Mitochondrial Dysfunction in Spinal Muscular Atrophy
Abstract
:1. Introduction
Mitochondrial Function in SMA and SMA-Like Diseases
2. Mitochondria Dysfunctions in SMA Neurons
2.1. Role of Mitochondria in Neurons
2.2. Mitochondrial Morphology, Dynamics and Transport in SMA Neurons
2.3. Mitochondrial Respiration and Metabolism in SMA Neurons
2.4. Mitochondrial Oxidative Stress and Ca2+ Homeostasis in SMA Neurons
2.5. Mitochondrial Membrane Potential and Apoptosis in SMA Neurons
2.6. Regulation of Transcription and Translation of Mitochondrial Proteins in SMA Neurons
3. Mitochondria Dysfunctions in SMA Muscles
3.1. Role of Mitochondria in Muscles
3.2. Mitochondria Morphology, Dynamics and Transport in SMA Muscles
3.3. Mitochondria Respiration and Metabolism in SMA Muscles
3.4. Mitochondrial Oxidative Stress and Apoptosis in SMA Muscles
3.5. Regulation of Transcription and Translation of Mitochondrial Proteins in SMA Muscles
4. Mitochondrial Functions: Potential SMA Modifiers?
5. Conclusions
Mitochondrial Function | Accession Number | Gene Symbol | Tissue/Cell Type | Organism | Refs. |
---|---|---|---|---|---|
Altered mRNA Levels | |||||
ROS signaling and oxidative stress | NM_001302272 | PRDX3 | iPSCs-motor neurons | human | [104] |
NM_001286264 | MRS2 | ||||
NM_000305 | PON2 | primary muscle cultures | human | [206] | |
MGI:104887 | Gpx1 | spinal cord | mouse | [207] | |
MGI:96916 | Maob | [208] | |||
MGI:1921607 | Efhd1 | ||||
MGI:104767 | Gpx4 | ||||
MGI:1916617 | Glrx2 | spinal motor neurons | [69] | ||
NM_001198532 | OXR1 | iPSCs-motor neurons, motor neurons (axonal compartment) | human, mouse | [104,110] | |
OXPHOS | NM_001001935 | ATP5A1 | iPSCs-motor neurons | human | [104] |
NM_001202469 | GBAS | ||||
NM_001686 | ATP5B | ||||
NM_001042546 | ATPAF1 | ||||
NM_003366 | UQCRC2 | ||||
NM_001282419 | NDUFA5 | ||||
NM_006886 | ATP5E | ||||
NM_001319036 | COX7A2L | ||||
NM_001008215 | C2orf64 | ||||
NM_002489 | NDUFA4 | ||||
NM_001099668 | HIGD1A | ||||
NM_001002258 | ATP5G3 | ||||
NM_004374 | COX6C | ||||
NM_001001973 | ATP5C1 | ||||
NM_001865 | COX7A2 | ||||
NM_001867 | COX7C | ||||
NM_001864 | COX7A1 | primary muscle cultures | [206] | ||
NM_004146 | NDUFB7 | muscle biopsy | [127] | ||
MGI:192462 | C5orf63 | spinal cord | mouse | [208] | |
MGI:1349919 | Ndufb11 | motor neurons (somatodendritic compartment) | [110] | ||
MGI:106362 | Sco1 | motor neurons (axonal compartment) | |||
MGI:1922656 | Ndufs7 | spinal motor neurons | [69] | ||
MGI:107801 | Atp5b | ||||
MGI:1343103 | Ndufa2 | ||||
MGI:106100 | Etfdh | ||||
Dr.113730 | latro | embryo | zebrafish | [209] | |
T06D8.5 | cox-15 | larvae | worm | [210] | |
NM_001916 | CYC1 | muscle biopsy, spinal motor neurons | human, mouse | [69,127] | |
Fatty acid metabolism | NM_000182 | HADHA | iPSCs-motor neurons | human | [104] |
NM_001007098 | SCP2 | ||||
NM_016243 | CYB5R1 | primary muscle cultures | [206] | ||
