How “Neuronal” Are Human Skin Mast Cells?
Abstract
:1. Mast Cells
2. MCs and Evolution
3. MCs Communicate with Nerves
4. MCs Display Selective Neuronal Traits
5. Purpose of Review
6. The Dopamine System
6.1. MAO-A and MAO-B
6.2. SLC18A2
6.3. SLC6A3
7. MLPH, RAB27, and Their Contributions to the Secretory Apparatus
8. Ca++ Signaling
CALB2
9. Adhesion Molecules
9.1. L1CAM
9.2. NTM
10. Transcriptional Regulators
10.1. LMO4
10.2. PBX1
10.3. MEIS2
10.4. EHMT2
11. Expression of the “Neuronal” Genes in Focus in Murine MCs
12. Interconnections between Our Selection of “Neuronal” Genes
13. Summary, Future Perspectives, and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Minai-Fleminger, Y.; Levi-Schaffer, F. Mast cells and eosinophils: The two key effector cells in allergic inflammation. Inflamm. Res. 2009, 58, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, D.D.; Peavy, R.D.; Gilfillan, A.M. Mechanisms of mast cell signaling in anaphylaxis. J. Allergy Clin. Immunol. 2009, 124, 639–646; quiz 647–678. [Google Scholar] [CrossRef] [PubMed]
- Gilfillan, A.M.; Beaven, M.A. Regulation of mast cell responses in health and disease. Crit. Rev. Immunol. 2011, 31, 475–529. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Kuhn, H.; Kolkhir, P.; Babina, M.; Dull, M.; Frischbutter, S.; Fok, J.S.; Jiao, Q.; Metz, M.; Scheffel, J.; Wolf, K.; et al. Mas-related G protein-coupled receptor X2 and its activators in dermatologic allergies. J. Allergy Clin. Immunol. 2021, 147, 456–469. [Google Scholar] [CrossRef]
- Subramanian, H.; Gupta, K.; Ali, H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J. Allergy Clin. Immunol. 2016, 138, 700–710. [Google Scholar] [CrossRef]
- Aich, A.; Afrin, L.B.; Gupta, K. Mast Cell-Mediated Mechanisms of Nociception. Int. J. Mol. Sci. 2015, 16, 29069–29092. [Google Scholar] [CrossRef]
- Huber, M.; Cato, A.C.B.; Ainooson, G.K.; Freichel, M.; Tsvilovskyy, V.; Jessberger, R.; Riedlinger, E.; Sommerhoff, C.P.; Bischoff, S.C. Regulation of the pleiotropic effects of tissue-resident mast cells. J. Allergy Clin. Immunol. 2019, 144, S31–S45. [Google Scholar] [CrossRef]
- Galli, S.J.; Tsai, M. Mast cells in allergy and infection: Versatile effector and regulatory cells in innate and adaptive immunity. Eur. J. Immunol. 2010, 40, 1843–1851. [Google Scholar] [CrossRef]
- Akin, C. Mast cell activation syndromes. J. Allergy Clin. Immunol. 2017, 140, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Olivera, A.; Beaven, M.A.; Metcalfe, D.D. Mast cells signal their importance in health and disease. J. Allergy Clin. Immunol. 2018, 142, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Shtessel, M.; Limjunyawong, N.; Oliver, E.T.; Chichester, K.; Gao, L.; Dong, X.; Saini, S.S. MRGPRX2 Activation Causes Increased Skin Reactivity in Patients with Chronic Spontaneous Urticaria. J. Investig. Dermatol. 2021, 141, 678–681 e2. [Google Scholar] [CrossRef] [PubMed]
- Worm, M.; Babina, M.; Hompes, S. Causes and risk factors for anaphylaxis. J. Dtsch. Dermatol. Ges. 2013, 11, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Eyerich, K.; Eyerich, S.; Ferrer, M.; Gutermuth, J.; Hartmann, K.; Jakob, T.; Kapp, A.; Kolkhir, P.; Larenas-Linnemann, D.; et al. Urticaria: Collegium Internationale Allergologicum (CIA) Update 2020. Int. Arch. Allergy Immunol. 2020, 181, 321–333. [Google Scholar] [CrossRef]
- Bulfone-Paus, S.; Nilsson, G.; Draber, P.; Blank, U.; Levi-Schaffer, F. Positive and Negative Signals in Mast Cell Activation. Trends Immunol. 2017, 38, 657–667. [Google Scholar] [CrossRef]
- Galli, S.J.; Metz, M.; Starkl, P.; Marichal, T.; Tsai, M. Mast cells and IgE in defense against lethality of venoms: Possible “benefit” of allergy. Allergo J. Int. 2020, 29, 46–62. [Google Scholar] [CrossRef]
- Espinosa-Riquer, Z.P.; Segura-Villalobos, D.; Ramirez-Moreno, I.G.; Perez Rodriguez, M.J.; Lamas, M.; Gonzalez-Espinosa, C. Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells 2020, 9, 2411. [Google Scholar] [CrossRef]
- Fereydouni, M.; Motaghed, M.; Ahani, E.; Kafri, T.; Dellinger, K.; Metcalfe, D.D.; Kepley, C.L. Harnessing the Anti-Tumor Mediators in Mast Cells as a New Strategy for Adoptive Cell Transfer for Cancer. Front. Oncol. 2022, 12, 830199. [Google Scholar] [CrossRef]
- Levi-Schaffer, F.; Gibbs, B.F.; Hallgren, J.; Pucillo, C.; Redegeld, F.; Siebenhaar, F.; Vitte, J.; Mezouar, S.; Michel, M.; Puzzovio, P.G.; et al. Selected recent advances in understanding the role of human mast cells in health and disease. J. Allergy Clin. Immunol. 2022, 149, 1833–1844. [Google Scholar] [CrossRef]
- Stevens, R.L.; Adachi, R. Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity. Immunol. Rev. 2007, 217, 155–167. [Google Scholar] [CrossRef]
- Paola, S.; Luciana, T.; Domenico, R.; Enrico, C. Mast cells, an evolutionary approach. Ital. J. Anat. Embryol. 2020, 124, 271–287. [Google Scholar]
- Cavalcante, M.C.; Allodi, S.; Valente, A.P.; Straus, A.H.; Takahashi, H.K.; Mourao, P.A.; Pavao, M.S. Occurrence of heparin in the invertebrate styela plicata (Tunicata) is restricted to cell layers facing the outside environment. An ancient role in defense? J. Biol. Chem. 2000, 275, 36189–36196. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, M.C.; de Andrade, L.R.; Du Bocage Santos-Pinto, C.; Straus, A.H.; Takahashi, H.K.; Allodi, S.; Pavao, M.S. Colocalization of heparin and histamine in the intracellular granules of test cells from the invertebrate Styela plicata (Chordata-Tunicata). J. Struct. Biol. 2002, 137, 313–321. [Google Scholar] [CrossRef]
- Cima, F.; Peronato, A.; Ballarin, L. The haemocytes of the colonial aplousobranch ascidian Diplosoma listerianum: Structural, cytochemical and functional analyses. Micron 2017, 102, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Cima, F.; Caicci, F.; Nittoli, V.; Marino, R.; Crocetta, F.; Sordino, P. Immunological response to bacterial infection in a pelagic tunicate: Inflammation in the salp Thalia democratica. J. Invertebr. Pathol. 2018, 159, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Crivellato, E.; Travan, L.; Ribatti, D. The phylogenetic profile of mast cells. Methods Mol. Biol. 2015, 1220, 11–27. [Google Scholar]
- Wong, G.W.; Zhuo, L.; Kimata, K.; Lam, B.K.; Satoh, N.; Stevens, R.L. Ancient origin of mast cells. Biochem. Biophys. Res. Commun. 2014, 451, 314–318. [Google Scholar] [CrossRef]
- Gentek, R.; Ghigo, C.; Hoeffel, G.; Bulle, M.J.; Msallam, R.; Gautier, G.; Launay, P.; Chen, J.; Ginhoux, F.; Bajenoff, M. Hemogenic Endothelial Fate Mapping Reveals Dual Developmental Origin of Mast Cells. Immunity 2018, 48, 1160–1171 e5. [Google Scholar] [CrossRef]
- Li, Z.; Liu, S.; Xu, J.; Zhang, X.; Han, D.; Liu, J.; Xia, M.; Yi, L.; Shen, Q.; Xu, S.; et al. Adult Connective Tissue-Resident Mast Cells Originate from Late Erythro-Myeloid Progenitors. Immunity 2018, 49, 640–653.e5. [Google Scholar] [CrossRef]
- Gurish, M.F.; Austen, K.F. Developmental origin and functional specialization of mast cell subsets. Immunity 2012, 37, 25–33. [Google Scholar] [CrossRef]
- Dahlin, J.S.; Malinovschi, A.; Ohrvik, H.; Sandelin, M.; Janson, C.; Alving, K.; Hallgren, J. Lin- CD34hi CD117int/hi FcepsilonRI+ cells in human blood constitute a rare population of mast cell progenitors. Blood 2016, 127, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Enriquez, E.; Hallgren, J. Mast Cells and Their Progenitors in Allergic Asthma. Front. Immunol. 2019, 10, 821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weitzmann, A.; Naumann, R.; Dudeck, A.; Zerjatke, T.; Gerbaulet, A.; Roers, A. Mast Cells Occupy Stable Clonal Territories in Adult Steady-State Skin. J. Investig. Dermatol. 2020, 140, 2433–2441.e5. [Google Scholar] [CrossRef] [PubMed]
- Toyoshima, S.; Okayama, Y. Neuro-allergology: Mast cell-nerve cross-talk. Allergol. Int. 2022, 71, 288–293. [Google Scholar] [CrossRef]
- Siiskonen, H.; Harvima, I. Mast Cells and Sensory Nerves Contribute to Neurogenic Inflammation and Pruritus in Chronic Skin Inflammation. Front. Cell. Neurosci. 2019, 13, 422. [Google Scholar] [CrossRef]
