms231810829
APA StyleBoravleva, E., Treshchalina, A., Postnikova, Y., Gambaryan, A., Belyakova, A., Sadykova, G., Prilipov, A., Lomakina, N., & Ishmukhametov, A. (2022). Molecular Characteristics, Receptor Specificity, and Pathogenicity of Avian Influenza Viruses Isolated from Wild Ducks in Russia. International Journal of Molecular Sciences, 23(18), 10829. https://doi.org/10.3390/ijms231810829