MGI:1859310 | Asah2 | spinal cord | mouse | [208] | |
MGI:894291 | Acsl6 | motor neurons (somatodendritic compartment) | [110] | ||
MGI:1928939 | Acot9 | motor neurons (axonal compartment) | |||
MGI:1196345 | Agpat5 | ||||
MGI:1914702 | Pnpla8 | ||||
MGI:109501 | Crat | spinal motor neurons | [69] | ||
CBG24278 | acaa-2 | larvae | worm | [210] | |
Y48G9A.10 | cpt-3 | ||||
F44C4.5 | ppt-1 | ||||
Y45F3A.3a | acdh-11 | ||||
E04F6.3 | maoc-1 | ||||
NM_001318509 | ACSL4 | iPSCs-motor neurons, motor neurons (axonal compartment) | human, mouse | [104,110] | |
Ca2+ homeostasis and signaling | MGI:88255 | Anxa6 | spinal cord | mouse | [207] |
MGI:1338917 | S100a1 | [208] | |||
MGI:1914065 | Mcub | motor neurons (axonal compartment) | [110] | ||
MGI:109326 | Bnip3 | spinal motor neurons | [69] | ||
MGI:1278343 | Nipsnap2 | ||||
ZK816.5 | dhs-26 | larvae | worm | [210] | |
Apoptosis | NM_001191 | BCL2L1 | iPSCs-motor neurons | human | [104] |
NM_001199839 | BCL2L2 | ||||
NM_001270729 | BCL2L13 | ||||
NM_001029839 | C3orf23 | ||||
NM_001008388 | CISD2 | ||||
NM_007523 | Nbak1 | spinal cord | mouse | [207] | |
MGI:1933786 | Dnaja3 | ||||
MGI:1346325 | Gadd45g | ||||
MGI:1197519 | Bcl2l11 | spinal motor neurons | [69] | ||
MGI:1913744 | Prelid1 | ||||
MGI:99702 | Bax | ||||
F23B12.9 | egl-1 | larvae | worm | [210] | |
NM_001196 | BID | iPSCs-motor neurons, spinal cord | human, mouse | [104,207] | |
mtDNA maintenance, mitochondrial transcription and translation | NM_133259 | LRPPRC | iPSCs-motor neurons | human | [104] |
NM_001182520 | MRPL3 | ||||
NM_001243251 | NARS2 | ||||
MGI:191904 | Mrps27 | spinal cord | mouse | [208] | |
MGI:1922869 | Fastkd2 | motor neurons (axonal compartment) | [110] | ||
MGI:2142973 | Lars2 | ||||
MGI:1917297 | Trnt1 | ||||
MGI:1889295 | Eral1 | ||||
MGI:1913660 | Mterf3 | ||||
MGI:2387629 | Tardbp | ||||
MGI:1915541 | Mto1 | ||||
MGI:1351639 | Mrpl15 | ||||
MGI:1923776 | Gatc | ||||
MGI:1920040 | Ssbp1 | ||||
MGI:1923686 | Tufm | spinal motor neurons | [69] | ||
MGI:2137215 | Mrpl11 | ||||
MGI:1919049 | Ptcd1 | ||||
MGI:1929864 | Myg1 | ||||
MGI:107252 | Nsun2 | ||||
MGI:1333820 | Mrpl30 | ||||
MGI:107329 | Mrpl50 | ||||
MGI:107810 | Tfam | ||||
W09D10.3 | mrpl-12 | larvae | worm | [210] | |
Y119D3B.16 | mrpl-16 | ||||
C05D11.10 | mrps-17 | ||||
F29C12.4 | gfm-1 | ||||
Y46H3A.7a | mrpl-39 | ||||
CBG13134a | mrpl-14 | ||||
MGI:1919214 | Atad3a | motor neurons (axonal compartment), larvae | mouse, worm | [110,210] | |
NM_016622 | MRPL35 | iPSCs-motor neurons, spinal motor neurons | human, mouse | [104] | |
Mitochondria quality control | MGI:2135611 | Immp2l | spinal cord | mouse | [208] |
MGI:1346017 | Clpx | spinal motor neurons | [69] | ||
MGI:1926884 | Huwe1 | motor neurons (somatodendritic compartment) | [110] | ||
MGI:1920209 | Lonrf2 | motor neurons (axonal compartment) | |||
MGI:1891828 | Becn1 | ||||