- Mittal, A.; Sagi, V.; Gupta, M.; Gupta, K. Mast Cell Neural Interactions in Health and Disease. Front. Cell. Neurosci. 2019, 13, 110. [Google Scholar] [CrossRef]
- Kadowaki, M.; Yamamoto, T.; Hayashi, S. Neuro-immune crosstalk and food allergy: Focus on enteric neurons and mucosal mast cells. Allergol. Int. 2022, 71, 278–287. [Google Scholar] [CrossRef]
- Forsythe, P. Mast Cells in Neuroimmune Interactions. Trends Neurosci. 2019, 42, 43–55. [Google Scholar] [CrossRef]
- Heron, A.; Dubayle, D. A focus on mast cells and pain. J. Neuroimmunol. 2013, 264, 1–7. [Google Scholar] [CrossRef]
- Chatterjea, D.; Martinov, T. Mast cells: Versatile gatekeepers of pain. Mol. Immunol. 2015, 63, 38–44. [Google Scholar] [CrossRef]
- Lenz, K.M.; Pickett, L.A.; Wright, C.L.; Davis, K.T.; Joshi, A.; McCarthy, M.M. Mast Cells in the Developing Brain Determine Adult Sexual Behavior. J. Neurosci. 2018, 38, 8044–8059. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, C.J.; Morrow, J.D. Thalamic mast cell activity is associated with sign-tracking behavior in rats. Brain Behav. Immun. 2017, 65, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu Irmak, D.; Kilinc, E.; Tore, F. Shared Fate of Meningeal Mast Cells and Sensory Neurons in Migraine. Front. Cell. Neurosci. 2019, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shi, X.; Li, X.; Zou, J.; Zhou, C.; Liu, W.; Shao, H.; Chen, H.; Shi, L. Neurotransmitter and neuropeptide regulation of mast cell function: A systematic review. J. Neuroinflamm. 2020, 17, 356. [Google Scholar] [CrossRef]
- Dong, X.; Dong, X. Peripheral and Central Mechanisms of Itch. Neuron 2018, 98, 482–494. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Berger, T.; Fassett, M.S. Neuroimmune interactions in chronic itch of atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 239–250. [Google Scholar] [CrossRef]
- Steinhoff, M.; Buddenkotte, J.; Lerner, E.A. Role of mast cells and basophils in pruritus. Immunol. Rev. 2018, 282, 248–264. [Google Scholar] [CrossRef]
- Wang, Z.; Franke, K.; Zuberbier, T.; Babina, M. Cytokine Stimulation by MRGPRX2 Occurs with Lower Potency than by FcepsilonRI Aggregation but with Similar Dependence on the Extracellular Signal-Regulated Kinase 1/2 Module in Human Skin Mast Cells. J. Investig. Dermatol. 2022, 142, 414–424.e8. [Google Scholar] [CrossRef]
- Motakis, E.; Guhl, S.; Ishizu, Y.; Itoh, M.; Kawaji, H.; de Hoon, M.; Lassmann, T.; Carninci, P.; Hayashizaki, Y.; Zuberbier, T.; et al. Redefinition of the human mast cell transcriptome by deep-CAGE sequencing. Blood 2014, 123, e58–e67. [Google Scholar] [CrossRef]
- Ruppenstein, A.; Limberg, M.M.; Loser, K.; Kremer, A.E.; Homey, B.; Raap, U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front. Med. 2021, 8, 627985. [Google Scholar] [CrossRef]
- Tatemoto, K.; Nozaki, Y.; Tsuda, R.; Konno, S.; Tomura, K.; Furuno, M.; Ogasawara, H.; Edamura, K.; Takagi, H.; Iwamura, H.; et al. Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem. Biophys. Res. Commun. 2006, 349, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
- McNeil, B.D.; Pundir, P.; Meeker, S.; Han, L.; Undem, B.J.; Kulka, M.; Dong, X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 2015, 519, 237–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Babina, M. MRGPRX2 signals its importance in cutaneous mast cell biology: Does MRGPRX2 connect mast cells and atopic dermatitis? Exp. Dermatol. 2020, 29, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Quan, P.L.; Sabate-Bresco, M.; Guo, Y.; Martin, M.; Gastaminza, G. The Multifaceted Mas-Related G Protein-Coupled Receptor Member X2 in Allergic Diseases and Beyond. Int. J. Mol. Sci. 2021, 22, 4421. [Google Scholar] [CrossRef]
- Lyons, D.O.; Pullen, N.A. Beyond IgE: Alternative Mast Cell Activation Across Different Disease States. Int. J. Mol. Sci. 2020, 21, 1498. [Google Scholar] [CrossRef]
- Kumar, M.; Duraisamy, K.; Chow, B.K. Unlocking the Non-IgE-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2). Cells 2021, 10, 1033. [Google Scholar] [CrossRef]
- Inclan-Rico, J.M.; Kim, B.S.; Abdus-Saboor, I. Beyond somatosensation: Mrgprs in mucosal tissues. Neurosci. Lett. 2021, 748, 135689. [Google Scholar] [CrossRef]
- Roy, S.; Chompunud Na Ayudhya, C.; Thapaliya, M.; Deepak, V.; Ali, H. Multifaceted MRGPRX2: New insight into the role of mast cells in health and disease. J. Allergy Clin. Immunol. 2021, 148, 293–308. [Google Scholar] [CrossRef]
- Babina, M. The pseudo-allergic/neurogenic route of mast cell activation via MRGPRX2: Discovery, functional programs, regulation, relevance to disease, and relation with allergic stimulation. Itch 2020, 5, e32. [Google Scholar] [CrossRef]
- Wilson, S.R.; The, L.; Batia, L.M.; Beattie, K.; Katibah, G.E.; McClain, S.P.; Pellegrino, M.; Estandian, D.M.; Bautista, D.M. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013, 155, 285–295. [Google Scholar] [CrossRef]
- Moran, T.P.; Vickery, B.P. The Epithelial Cell-Derived Atopic Dermatitis Cytokine TSLP Activates Neurons to Induce Itch. Pediatrics 2014, 134 (Suppl. 3), S160–S161. [Google Scholar] [CrossRef] [PubMed]
- Redhu, D.; Franke, K.; Kumari, V.; Francuzik, W.; Babina, M.; Worm, M. Thymic stromal lymphopoietin production induced by skin irritation results from concomitant activation of protease-activated receptor 2 and interleukin 1 pathways. Br. J. Dermatol. 2020, 182, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Kumari, V.; Babina, M.; Hazzan, T.; Worm, M. Thymic stromal lymphopoietin induction by skin irritation is independent of tumour necrosis factor-alpha, but supported by interleukin-1. Br. J. Dermatol. 2015, 172, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Franke, K.; Bal, G.; Li, Z.; Zuberbier, T.; Babina, M. MRGPRX2-Mediated Degranulation of Human Skin Mast Cells Requires the Operation of Galphai, Galphaq, Ca++ Channels, ERK1/2 and PI3K-Interconnection between Early and Late Signaling. Cells 2022, 11, 953. [Google Scholar] [CrossRef] [PubMed]
- Guhl, S.; Lee, H.H.; Babina, M.; Henz, B.M.; Zuberbier, T. Evidence for a restricted rather than generalized stimulatory response of skin-derived human mast cells to substance P. J. Neuroimmunol. 2005, 163, 92–101. [Google Scholar] [CrossRef]
- Babina, M.; Guhl, S.; Artuc, M.; Zuberbier, T. Allergic FcepsilonRI- and pseudo-allergic MRGPRX2-triggered mast cell activation routes are independent and inversely regulated by SCF. Allergy 2018, 73, 256–260. [Google Scholar] [CrossRef]
- Babina, M.; Wang, Z.; Franke, K.; Zuberbier, T. Thymic Stromal Lymphopoietin Promotes MRGPRX2-Triggered Degranulation of Skin Mast Cells in a STAT5-Dependent Manner with Further Support from JNK. Cells 2021, 10, 102. [Google Scholar] [CrossRef]
- Hazzan, T.; Eberle, J.; Worm, M.; Babina, M. Thymic Stromal Lymphopoietin Interferes with the Apoptosis of Human Skin Mast Cells by a Dual Strategy Involving STAT5/Mcl-1 and JNK/Bcl-xL. Cells 2019, 8, 829. [Google Scholar] [CrossRef]
- Redhu, D.; Franke, K.; Aparicio-Soto, M.; Kumari, V.; Pazur, K.; Illerhaus, A.; Hartmann, K.; Worm, M.; Babina, M. Mast cells instruct keratinocytes to produce thymic stromal lymphopoietin: Relevance of the tryptase/protease-activated receptor 2 axis. J. Allergy Clin. Immunol. 2022, 149, 2053–2061 e6. [Google Scholar] [CrossRef]
- Kritas, S.K.; Caraffa, A.; Antinolfi, P.; Saggini, A.; Pantalone, A.; Rosati, M.; Tei, M.; Speziali, A.; Saggini, R.; Pandolfi, F.; et al. Nerve growth factor interactions with mast cells. Int. J. Immunopathol. Pharmacol. 2014, 27, 15–19. [Google Scholar] [CrossRef]
- Blank, U.; Madera-Salcedo, I.K.; Danelli, L.; Claver, J.; Tiwari, N.; Sanchez-Miranda, E.; Vazquez-Victorio, G.; Ramirez-Valadez, K.A.; Macias-Silva, M.; Gonzalez-Espinosa, C. Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Front. Immunol. 2014, 5, 453. [Google Scholar] [CrossRef] [PubMed]
- Consortium, F.; The, R.P.; Clst; Forrest, A.R.; Kawaji, H.; Rehli, M.; Baillie, J.K.; de Hoon, M.J.; Haberle, V.; Lassmann, T.; et al. A promoter-level mammalian expression atlas. Nature 2014, 507, 462–470. [Google Scholar]
- de Rie, D.; Abugessaisa, I.; Alam, T.; Arner, E.; Arner, P.; Ashoor, H.; Astrom, G.; Babina, M.; Bertin, N.; Burroughs, A.M.; et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat. Biotechnol. 2017, 35, 872–878. [Google Scholar] [CrossRef]
- Hon, C.C.; Ramilowski, J.A.; Harshbarger, J.; Bertin, N.; Rackham, O.J.; Gough, J.; Denisenko, E.; Schmeier, S.; Poulsen, T.M.; Severin, J.; et al. An atlas of human long non-coding RNAs with accurate 5’ ends. Nature 2017, 543, 199–204. [Google Scholar] [CrossRef]
- Noguchi, S.; Arakawa, T.; Fukuda, S.; Furuno, M.; Hasegawa, A.; Hori, F.; Ishikawa-Kato, S.; Kaida, K.; Kaiho, A.; Kanamori-Katayama, M.; et al. FANTOM5 CAGE profiles of human and mouse samples. Sci. Data 2017, 4, 170112. [Google Scholar] [CrossRef]
- Babina, M.; Motakis, E.; Zuberbier, T. Mast cell transcriptome elucidation: What are the implications for allergic disease in the clinic and where do we go next? Expert Rev. Clin. Immunol. 2014, 10, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Gschwandtner, M.; Paulitschke, V.; Mildner, M.; Brunner, P.M.; Hacker, S.; Eisenwort, G.; Sperr, W.R.; Valent, P.; Gerner, C.; Tschachler, E. Proteome analysis identifies L1CAM/CD171 and DPP4/CD26 as novel markers of human skin mast cells. Allergy 2017, 72, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Plum, T.; Wang, X.; Rettel, M.; Krijgsveld, J.; Feyerabend, T.B.; Rodewald, H.R. Human Mast Cell Proteome Reveals Unique Lineage, Putative Functions, and Structural Basis for Cell Ablation. Immunity 2020, 52, 404–416 e5. [Google Scholar] [CrossRef]
- Dyring-Andersen, B.; Lovendorf, M.B.; Coscia, F.; Santos, A.; Moller, L.B.P.; Colaco, A.R.; Niu, L.; Bzorek, M.; Doll, S.; Andersen, J.L.; et al. Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat. Commun. 2020, 11, 5587. [Google Scholar] [CrossRef]
- Dwyer, D.F.; Barrett, N.A.; Austen, K.F.; Immunological Genome Project, C. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat. Immunol. 2016, 17, 878–887. [Google Scholar] [CrossRef]
- Akula, S.; Paivandy, A.; Fu, Z.; Thorpe, M.; Pejler, G.; Hellman, L. Quantitative In-Depth Analysis of the Mouse Mast Cell Transcriptome Reveals Organ-Specific Mast Cell Heterogeneity. Cells 2020, 9, 211. [Google Scholar] [CrossRef]
- Reynolds, G.; Vegh, P.; Fletcher, J.; Poyner, E.F.M.; Stephenson, E.; Goh, I.; Botting, R.A.; Huang, N.; Olabi, B.; Dubois, A.; et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 2021, 371, eaba6500. [Google Scholar] [CrossRef]
- Kim, D.; Chung, K.B.; Kim, T.G. Application of single-cell RNA sequencing on human skin: Technical evolution and challenges. J. Dermatol. Sci. 2020, 99, 74–81. [Google Scholar] [CrossRef]
- Schey, K.L.; Grey, A.C.; Nicklay, J.J. Mass spectrometry of membrane proteins: A focus on aquaporins. Biochemistry 2013, 52, 3807–3817. [Google Scholar] [CrossRef]
- Leis, S.; Drenkhahn, S.; Schick, C.; Arnolt, C.; Schmelz, M.; Birklein, F.; Bickel, A. Catecholamine release in human skin—A microdialysis study. Exp. Neurol. 2004, 188, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Chakroborty, D.; Goswami, S.; Basu, S.; Sarkar, C. Catecholamines in the regulation of angiogenesis in cutaneous wound healing. FASEB J. 2020, 34, 14093–14102. [Google Scholar] [CrossRef] [PubMed]
- Enerback, L.; Haggendal, J. Uptake of dopamine by rat mast cells in vivo. Pathol. Eur. 1970, 5, 401–408. [Google Scholar] [PubMed]
- Bergendorff, A. Intracellular distribution of amines taken up by rat mast cells. Acta Physiol. Scand. 1975, 95, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Ronnberg, E.; Calounova, G.; Pejler, G. Mast cells express tyrosine hydroxylase and store dopamine in a serglycin-dependent manner. Biol. Chem. 2012, 393, 107–112. [Google Scholar] [CrossRef]
- Reimann, E.; Kingo, K.; Karelson, M.; Reemann, P.; Loite, U.; Keermann, M.; Abram, K.; Vasar, E.; Silm, H.; Koks, S. Expression profile of genes associated with the dopamine pathway in vitiligo skin biopsies and blood sera. Dermatology 2012, 224, 168–176. [Google Scholar] [CrossRef]
- Laengle, U.W.; Markstein, R.; Pralet, D.; Greiner, B.; Roman, D. Effects of latanoprost and GLC756, a novel dopamine D2 agonist and D1 antagonist, on cultured normal human dermal fibroblasts. Eur. J. Ophthalmol. 2006, 16, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Rundquist, I.; Allenmark, S.; Enerback, L. Uptake and turnover of dopamine in rat mast cells studied by cytofluorometry and high performance liquid chromatography. Histochem. J. 1982, 14, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.G.; Ryan, J.J.; Shelburne, C.P.; Bailey, D.P.; Bouton, L.A.; Narasimhachari, N.; Domen, J.; Simeon, N.; Couderc, F.; Stewart, J.K. Catecholamines in murine bone marrow derived mast cells. J. Neuroimmunol. 2001, 119, 231–238. [Google Scholar] [CrossRef]
- Seol, I.W.; Kuo, N.Y.; Kim, K.M. Effects of dopaminergic drugs on the mast cell degranulation and nitric oxide generation in RAW 264.7 cells. Arch. Pharm. Res. 2004, 27, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Laengle, U.W.; Markstein, R.; Pralet, D.; Seewald, W.; Roman, D. Effect of GLC756, a novel mixed dopamine D1 receptor antagonist and dopamine D2 receptor agonist, on TNF-alpha release in vitro from activated rat mast cells. Exp. Eye Res. 2006, 83, 1335–1339. [Google Scholar] [CrossRef]
- Laengle, U.W.; Markstein, R.; Pralet, D.; Seewald, W.; Roman, D. Effects of latanoprost, timolol and GLC756, a novel dopamine D(2) agonist and D(1) antagonist on LTC(4) release after rat mast cell activation. Clin. Exp. Ophthalmol. 2007, 35, 645–650. [Google Scholar] [CrossRef]
- Mori, T.; Kabashima, K.; Fukamachi, S.; Kuroda, E.; Sakabe, J.; Kobayashi, M.; Nakajima, S.; Nakano, K.; Tanaka, Y.; Matsushita, S.; et al. D1-like dopamine receptors antagonist inhibits cutaneous immune reactions mediated by Th2 and mast cells. J. Dermatol. Sci. 2013, 71, 37–44. [Google Scholar] [CrossRef]
- Tammaro, A.; Cavallotti, C.; Gaspari, A.A.; Narcisi, A.; Parisella, F.R.; Cavallotti, C. Dopaminergic receptors in the human skin. J. Biol. Regul. Homeost. Agents 2012, 26, 789–795. [Google Scholar]
- Horvat, J.; Stojic, Z.; Jankovic, B.D. Effect of dopamine, L-dopa, carbidopa and L-dopa/carbidopa on arthus and delayed hypersensitivity skin reactions in the rat. Int. J. Neurosci. 1991, 59, 99–203. [Google Scholar] [CrossRef]
- Casale, T.B.; Shelhamer, J.H.; Parrillo, J.E.; Kaliner, M.A. Dopamine inhibition of histamine-mediated cutaneous responses. J. Allergy Clin. Immunol. 1984, 73, 837–841. [Google Scholar] [CrossRef]
- Hare, M.L. Tyramine oxidase: A new enzyme system in liver. Biochem. J. 1928, 22, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Dostert, P.L.; Strolin Benedetti, M.; Tipton, K.F. Interactions of monoamine oxidase with substrates and inhibitors. Med. Res. Rev. 1989, 9, 45–89. [Google Scholar] [CrossRef]
- Kalgutkar, A.S.; Dalvie, D.K.; Castagnoli, N., Jr.; Taylor, T.J. Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chem. Res. Toxicol. 2001, 14, 1139–1162. [Google Scholar] [CrossRef] [PubMed]
- Grimsby, J.; Chen, K.; Wang, L.J.; Lan, N.C.; Shih, J.C. Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc. Natl. Acad. Sci. USA 1991, 88, 3637–3641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Carroll, A.M.; Fowler, C.J.; Phillips, J.P.; Tobbia, I.; Tipton, K.F. The deamination of dopamine by human brain monoamine oxidase. Specificity for the two enzyme forms in seven brain regions. Naunyn Schmiedeberg’s Arch. Pharm. 1983, 322, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Westlund, K.N.; Denney, R.M.; Rose, R.M.; Abell, C.W. Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 1988, 25, 439–456. [Google Scholar] [CrossRef]
- Tong, J.; Meyer, J.H.; Furukawa, Y.; Boileau, I.; Chang, L.J.; Wilson, A.A.; Houle, S.; Kish, S.J. Distribution of monoamine oxidase proteins in human brain: Implications for brain imaging studies. J. Cereb. Blood Flow Metab. 2013, 33, 863–871. [Google Scholar] [CrossRef]