MGI:1915207 | Marchf5 | ||||
F59H6.11 | bath-5 | larvae | worm | [210] | |
C37H5.8 | hsp-6 | ||||
Y47G6A.10 | spg-7 | ||||
Mitochondrial dynamics, membrane trafficking | NM_001206651 | SH3GLB1 | iPSCs-motor neurons | human | [104] |
NM_001033566 | RHOT1 | ||||
NM_001256763 | FAM49B | ||||
NM_001303249 | SLC25A46 | [104] | |||
NM_001164730 | REEP1 | ||||
NM_014394 | GHITM | ||||
NM_213720 | C22orf16 | muscle biopsy | [127] | ||
NM_017812 | CHCHD3 | ||||
MGI:1313276 | Vamp1 | spinal cord | mouse | [208] | |
MGI:1098586 | Rab11fip5 | motor neurons (axonal compartment) | [110] | ||
MGI:1918953 | Armcx3 | motor neurons (axonal compartment) | |||
MGI:1914977 | Stx17 | motor neurons (somatodendritic compartment) | |||
MGI:2385189 | Rap1gds1 | spinal motor neurons | [69] | ||
F21C10.10 | CELE_F21C10.10 | larvae | worm | [210] | |
Y37E3.9 | phb-1 | ||||
NM_006373 | VAT1 | iPSCs-motor neurons, spinal motor neurons | human, mouse | [69,104] | |
Mitochondrial import, transport, translocation (metabolites, proteins, lipids, ions) | NM_014820 | TOMM70A | iPSCs-motor neurons | human | [104] |
NM_001104647 | SLC25A36 | ||||
NM_001321967 | ATAD1 | ||||
NM_001322977 | SFXN1 | ||||
NM_002635 | SLC25A3 | ||||
NM_001270679 | CCDC90B | ||||
NM_001135694 | VDAC3 | ||||
NM_006335 | TIMM17A | ||||
NM_014765 | TOMM20 | ||||
NM_001184783 | VDAC2 | ||||
NM_001151 | SLC25A4 | muscle biopsy | [127] | ||
U94592 | UCP2 | primary muscle cultures | |||
MGI:1343262 | Timm44 | motor neurons (axonal compartment) | [110] | ||
MGI:1917560 | Plscr3 | ||||
MGI:1917728 | Mipep | ||||
MGI:1340062 | Sgk1 | spinal motor neurons | [69] | ||
MGI:1349215 | Abcd1 | ||||
R07E3.4 | CELE_R07E3.4 | larvae | worm | [210] | |
C34C12.8 | C34C12.8 | ||||
Y71G12B.24a | mppa-1 | ||||
CBG01742 | timm-17b.1 | ||||
B0432.4 | misc-1 | ||||
F55C5.5 | tsfm-1 | ||||
F56D1.3 | mrps-16 | ||||
Dr.77108 | ucp4 | embryo | zebrafish | [209] | |
NM_152407 | GRPEL2 | iPSCs-motor neurons, motor neurons (axonal compartment) | human, mouse | [104,110] | |
Metabolic enzymes | NM_001242767 | MTHFD1L | iPSCs-motor neurons | human | [104] |
NM_000663 | ABAT | ||||
NM_001286220 | GOT2 | ||||
NM_001183948 | ODC1 | ||||
NM_001077180 | METTL9 | ||||
NM_001282621 | PGRMC1 | ||||
NM_001174097 | LDHB | ||||
NM_001318900 | GLUD1 | ||||
NM_001282403 | MDH2 | ||||
NM_001482 | GATM | ||||
NM_018464 | C10orf70 | muscle biopsy | human | [127] | |
NM_002168 | IDH2 | ||||
MGI:87990 | Alas2 | spinal cord | mouse | [208] | |
MGI:2661364 | Neu4 | ||||
MGI:1915871 | Mthfd2l | motor neurons (somatodendritic, axonal compartment) | [110] | ||
MGI:2385311 | Dlat | motor neurons (axonal compartment) | |||
MGI:1346064 | Eci2 | ||||
MGI:1916296 | Isca1 | ||||
MGI:1889278 | Pdss1 | ||||
MGI:1099463 | Idh3g | ||||
MGI:1918732 | Rdh13 | ||||
MGI:88590 | Cyp1b1 | motor neurons (somatodendritic compartment) | |||
MGI:1306824 | Suclg2 | ||||