- Ramonet, D.; Rodriguez, M.; Saura, J.; Lizcano, J.M.; Romera, M.; Unzeta, M.; Finch, C.; Billett, E.; Mahy, N. Localization of monoamine oxidase A and B and semicarbazide-sensitive amine oxidase in human peripheral tissues. Inflammopharmacology 2003, 11, 111–117. [Google Scholar] [CrossRef]
- Schwartz, M.A.; Aikens, A.M.; Wyatt, R.J. Monoamine oxidase activity in brains from schizophrenic and mentally normal individuals. Psychopharmacologia 1974, 38, 319–328. [Google Scholar] [CrossRef]
- Wyatt, R.J.; Murphy, D.L.; Belmaker, R.; Cohen, S.; Donnelly, C.H.; Pollin, W. Reduced monoamine oxidase activity in platelets: A possible genetic marker for vulnerability to schizophrenia. Science 1973, 179, 916–918. [Google Scholar] [CrossRef]
- Meyer, J.H.; Ginovart, N.; Boovariwala, A.; Sagrati, S.; Hussey, D.; Garcia, A.; Young, T.; Praschak-Rieder, N.; Wilson, A.A.; Houle, S. Elevated monoamine oxidase a levels in the brain: An explanation for the monoamine imbalance of major depression. Arch. Gen. Psychiatry 2006, 63, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Schedin-Weiss, S.; Inoue, M.; Hromadkova, L.; Teranishi, Y.; Yamamoto, N.G.; Wiehager, B.; Bogdanovic, N.; Winblad, B.; Sandebring-Matton, A.; Frykman, S.; et al. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with gamma-secretase and regulates neuronal amyloid beta-peptide levels. Alzheimers Res. Ther. 2017, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Chacon, J.N.; Truscott, T.G. Chemically induced Parkinson’s disease. III: A study of a possible role of singlet molecular oxygen in Parkinson’s disease. J. Photochem. Photobiol. B 1991, 11, 261–267. [Google Scholar]
- Park, J.H.; Ju, Y.H.; Choi, J.W.; Song, H.J.; Jang, B.K.; Woo, J.; Chun, H.; Kim, H.J.; Shin, S.J.; Yarishkin, O.; et al. Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease. Sci. Adv. 2019, 5, eaav0316. [Google Scholar] [CrossRef]
- Grimes, D.; Fitzpatrick, M.; Gordon, J.; Miyasaki, J.; Fon, E.A.; Schlossmacher, M.; Suchowersky, O.; Rajput, A.; Lafontaine, A.L.; Mestre, T.; et al. Canadian guideline for Parkinson disease. CMAJ 2019, 191, E989–E1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshwal, S.; Forkink, M.; Hu, C.H.; Buonincontri, G.; Antonucci, S.; Di Sante, M.; Murphy, M.P.; Paolocci, N.; Mochly-Rosen, D.; Krieg, T.; et al. Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes. Cell Death Differ. 2018, 25, 1671–1685. [Google Scholar] [CrossRef]
- McGrath, A.P.; Hilmer, K.M.; Collyer, C.A.; Shepard, E.M.; Elmore, B.O.; Brown, D.E.; Dooley, D.M.; Guss, J.M. Structure and inhibition of human diamine oxidase. Biochemistry 2009, 48, 9810–9822. [Google Scholar] [CrossRef]
- Brown, D.D.; Tomchick, R.; Axelrod, J. The distribution and properties of a histamine-methylating enzyme. J. Biol. Chem. 1959, 234, 2948–2950. [Google Scholar] [CrossRef]
- Goldschmidt, R.C.; Khandelwal, J.K.; Hough, L.B. Presence and measurement of tele-methylhistamine in mast cells. Agents Actions 1984, 14, 174–178. [Google Scholar] [CrossRef]
- Rilstone, J.J.; Alkhater, R.A.; Minassian, B.A. Brain dopamine-serotonin vesicular transport disease and its treatment. N. Engl. J. Med. 2013, 368, 543–550. [Google Scholar] [CrossRef]
- Huntington Study, G.; Frank, S.; Testa, C.M.; Stamler, D.; Kayson, E.; Davis, C.; Edmondson, M.C.; Kinel, S.; Leavitt, B.; Oakes, D.; et al. Effect of Deutetrabenazine on Chorea Among Patients With Huntington Disease: A Randomized Clinical Trial. JAMA 2016, 316, 40–50. [Google Scholar] [CrossRef]
- Jankovic, J.; Beach, J. Long-term effects of tetrabenazine in hyperkinetic movement disorders. Neurology 1997, 48, 358–362. [Google Scholar] [CrossRef]
- Wernersson, S.; Pejler, G. Mast cell secretory granules: Armed for battle. Nat. Rev. Immunol. 2014, 14, 478–494. [Google Scholar] [CrossRef]
- Travis, E.R.; Wang, Y.M.; Michael, D.J.; Caron, M.G.; Wightman, R.M. Differential quantal release of histamine and 5-hydroxytryptamine from mast cells of vesicular monoamine transporter 2 knockout mice. Proc. Natl. Acad. Sci. USA 2000, 97, 162–167. [Google Scholar] [CrossRef]
- Chen, N.H.; Reith, M.E.; Quick, M.W. Synaptic uptake and beyond: The sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflug. Arch. 2004, 447, 519–531. [Google Scholar] [CrossRef]
- Melikian, H.E. Neurotransmitter transporter trafficking: Endocytosis, recycling, and regulation. Pharmacol. Ther. 2004, 104, 17–27. [Google Scholar] [CrossRef]
- Donovan, D.M.; Vandenbergh, D.J.; Perry, M.P.; Bird, G.S.; Ingersoll, R.; Nanthakumar, E.; Uhl, G.R. Human and mouse dopamine transporter genes: Conservation of 5’-flanking sequence elements and gene structures. Brain Res. Mol. Brain Res. 1995, 30, 327–335. [Google Scholar] [CrossRef]
- Kurian, M.A.; Zhen, J.; Cheng, S.Y.; Li, Y.; Mordekar, S.R.; Jardine, P.; Morgan, N.V.; Meyer, E.; Tee, L.; Pasha, S.; et al. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J. Clin. Investig. 2009, 119, 1595–1603. [Google Scholar] [CrossRef]
- Enerback, L.; Haggendal, J. Uptake and storage of catecholamines in mucosal mast cells of the rat. J. Histochem. Cytochem. 1970, 18, 803–811. [Google Scholar] [CrossRef]
- Blank, U.; Huang, H.; Kawakami, T. The high affinity IgE receptor: A signaling update. Curr. Opin. Immunol. 2021, 72, 51–58. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Hearing, V.J. Physiological factors that regulate skin pigmentation. Biofactors 2009, 35, 193–199. [Google Scholar] [CrossRef]
- Menasche, G.; Ho, C.H.; Sanal, O.; Feldmann, J.; Tezcan, I.; Ersoy, F.; Houdusse, A.; Fischer, A.; de Saint Basile, G. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J. Clin. Investig. 2003, 112, 450–456. [Google Scholar] [CrossRef]
- Kukimoto-Niino, M.; Sakamoto, A.; Kanno, E.; Hanawa-Suetsugu, K.; Terada, T.; Shirouzu, M.; Fukuda, M.; Yokoyama, S. Structural basis for the exclusive specificity of Slac2-a/melanophilin for the Rab27 GTPases. Structure 2008, 16, 1478–1490. [Google Scholar] [CrossRef]
- Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 2009, 10, 513–525. [Google Scholar] [CrossRef]
- Brighouse, A.; Dacks, J.B.; Field, M.C. Rab protein evolution and the history of the eukaryotic endomembrane system. Cell Mol Life Sci 2010, 67, 3449–3465. [Google Scholar] [CrossRef] [Green Version]
- D’Adamo, P.; Masetti, M.; Bianchi, V.; More, L.; Mignogna, M.L.; Giannandrea, M.; Gatti, S. RAB GTPases and RAB-interacting proteins and their role in the control of cognitive functions. Neurosci. Biobehav. Rev. 2014, 46 Pt 2, 302–314. [Google Scholar] [CrossRef]
- Fukuda, M. Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 2013, 14, 949–963. [Google Scholar] [CrossRef]
- Singh, R.K.; Mizuno, K.; Wasmeier, C.; Wavre-Shapton, S.T.; Recchi, C.; Catz, S.D.; Futter, C.; Tolmachova, T.; Hume, A.N.; Seabra, M.C. Distinct and opposing roles for Rab27a/Mlph/MyoVa and Rab27b/Munc13-4 in mast cell secretion. FEBS J. 2013, 280, 892–903. [Google Scholar] [CrossRef]
- Mizuno, K.; Tolmachova, T.; Ushakov, D.S.; Romao, M.; Abrink, M.; Ferenczi, M.A.; Raposo, G.; Seabra, M.C. Rab27b regulates mast cell granule dynamics and secretion. Traffic 2007, 8, 883–892. [Google Scholar] [CrossRef]
- van der Sluijs, P.; Neeft, M.; van Vlijmen, T.; Elstak, E.; Wieffer, M. Methods for analysis of rab27a/Munc13-4 in secretory lysosome release in hematopoietic cells. Methods Enzymol. 2008, 438, 185–201. [Google Scholar] [PubMed]
- Catz, S.D. Regulation of vesicular trafficking and leukocyte function by Rab27 GTPases and their effectors. J. Leukoc. Biol. 2013, 94, 613–622. [Google Scholar] [CrossRef]
- Munoz, I.; Danelli, L.; Claver, J.; Goudin, N.; Kurowska, M.; Madera-Salcedo, I.K.; Huang, J.D.; Fischer, A.; Gonzalez-Espinosa, C.; de Saint Basile, G.; et al. Kinesin-1 controls mast cell degranulation and anaphylaxis through PI3K-dependent recruitment to the granular Slp3/Rab27b complex. J. Cell Biol. 2016, 215, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Elstak, E.D.; Neeft, M.; Nehme, N.T.; Voortman, J.; Cheung, M.; Goodarzifard, M.; Gerritsen, H.C.; van Bergen En Henegouwen, P.M.; Callebaut, I.; de Saint Basile, G.; et al. The munc13-4-rab27 complex is specifically required for tethering secretory lysosomes at the plasma membrane. Blood 2011, 118, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Higashio, H.; Satoh, Y.; Saino, T. Mast cell degranulation is negatively regulated by the Munc13-4-binding small-guanosine triphosphatase Rab37. Sci. Rep. 2016, 6, 22539. [Google Scholar] [CrossRef]
- Franke, K.; Kirchner, M.; Mertins, P.; Zuberbier, T.; Babina, M. The SCF/KIT axis in human mast cells: Capicua acts as potent KIT repressor and ERK predominates PI3K. Allergy 2022. [Google Scholar] [CrossRef]
- Barinka, F.; Druga, R. Calretinin expression in the mammalian neocortex: A review. Physiol. Res. 2010, 59, 665–677. [Google Scholar] [CrossRef]
- Camp, A.J.; Wijesinghe, R. Calretinin: Modulator of neuronal excitability. Int. J. Biochem. Cell Biol. 2009, 41, 2118–2121. [Google Scholar] [CrossRef]
- Coleman, H.; Altini, M.; Ali, H.; Doglioni, C.; Favia, G.; Maiorano, E. Use of calretinin in the differential diagnosis of unicystic ameloblastomas. Histopathology 2001, 38, 312–317. [Google Scholar] [CrossRef]
- Fine, S.W.; McClain, S.A.; Li, M. Immunohistochemical staining for calretinin is useful for differentiating schwannomas from neurofibromas. Am. J. Clin. Pathol. 2004, 122, 552–559. [Google Scholar] [CrossRef]
- Mangini, J.; Silverman, J.F.; Dabbs, D.J.; Tung, M.Y.; Silverman, A.R. Diagnostic Value of Calretinin in Mast Cell Lesions of the Skin. Int. J. Surg. Pathol. 2000, 8, 119–122. [Google Scholar] [CrossRef]
- Rogers, J.; Khan, M.; Ellis, J. Calretinin and other CaBPs in the nervous system. Adv. Exp. Med. Biol. 1990, 269, 195–203. [Google Scholar] [PubMed]
- DeFelipe, J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J. Chem. Neuroanat. 1997, 14, 1–19. [Google Scholar] [CrossRef]
- Schwaller, B.; Meyer, M.; Schiffmann, S. ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 2002, 1, 241–258. [Google Scholar] [CrossRef]
- Giordano, M.; Cavallaro, U. Different Shades of L1CAM in the Pathophysiology of Cancer Stem Cells. J. Clin. Med. 2020, 9, 1502. [Google Scholar] [CrossRef] [PubMed]
- Gerrow, K.; El-Husseini, A. Cell adhesion molecules at the synapse. Front. Biosci. 2006, 11, 2400–2419. [Google Scholar] [CrossRef] [Green Version]
- Maness, P.F.; Schachner, M. Neural recognition molecules of the immunoglobulin superfamily: Signaling transducers of axon guidance and neuronal migration. Nat. Neurosci. 2007, 10, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Bliss, T.; Errington, M.; Fransen, E.; Godfraind, J.M.; Kauer, J.A.; Kooy, R.F.; Maness, P.F.; Furley, A.J. Long-term potentiation in mice lacking the neural cell adhesion molecule L1. Curr. Biol. 2000, 10, 1607–1610. [Google Scholar] [CrossRef]
- Kadmon, G.; Altevogt, P. The cell adhesion molecule L1: Species- and cell-type-dependent multiple binding mechanisms. Differentiation 1997, 61, 143–150. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, S. “CRASH”ing with the worm: Insights into L1CAM functions and mechanisms. Dev. Dyn. 2010, 239, 1490–1501. [Google Scholar] [CrossRef]
- Fransen, E.; Lemmon, V.; Van Camp, G.; Vits, L.; Coucke, P.; Willems, P.J. CRASH syndrome: Clinical spectrum of corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraparesis and hydrocephalus due to mutations in one single gene, L1. Eur. J. Hum. Genet. 1995, 3, 273–284. [Google Scholar] [CrossRef]
- Kenwrick, S.; Watkins, A.; De Angelis, E. Neural cell recognition molecule L1: Relating biological complexity to human disease mutations. Hum. Mol. Genet. 2000, 9, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Weller, S.; Gartner, J. Genetic and clinical aspects of X-linked hydrocephalus (L1 disease): Mutations in the L1CAM gene. Hum. Mutat. 2001, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kamiguchi, H.; Hlavin, M.L.; Lemmon, V. Role of L1 in neural development: What the knockouts tell us. Mol. Cell. Neurosci. 1998, 12, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Schafer, M.K.; Altevogt, P. L1CAM malfunction in the nervous system and human carcinomas. Cell. Mol. Life Sci. 2010, 67, 2425–2437. [Google Scholar] [CrossRef] [PubMed]
- Crossin, K.L.; Krushel, L.A. Cellular signaling by neural cell adhesion molecules of the immunoglobulin superfamily. Dev. Dyn. 2000, 218, 260–279. [Google Scholar] [CrossRef]
- Schmid, R.S.; Maness, P.F. L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr. Opin. Neurobiol. 2008, 18, 245–250. [Google Scholar] [CrossRef]
- Nagaraj, K.; Hortsch, M. Phosphorylation of L1-type cell-adhesion molecules--ankyrins away! Trends Biochem. Sci. 2006, 31, 544–546. [Google Scholar] [CrossRef]
- Kadmon, G.; Montgomery, A.M.; Altevogt, P. L1 makes immunological progress by expanding its relations. Dev. Immunol. 1998, 6, 205–213. [Google Scholar] [CrossRef]
- Khoonsari, P.E.; Ossipova, E.; Lengqvist, J.; Svensson, C.I.; Kosek, E.; Kadetoff, D.; Jakobsson, P.J.; Kultima, K.; Lampa, J. The human CSF pain proteome. J. Proteom. 2019, 190, 67–76. [Google Scholar] [CrossRef]
- Levy, P.; Vidaud, D.; Leroy, K.; Laurendeau, I.; Wechsler, J.; Bolasco, G.; Parfait, B.; Wolkenstein, P.; Vidaud, M.; Bieche, I. Molecular profiling of malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1, based on large-scale real-time RT-PCR. Mol. Cancer 2004, 3, 20. [Google Scholar] [CrossRef]
- Edelman, G.M.; Jones, F.S. Gene regulation of cell adhesion: A key step in neural morphogenesis. Brain Res. Brain Res. Rev. 1998, 26, 337–352. [Google Scholar] [CrossRef]
- Gil, O.D.; Zanazzi, G.; Struyk, A.F.; Salzer, J.L. Neurotrimin mediates bifunctional effects on neurite outgrowth via homophilic and heterophilic interactions. J. Neurosci. 1998, 18, 9312–9325. [Google Scholar] [CrossRef] [PubMed]
- Gil, O.D.; Zhang, L.; Chen, S.; Ren, Y.Q.; Pimenta, A.; Zanazzi, G.; Hillman, D.; Levitt, P.; Salzer, J.L. Complementary expression and heterophilic interactions between IgLON family members neurotrimin and LAMP. J. Neurobiol. 2002, 51, 190–204. [Google Scholar] [CrossRef] [PubMed]
- Struyk, A.F.; Canoll, P.D.; Wolfgang, M.J.; Rosen, C.L.; D’Eustachio, P.; Salzer, J.L. Cloning of neurotrimin defines a new subfamily of differentially expressed neural cell adhesion molecules. J. Neurosci. 1995, 15 Pt 2, 2141–2156. [Google Scholar] [CrossRef]
- Chen, S.; Gil, O.; Ren, Y.Q.; Zanazzi, G.; Salzer, J.L.; Hillman, D.E. Neurotrimin expression during cerebellar development suggests roles in axon fasciculation and synaptogenesis. J. Neurocytol. 2001, 30, 927–937. [Google Scholar] [CrossRef]
- Liu, J.; Li, G.; Peng, X.; Liu, B.; Yin, B.; Tan, X.; Fan, M.; Fan, W.; Qiang, B.; Yuan, J. The cloning and preliminarily functional analysis of the human neurotrimin gene. Sci. China C Life Sci. 2004, 47, 158–164. [Google Scholar] [CrossRef]
- Grijalva, I.; Li, X.; Marcillo, A.; Salzer, J.L.; Levi, A.D. Expression of neurotrimin in the normal and injured adult human spinal cord. Spinal Cord 2006, 44, 280–286. [Google Scholar] [CrossRef]
- Krizsan-Agbas, D.; Pedchenko, T.; Smith, P.G. Neurotrimin is an estrogen-regulated determinant of peripheral sympathetic innervation. J. Neurosci. Res. 2008, 86, 3086–3095. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, K.S.; Aragam, N. NTM and NR3C2 polymorphisms influencing intelligence: Family-based association studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 154–160. [Google Scholar] [CrossRef]
- Mazitov, T.; Bregin, A.; Philips, M.A.; Innos, J.; Vasar, E. Deficit in emotional learning in neurotrimin knockout mice. Behav. Brain Res. 2017, 317, 311–318. [Google Scholar] [CrossRef]
- Singh, K.; Lillevali, K.; Gilbert, S.F.; Bregin, A.; Narvik, J.; Jayaram, M.; Rahi, M.; Innos, J.; Kaasik, A.; Vasar, E.; et al. The combined impact of IgLON family proteins Lsamp and Neurotrimin on developing neurons and behavioral profiles in mouse. Brain Res. Bull. 2018, 140, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Qian, T.; Wang, Y.; Zhou, S.; Ding, G.; Ding, F.; Gu, X. miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res. 2012, 40, 10356–10365. [Google Scholar] [CrossRef] [PubMed]
- Hahm, K.; Sum, E.Y.; Fujiwara, Y.; Lindeman, G.J.; Visvader, J.E.; Orkin, S.H. Defective neural tube closure and anteroposterior patterning in mice lacking the LIM protein LMO4 or its interacting partner Deaf-1. Mol. Cell. Biol. 2004, 24, 2074–2082. [Google Scholar] [CrossRef]
- Kenny, D.A.; Jurata, L.W.; Saga, Y.; Gill, G.N. Identification and characterization of LMO4, an LMO gene with a novel pattern of expression during embryogenesis. Proc. Natl. Acad. Sci. USA 1998, 95, 11257–11262. [Google Scholar] [CrossRef]
- Butterfield, J.H.; Weiler, D.; Dewald, G.; Gleich, G.J. Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk. Res. 1988, 12, 345–355. [Google Scholar] [CrossRef]
- Guhl, S.; Babina, M.; Neou, A.; Zuberbier, T.; Artuc, M. Mast cell lines HMC-1 and LAD2 in comparison with mature human skin mast cells--drastically reduced levels of tryptase and chymase in mast cell lines. Exp. Dermatol. 2010, 19, 845–847. [Google Scholar] [CrossRef]
- Qin, Z.; Zhou, X.; Gomez-Smith, M.; Pandey, N.R.; Lee, K.F.; Lagace, D.C.; Beique, J.C.; Chen, H.H. LIM domain only 4 (LMO4) regulates calcium-induced calcium release and synaptic plasticity in the hippocampus. J. Neurosci. 2012, 32, 4271–4283. [Google Scholar] [CrossRef] [PubMed]
- Zaman, T.; Zhou, X.; Pandey, N.R.; Qin, Z.; Keyhanian, K.; Wen, K.; Courtney, R.D.; Stewart, A.F.; Chen, H.H. LMO4 is essential for paraventricular hypothalamic neuronal activity and calcium channel expression to prevent hyperphagia. J. Neurosci. 2014, 34, 140–148. [Google Scholar] [CrossRef]
- Kashani, A.H.; Qiu, Z.; Jurata, L.; Lee, S.K.; Pfaff, S.; Goebbels, S.; Nave, K.A.; Ghosh, A. Calcium activation of the LMO4 transcription complex and its role in the patterning of thalamocortical connections. J. Neurosci. 2006, 26, 8398–8408. [Google Scholar] [CrossRef]
- Chen, H.H.; Schock, S.C.; Xu, J.; Safarpour, F.; Thompson, C.S.; Stewart, A.F. Extracellular ATP-dependent upregulation of the transcription cofactor LMO4 promotes neuron survival from hypoxia. Exp. Cell Res. 2007, 313, 3106–3116. [Google Scholar] [CrossRef]
- Gomez-Smith, M.; Qin, Z.; Zhou, X.; Schock, S.C.; Chen, H.H. LIM domain only 4 protein promotes granulocyte colony-stimulating factor-induced signaling in neurons. Cell. Mol. Life Sci. 2010, 67, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Maiya, R.; Mangieri, R.A.; Morrisett, R.A.; Heberlein, U.; Messing, R.O. A Selective Role for Lmo4 in Cue-Reward Learning. J. Neurosci. 2015, 35, 9638–9647. [Google Scholar] [CrossRef] [PubMed]
- Hermanson, O.; Sugihara, T.M.; Andersen, B. Expression of LMO-4 in the central nervous system of the embryonic and adult mouse. Cell. Mol. Biol. 1999, 45, 677–686. [Google Scholar]
- Pandey, N.R.; Zhou, X.; Qin, Z.; Zaman, T.; Gomez-Smith, M.; Keyhanian, K.; Anisman, H.; Brunel, J.M.; Stewart, A.F.; Chen, H.H. The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling. J. Neurosci. 2013, 33, 12647–12655. [Google Scholar] [CrossRef]
- Chen, H.H.; Yip, J.W.; Stewart, A.F.; Frank, E. Differential expression of a transcription regulatory factor, the LIM domain only 4 protein Lmo4, in muscle sensory neurons. Development 2002, 129, 4879–4889. [Google Scholar] [CrossRef] [PubMed]
- Lasek, A.W.; Kapfhamer, D.; Kharazia, V.; Gesch, J.; Giorgetti, F.; Heberlein, U. Lmo4 in the nucleus accumbens regulates cocaine sensitivity. Genes Brain Behav. 2010, 9, 817–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa, S.D.; Salvador, S.; LaBonne, C. The LIM adaptor protein LMO4 is an essential regulator of neural crest development. Dev. Biol. 2012, 361, 313–325. [Google Scholar] [CrossRef]
- Deane, J.E.; Ryan, D.P.; Sunde, M.; Maher, M.J.; Guss, J.M.; Visvader, J.E.; Matthews, J.M. Tandem LIM domains provide synergistic binding in the LMO4:Ldb1 complex. EMBO J. 2004, 23, 3589–3598. [Google Scholar] [CrossRef]
- Joshi, K.; Lee, S.; Lee, B.; Lee, J.W.; Lee, S.K. LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons. Neuron 2009, 61, 839–851. [Google Scholar] [CrossRef]
- Babina, M.; Schulke, Y.; Kirchhof, L.; Guhl, S.; Franke, R.; Bohm, S.; Zuberbier, T.; Henz, B.M.; Gombart, A.F. The transcription factor profile of human mast cells in comparison with monocytes and granulocytes. Cell. Mol. Life Sci. 2005, 62, 214–226. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.; Kamran, M.; Harmacek, L.; Danhorn, T.; Leach, S.M.; O’Connor, B.P.; Hagman, J.R.; Huang, H. GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super-enhancers. Nat. Commun. 2021, 12, 494. [Google Scholar] [CrossRef] [PubMed]
- Calero-Nieto, F.J.; Ng, F.S.; Wilson, N.K.; Hannah, R.; Moignard, V.; Leal-Cervantes, A.I.; Jimenez-Madrid, I.; Diamanti, E.; Wernisch, L.; Gottgens, B. Key regulators control distinct transcriptional programmes in blood progenitor and mast cells. EMBO J. 2014, 33, 1212–1226. [Google Scholar] [CrossRef] [PubMed]
- Grebbin, B.M.; Schulte, D. PBX1 as Pioneer Factor: A Case Still Open. Front. Cell Dev. Biol. 2017, 5, 9. [Google Scholar] [CrossRef]
- van Dijk, M.A.; Peltenburg, L.T.; Murre, C. Hox gene products modulate the DNA binding activity of Pbx1 and Pbx2. Mech. Dev. 1995, 52, 99–108. [Google Scholar] [CrossRef]
- Lu, Q.; Knoepfler, P.S.; Scheele, J.; Wright, D.D.; Kamps, M.P. Both Pbx1 and E2A-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine Hox genes, some of which are themselves oncogenes. Mol. Cell. Biol. 1995, 15, 3786–3795. [Google Scholar] [CrossRef]
- Linares, A.J.; Lin, C.H.; Damianov, A.; Adams, K.L.; Novitch, B.G.; Black, D.L. The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. Elife 2015, 4, e09268. [Google Scholar] [CrossRef]
- Niu, Y.; Sengupta, M.; Titov, A.A.; Choi, S.C.; Morel, L. The PBX1 lupus susceptibility gene regulates CD44 expression. Mol. Immunol. 2017, 85, 148–154. [Google Scholar] [CrossRef]
- Remesal, L.; Roger-Baynat, I.; Chirivella, L.; Maicas, M.; Brocal-Ruiz, R.; Perez-Villalba, A.; Cucarella, C.; Casado, M.; Flames, N. PBX1 acts as terminal selector for olfactory bulb dopaminergic neurons. Development 2020, 147, dev186841. [Google Scholar] [CrossRef]
- Selleri, L.; Depew, M.J.; Jacobs, Y.; Chanda, S.K.; Tsang, K.Y.; Cheah, K.S.; Rubenstein, J.L.; O’Gorman, S.; Cleary, M.L. Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development 2001, 128, 3543–3557. [Google Scholar] [CrossRef] [PubMed]
- Rauskolb, C.; Peifer, M.; Wieschaus, E. extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell 1993, 74, 1101–1112. [Google Scholar] [CrossRef]
- Roberts, V.J.; van Dijk, M.A.; Murre, C. Localization of Pbx1 transcripts in developing rat embryos. Mech. Dev. 1995, 51, 193–198. [Google Scholar] [CrossRef]
- Redmond, L.; Hockfield, S.; Morabito, M.A. The divergent homeobox gene PBX1 is expressed in the postnatal subventricular zone and interneurons of the olfactory bulb. J. Neurosci. 1996, 16, 2972–2982. [Google Scholar] [CrossRef]
- Villaescusa, J.C.; Li, B.; Toledo, E.M.; Rivetti di Val Cervo, P.; Yang, S.; Stott, S.R.; Kaiser, K.; Islam, S.; Gyllborg, D.; Laguna-Goya, R.; et al. A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson’s disease. EMBO J. 2016, 35, 1963–1978. [Google Scholar] [CrossRef] [PubMed]
- Le Tanno, P.; Breton, J.; Bidart, M.; Satre, V.; Harbuz, R.; Ray, P.F.; Bosson, C.; Dieterich, K.; Jaillard, S.; Odent, S.; et al. PBX1 haploinsufficiency leads to syndromic congenital anomalies of the kidney and urinary tract (CAKUT) in humans. J. Med. Genet. 2017, 54, 502–510. [Google Scholar] [CrossRef]
- Fitzgerald, K.K.; Powell-Hamilton, N.; Shillingford, A.J.; Robinson, B.; Gripp, K.W. Inherited intragenic PBX1 deletion: Expanding the phenotype. Am. J. Med. Genet. A 2021, 185, 234–237. [Google Scholar] [CrossRef]
- Pineault, N.; Helgason, C.D.; Lawrence, H.J.; Humphries, R.K. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp. Hematol. 2002, 30, 49–57. [Google Scholar] [CrossRef]
- Krosl, J.; Beslu, N.; Mayotte, N.; Humphries, R.K.; Sauvageau, G. The competitive nature of HOXB4-transduced HSC is limited by PBX1: The generation of ultra-competitive stem cells retaining full differentiation potential. Immunity 2003, 18, 561–571. [Google Scholar] [CrossRef]
- Ficara, F.; Murphy, M.J.; Lin, M.; Cleary, M.L. Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2008, 2, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.K.; Zhang, J.; Chia, N.Y.; Chan, Y.S.; Sim, H.S.; Tan, K.S.; Oh, S.K.; Ng, H.H.; Choo, A.B. KLF4 and PBX1 directly regulate NANOG expression in human embryonic stem cells. Stem Cells 2009, 27, 2114–2125. [Google Scholar] [CrossRef]
- Bjerke, G.A.; Hyman-Walsh, C.; Wotton, D. Cooperative transcriptional activation by Klf4, Meis2, and Pbx1. Mol. Cell. Biol. 2011, 31, 3723–3733. [Google Scholar] [CrossRef]
- Liu, F.; Shi, J.; Zhang, Y.; Lian, A.; Han, X.; Zuo, K.; Liu, M.; Zheng, T.; Zou, F.; Liu, X.; et al. NANOG Attenuates Hair Follicle-Derived Mesenchymal Stem Cell Senescence by Upregulating PBX1 and Activating AKT Signaling. Oxid. Med. Cell. Longev. 2019, 2019, 4286213. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.H.; Lin, Y.T.; Liang, C.M.; Liang, S.M. A novel c-Kit/phospho-prohibitin axis enhances ovarian cancer stemness and chemoresistance via Notch3-PBX1 and beta-catenin-ABCG2 signaling. J. Biomed. Sci. 2020, 27, 42. [Google Scholar] [CrossRef] [PubMed]
- Akula, S.; Paivandy, A.; Fu, Z.; Thorpe, M.; Pejler, G.; Hellman, L. How Relevant Are Bone Marrow-Derived Mast Cells (BMMCs) as Models for Tissue Mast Cells? A Comparative Transcriptome Analysis of BMMCs and Peritoneal Mast Cells. Cells 2020, 9, 2118. [Google Scholar] [CrossRef]
- Immunological Genome, P. ImmGen at 15. Nat. Immunol. 2020, 21, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Oulad-Abdelghani, M.; Chazaud, C.; Bouillet, P.; Sapin, V.; Chambon, P.; Dolle, P. Meis2, a novel mouse Pbx-related homeobox gene induced by retinoic acid during differentiation of P19 embryonal carcinoma cells. Dev. Dyn. 1997, 210, 173–183. [Google Scholar] [CrossRef]
- Kondo, T.; Isono, K.; Kondo, K.; Endo, T.A.; Itohara, S.; Vidal, M.; Koseki, H. Polycomb potentiates meis2 activation in midbrain by mediating interaction of the promoter with a tissue-specific enhancer. Dev. Cell 2014, 28, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Wang, H.; Wen, Y.; Chen, X.; Liu, X.; Gao, J.; Su, P.; Xu, Y.; Zhou, W.; Shi, L.; et al. MEIS2 regulates endothelial to hematopoietic transition of human embryonic stem cells by targeting TAL1. Stem Cell Res. Ther. 2018, 9, 340. [Google Scholar] [CrossRef]
- Douglas, G.; Cho, M.T.; Telegrafi, A.; Winter, S.; Carmichael, J.; Zackai, E.H.; Deardorff, M.A.; Harr, M.; Williams, L.; Psychogios, A.; et al. De novo missense variants in MEIS2 recapitulate the microdeletion phenotype of cardiac and palate abnormalities, developmental delay, intellectual disability and dysmorphic features. Am. J. Med. Genet. A 2018, 176, 1845–1851. [Google Scholar] [CrossRef]
- Johansson, S.; Berland, S.; Gradek, G.A.; Bongers, E.; de Leeuw, N.; Pfundt, R.; Fannemel, M.; Rodningen, O.; Brendehaug, A.; Haukanes, B.I.; et al. Haploinsufficiency of MEIS2 is associated with orofacial clefting and learning disability. Am. J. Med. Genet. A 2014, 164A, 1622–1626. [Google Scholar] [CrossRef]
- Verheije, R.; Kupchik, G.S.; Isidor, B.; Kroes, H.Y.; Lynch, S.A.; Hawkes, L.; Hempel, M.; Gelb, B.D.; Ghoumid, J.; D’Amours, G.; et al. Heterozygous loss-of-function variants of MEIS2 cause a triad of palatal defects, congenital heart defects, and intellectual disability. Eur. J. Hum. Genet. 2019, 27, 278–290. [Google Scholar] [CrossRef]
- Agoston, Z.; Heine, P.; Brill, M.S.; Grebbin, B.M.; Hau, A.C.; Kallenborn-Gerhardt, W.; Schramm, J.; Gotz, M.; Schulte, D. Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development 2014, 141, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Machon, O.; Masek, J.; Machonova, O.; Krauss, S.; Kozmik, Z. Meis2 is essential for cranial and cardiac neural crest development. BMC Dev. Biol. 2015, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Agoston, Z.; Li, N.; Haslinger, A.; Wizenmann, A.; Schulte, D. Genetic and physical interaction of Meis2, Pax3 and Pax7 during dorsal midbrain development. BMC Dev. Biol. 2012, 12, 10. [Google Scholar] [CrossRef]
- Scheer, S.; Zaph, C. The Lysine Methyltransferase G9a in Immune Cell Differentiation and Function. Front. Immunol. 2017, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Cildir, G.; Toubia, J.; Yip, K.H.; Zhou, M.; Pant, H.; Hissaria, P.; Zhang, J.; Hong, W.; Robinson, N.; Grimbaldeston, M.A.; et al. Genome-wide Analyses of Chromatin State in Human Mast Cells Reveal Molecular Drivers and Mediators of Allergic and Inflammatory Diseases. Immunity 2019, 51, 949–965 e6. [Google Scholar] [CrossRef]
- Kramer, J.M. Regulation of cell differentiation and function by the euchromatin histone methyltranserfases G9a and GLP. Biochem. Cell Biol. 2016, 94, 26–32. [Google Scholar] [CrossRef]
- Chen, W.L.; Sun, H.P.; Li, D.D.; Wang, Z.H.; You, Q.D.; Guo, X.K. G9a—An Appealing Antineoplastic Target. Curr. Cancer Drug. Targets 2017, 17, 555–568. [Google Scholar] [CrossRef]
- Deimling, S.J.; Olsen, J.B.; Tropepe, V. The expanding role of the Ehmt2/G9a complex in neurodevelopment. Neurogenesis 2017, 4, e1316888. [Google Scholar] [CrossRef]
- He, Y.; Korboukh, I.; Jin, J.; Huang, J. Targeting protein lysine methylation and demethylation in cancers. Acta Biochim. Biophys. Sin. 2012, 44, 70–79. [Google Scholar] [CrossRef]
- Saha, N.; Muntean, A.G. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188498. [Google Scholar] [CrossRef]
- Vitezic, M.; Bertin, N.; Andersson, R.; Lipovich, L.; Kawaji, H.; Lassmann, T.; Sandelin, A.; Heutink, P.; Goldowitz, D.; Ha, T.; et al. CAGE-defined promoter regions of the genes implicated in Rett Syndrome. BMC Genom. 2014, 15, 1177. [Google Scholar] [CrossRef] [PubMed]
- Babina, M.; Guhl, S.; Starke, A.; Kirchhof, L.; Zuberbier, T.; Henz, B.M. Comparative cytokine profile of human skin mast cells from two compartments--strong resemblance with monocytes at baseline but induction of IL-5 by IL-4 priming. J. Leukoc. Biol. 2004, 75, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Franke, K.; Wang, Z.; Zuberbier, T.; Babina, M. Cytokines Stimulated by IL-33 in Human Skin Mast Cells: Involvement of NF-kappaB and p38 at Distinct Levels and Potent Co-Operation with FcepsilonRI and MRGPRX2. Int. J. Mol. Sci. 2021, 22, 3580. [Google Scholar] [CrossRef] [PubMed]
- Lorentz, A.; Schwengberg, S.; Sellge, G.; Manns, M.P.; Bischoff, S.C. Human intestinal mast cells are capable of producing different cytokine profiles: Role of IgE receptor cross-linking and IL-4. J. Immunol. 2000, 164, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef]
- Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef] [PubMed]
- Kay, L.J.; Rostami-Hodjegan, A.; Suvarna, S.K.; Peachell, P.T. Influence of beta2-adrenoceptor gene polymorphisms on beta2-adrenoceptor-mediated responses in human lung mast cells. Br. J. Pharmacol. 2007, 152, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Le Provost, G.S.; Pullar, C.E. beta2-adrenoceptor activation modulates skin wound healing processes to reduce scarring. J. Investig. Dermatol. 2015, 135, 279–288. [Google Scholar] [CrossRef]
- Lundequist, A.; Calounova, G.; Wensman, H.; Ronnberg, E.; Pejler, G. Differential regulation of Nr4a subfamily nuclear receptors following mast cell activation. Mol. Immunol. 2011, 48, 1753–1761. [Google Scholar] [CrossRef]
- Levy, J.; Grotto, S.; Mignot, C.; Maruani, A.; Delahaye-Duriez, A.; Benzacken, B.; Keren, B.; Haye, D.; Xavier, J.; Heulin, M.; et al. NR4A2 haploinsufficiency is associated with intellectual disability and autism spectrum disorder. Clin. Genet. 2018, 94, 264–268. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, A.; Zech, M.; Sigafoos, A.N.; Clark, K.J.; Dincer, Y.; Wagner, M.; Humberson, J.B.; Green, S.; van Gassen, K.; et al. De novo variants of NR4A2 are associated with neurodevelopmental disorder and epilepsy. Genet. Med. 2020, 22, 1413–1417. [Google Scholar] [CrossRef] [PubMed]
- Saijo, K.; Winner, B.; Carson, C.T.; Collier, J.G.; Boyer, L.; Rosenfeld, M.G.; Gage, F.H.; Glass, C.K. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 2009, 137, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Raveney, B.J.; Oki, S.; Yamamura, T. Nuclear receptor NR4A2 orchestrates Th17 cell-mediated autoimmune inflammation via IL-21 signalling. PLoS ONE 2013, 8, e56595. [Google Scholar] [CrossRef] [PubMed]
- Wootten, D.; Christopoulos, A.; Marti-Solano, M.; Babu, M.M.; Sexton, P.M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 2018, 19, 638–653. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Bal, G.; Franke, K.; Zuberbier, T.; Babina, M. β-arrestin-1 and β-arrestin-2 Restrain MRGPRX2-Triggered Degranulation and ERK1/2 Activation in Human Skin Mast Cells. Front. Allergy 2022, 3, 88. [Google Scholar] [CrossRef]
- Babina, M.; Wang, Z.; Roy, S.; Guhl, S.; Franke, K.; Artuc, M.; Ali, H.; Zuberbier, T. MRGPRX2 Is the Codeine Receptor of Human Skin Mast Cells: Desensitization through beta-Arrestin and Lack of Correlation with the FcepsilonRI Pathway. J. Investig. Dermatol. 2021, 141, 1286–1296 e4. [Google Scholar] [CrossRef]
- McFerran, B.W.; Graham, M.E.; Burgoyne, R.D. Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J. Biol. Chem. 1998, 273, 22768–22772. [Google Scholar] [CrossRef] [PubMed]
- Kapp-Barnea, Y.; Melnikov, S.; Shefler, I.; Jeromin, A.; Sagi-Eisenberg, R. Neuronal calcium sensor-1 and phosphatidylinositol 4-kinase beta regulate IgE receptor-triggered exocytosis in cultured mast cells. J. Immunol. 2003, 171, 5320–5327. [Google Scholar] [CrossRef]
- Derakhshan, T.; Samuchiwal, S.K.; Hallen, N.; Bankova, L.G.; Boyce, J.A.; Barrett, N.A.; Austen, K.F.; Dwyer, D.F. Lineage-specific regulation of inducible and constitutive mast cells in allergic airway inflammation. J. Exp. Med. 2021, 218, e20200321. [Google Scholar] [CrossRef]
- Guhl, S.; Neou, A.; Artuc, M.; Zuberbier, T.; Babina, M. Skin mast cells develop non-synchronized changes in typical lineage characteristics upon culture. Exp. Dermatol. 2014, 23, 933–935. [Google Scholar] [CrossRef] [PubMed]
- Babina, M.; Wang, Z.; Artuc, M.; Guhl, S.; Zuberbier, T. MRGPRX2 is negatively targeted by SCF and IL-4 to diminish pseudo-allergic stimulation of skin mast cells in culture. Exp. Dermatol. 2018, 27, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
Gene Names | Mast Cells (Ex Vivo) | Mast Cells (Expanded) | FANTOM5 without MCs | FANTOM5 | MC vs. All Myelocytes | MC vs. Basophils |
---|---|---|---|---|---|---|
Mean expression (RLE Counts) | Mean expression (RLE Counts) | Mean expression (RLE Counts) | Mean expression (RLE Counts) | Fold Change (log2) | Fold Change (log2) | |
DRD2 | 56.46 | 54.56 | 2.62 | 3.17 | 10.50 | 10.11 |
MAOA | 1.78 | 1401.76 | 42.60 | 52.07 | - 1 | - 1 |
MAOB | 350.48 | 403.13 | 13.76 | 16.92 | 13.13 | 12.40 |
SLC18A2 | 786.57 | 853.81 | 1.62 | 8.45 | 12.49 | 10.26 |
SLC6A3 | 2.38 | 0.07 | 0.17 | 0.18 | - 1 | - 1 |
MLPH | 359.39 | 357.62 | 29.65 | 32.29 | 13.17 | 11.30 |
RAB27B | 808.76 | 1484.31 | 17.67 | 28.00 | 7.73 | 8.64 |
RAB37 | 167.54 | 302.52 | 12.54 | 14.32 | - 1 | - 1 |
CALB2 | 340.87 | 525.93 | 22.44 | 26.35 | 13.09 | 12.65 |
L1CAM | 256.85 | 27.24 | 38.65 | 39.36 | 10.10 | 9.26 |
NTM | 436.68 | 96.94 | 31.09 | 32.68 | 13.46 | 11.40 |
LMO4 | 513.30 | 279.22 | 126.02 | 128.08 | 3.96 | 3.90 |
PBX1 | 53.60 | 174.26 | 48.84 | 49.52 | 6.63 | 7.27 |
MEIS2 | 129.54 | 146.93 | 36.47 | 37.30 | 7.78 | 8.95 |
EHMT2 | 41.42 | 34.74 | 26.60 | 26.62 | 1.63 | 2.38 |
CMA1 | 1668.56 | 654.30 | 0.16 | 9.45 | 15.39 | 15.39 |
MRGPRX2 | 982.88 | 85.51 | 0.04 | 3.82 | 14.62 | 14.38 |
Gene Names | Fat Mast Cells (Ex Vivo) | Skin Mast Cells (Ex Vivo) | PBMCs |
---|---|---|---|
DRD2 | - 1 | - 1 | - 1 |
MAOA | - 1 | - 1 | - 1 |
MAOB | 28.34 | 28.72 | 21.89 |
SLC18A2 | 21.04 | 22.81 | 14.11 |
SLC6A3 | - 1 | - 1 | - 1 |
MLPH | 22.61 | 22.01 | - 1 |
RAB27B | 26.41 | 26.80 | 24.53 |
RAB37 | 24.39 | 24.48 | 20.69 |
CALB2 | 25.32 | 25.98 | 16.91 |
L1CAM | 23.92 | 22.87 | 15.13 |
NTM | 24.28 | 23.76 | 18.05 |
LMO4 | - 1 | - 1 | - 1 |
PBX1 | - 1 | - 1 | - 1 |
MEIS2 | - 1 | - 1 | - 1 |
EHMT2 | - 1 | - 1 | - 1 |
CMA1 | 31.22 | 30.99 | 21.26 |
MRGPRX2 | 20.86 | 19.63 | - 1 |
Gene Names | Mast Cells (Expanded) | Mast Cells (Expanded + SCF Stimulated 30 min) |
---|---|---|
DRD2 | - 1 | - 1 |
MAOA | 34.20 | 34.00 |
MAOB | 33.32 | 33.54 |
SLC18A2 | 30.70 | 30.43 |
SLC6A3 | 24.65 | 24.74 |
MLPH | 31.05 | 31.06 |
RAB27B | 34.80 | 35.00 |
RAB37 | 29.20 | 29.13 |
CALB2 | 32.55 | 32.42 |
L1CAM | 28.72 | 28.73 |
NTM | 25.59 | 26.04 |
LMO4 | - 1 | - 1 |
PBX1 | 24.49 | 24.36 |
MEIS2 | 24.65 | 24.74 |
EHMT2 | 27.79 | 27.64 |
CMA1 | 33.59 | 33.60 |
MRGPRX2 | 21.59 | 22.01 |
Gene Names | Dendritic Cells (CD1+) | Dermal Dendritic Cell | Fibroblast | Keratinocyte | Macrophage | Mast Cell | Melanocyte |
---|---|---|---|---|---|---|---|
DRD2 | - 1 | - 1 | - 1 | - 1 | - 1 | - 1 | - 1 |
MAOA | 28.76 | 29.02 | 32.22 | 29.13 | 30.49 | 29.14 | |
MAOB | 26.80 | 26.57 | 26.28 | 27.35 | 29.48 | 35.71 | 28.01 |
SLC18A2 | - 1 | - 1 | 21.03 | 21.23 | 0.00 | 30.55 | 23.26 |
SLC6A3 | - 1 | - 1 | - 1 | - 1 | - 1 | - 1 | - 1 |
MLPH | 25.75 | 26.50 | 28.94 | 25.49 | 26.74 | 31.90 | 31.83 |
RAB27B | 23.66 | 26.58 | 25.03 | 28.94 | 25.18 | 35.20 | 29.12 |
RAB37 | 25.20 | 26.77 | 25.56 | 26.04 | 25.67 | 32.37 | 27.69 |
CALB2 | 26.47 | 27.71 | 28.64 | 29.19 | 26.69 | 34.81 | 26.83 |
L1CAM | - 1 | 22.69 | 21.48 | 27.31 | 21.96 | 26.08 | 27.17 |
NTM | 22.75 | 22.34 | 27.12 | 24.68 | 23.67 | 26.19 | 23.67 |
LMO4 | - 1 | - 1 | - 1 | - 1 | - 1 | - 1 | - 1 |
PBX1 | - 1 | - 1 | - 1 | - 1 | - 1 | - 1 | - 1 |
MEIS2 | 22.60 | - | 28.55 | 22.33 | - 1 | 25.20 | 23.84 |
EHMT2 | 28.09 | 26.93 | 28.48 | 28.03 | 27.30 | 27.62 | 26.35 |
CMA1 | 29.70 | 29.81 | 29.07 | 29.97 | 33.57 | 38.39 | 29.16 |
MRGPRX2 | - 1 | - 1 | - 1 | - 1 | 21.97 | 30.66 | - |
Gene Name | Tracheal Mast Cells | Tongue Mast Cell | Dermal Mast Cell | Peritoneal Mast Cell | Esophageal Mast Cells | Adipose Tissue Eosinophils | Peripheral Blood Eosinophils | Splenic Basophils | Blood Basophil |
---|---|---|---|---|---|---|---|---|---|
Drd2 | 80 | 90 | 80 | 78 | 84 | 115 | 107 | 102 | 89 |
Maoa | 69 | 79 | 108 | 65 | 90 | 47 | 51 | 45 | 44 |
Maob | 4195 | 4654 | 5366 | 4602 | 3805 | 47 | 50 | 48 | 55 |
Slc18a2 | 4461 | 4387 | 3749 | 4547 | 3676 | 121 | 109 | 1981 | 1960 |
Slc6a3 | 138 | 145 | 127 | 134 | 150 | 183 | 144 | 145 | 131 |
MLPH | 1951 | 1813 | 1424 | 1874 | 1197 | 220 | 185 | 206 | 198 |
Rab27b | 3591 | 3586 | 3209 | 3503 | 3447 | 65 | 61 | 73 | 85 |
Rab37 | 1153 | 1223 | 1113 | 1544 | 788 | 742 | 692 | 1542 | 1489 |
Calb2 | 42 | 44 | 40 | 44 | 44 | 57 | 56 | 46 | 45 |
L1cam | 275 | 625 | 308 | 599 | 590 | 451 | 679 | 2338 | 3104 |
Ntm | 67 | 77 | 71 | 62 | 72 | 101 | 77 | 74 | 69 |
Lmo4 | 1018 | 890 | 1026 | 1100 | 784 | 549 | 1521 | 2095 | 2021 |
Pbx1 | 566 | 471 | 438 | 430 | 410 | 129 | 149 | 326 | 356 |
Meis2 | 3953 | 2786 | 2910 | 4481 | 2819 | 85 | 64 | 52 | 53 |
Ehmt2 | 324 | 335 | 388 | 388 | 306 | 267 | 283 | 440 | 384 |
Cma1 | 4485 | 4452 | 3201 | 4694 | 3814 | 57 | 57 | 63 | 55 |
Mrgprb2 | 3619 | 3497 | 2881 | 4380 | 3465 | 18 | 24 | 16 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babina, M.; Franke, K.; Bal, G. How “Neuronal” Are Human Skin Mast Cells? Int. J. Mol. Sci. 2022, 23, 10871. https://doi.org/10.3390/ijms231810871
Babina M, Franke K, Bal G. How “Neuronal” Are Human Skin Mast Cells? International Journal of Molecular Sciences. 2022; 23(18):10871. https://doi.org/10.3390/ijms231810871
Chicago/Turabian StyleBabina, Magda, Kristin Franke, and Gürkan Bal. 2022. "How “Neuronal” Are Human Skin Mast Cells?" International Journal of Molecular Sciences 23, no. 18: 10871. https://doi.org/10.3390/ijms231810871
APA StyleBabina, M., Franke, K., & Bal, G. (2022). How “Neuronal” Are Human Skin Mast Cells? International Journal of Molecular Sciences, 23(18), 10871. https://doi.org/10.3390/ijms231810871