MGI:98731 | Tgm2 | ||||
MGI:2159605 | Acot2 | spinal motor neurons | [69] | ||
MGI:97770 | Prodh | ||||
MGI:87867 | Acadm | ||||
MGI:2180203 | Tmlhe | ||||
T22B7.7 | CELE_T22B7.7 | larvae | worm | [210] | |
C04E6.7 | CELE_C04E6.7 | ||||
T05G5.6 | ech-6 | ||||
F32D8.12b | CELE_F32D8.12 | ||||
F57F4.1 | CELE_F57F4.1 | ||||
T07D3.9b | CELE_T07D3.9 | ||||
R12C12.1b | gldc-1 | ||||
F54D5.12 | CELE_F54D5.12 | ||||
F25B4.1 | gcst-1 | ||||
ZK669.4 | dbt-1 | ||||
C50F7.4 | sucg-1 | ||||
F46G10.7a | sir-2.2 | ||||
T02G5.8 | kat-1 | ||||
F09F7.4b | hach-1 | ||||
Y38F1A.6 | hphd-1 | ||||
T20H4.5 | EC:7.1.1.2 | ||||
F23B12.5 | dlat-1 | ||||
ZK652.9 | coq-5 | ||||
Mitochondrial regulation and signaling | NM_001001924 | MTUS1 | iPSCs-motor neurons | human | [104] |
NM_001244974 | PPP1CC | ||||
NM_001017963 | PTGES3 | ||||
NM_001318067 | MAPK10 | ||||
NM_001005 | RPS3 | ||||
MGI:1929628 | Rsad2 | motor neurons (somatodendritic, axonal compartment) | mouse | [110] | |
MGI:1101055 | Ifit3 | motor neurons (somatodendritic compartment) | |||
MGI:1918836 | Ifih1 | ||||
MGI:2446107 | Pde2a | ||||
MGI:1344391 | Sh3bp5 | motor neurons (axonal compartment) | |||
MGI:2159437 | Agtpbp1 | ||||
MGI:1927243 | Rala | ||||
MGI:1919792 | Pgam5 | ||||
MGI:1913842 | Stoml2 | spinal motor neurons | [69] | ||
MGI:1915864 | Letmd1 | ||||
MGI:2441680 | Tmem8b | ||||
C43E11.4 | tufm-1/2 | larvae | worm | [210] | |
T24H7.1 | phb-2 | ||||
C16C10.11 | har-1 | ||||
Altered mRNA splicing | |||||
Mitochondrial import, transport, translocation (metabolites, proteins, lipids, ions) | MGI:88025 | Ank2 | motor neuron, neuroblastoma cells | mouse | [211] |
Mitochondrial regulation and signaling | MGI:98397 | Src | neuroblastoma cells | ||
mRNA associated to SMN | |||||
Ca2+ homeostasis and signaling | MGI:109326 | Bnip3 | NSC-34 cells | mouse | [114] |
OXPHOS | MGI:1333806 | Cox17 | |||
MGI:1855697 | Atp5e | ||||
MGI:99927 | mt-Atp6 | ||||
MGI:1930666 | Higd1a | ||||
MGI:1316714 | Cox7a1 | ||||
Mitochondrial import, transport, translocation (metabolites, proteins, lipids, ions) | MGI:1353433 | Timm8a1 | |||
MGI:1347061 | Abcg2 | ||||
Metabolic enzymes | MGI:1916884 | Clybl | |||
MGI:1098623 | Acaa2 | ||||
Mitochondria quality control | MGI:1921392 | Lonp1 | |||
mtDNA maintenance, mitochondrial transcription and translation | MGI:1926237 | Mrps30 | |||
MGI:2442510 | Dars2 | ||||
MGI:2135755 | Cox4i2 | ||||
mRNA enriched for SMN-primed ribosomes | |||||
OXPHOS | MGI:2143558 | Chchd10 | brain | mouse | |
MGI:104614 | Cox6c | ||||
MGI:1316715 | Cox7a2 | ||||
MGI:1914862 | Mettl9 | ||||
MGI:1914514 | Ndufb8 | ||||
MGI:2385112 | Ndufs2 | ||||
MGI:1915903 | Samm50 | ||||
MGI:1914175 | Sdhd | ||||
MGI:107876 | Uqcrc1 | ||||
MGI:1917794 | Tmem242 | ||||
Fatty acid metabolism | MGI:894291 | Acsl6 | |||
MGI:1915988 | Acss1 | ||||
MGI:1351861 | D10Jhu81e | ||||
Apoptosis | MGI:1339639 | Ogt | |||
mtDNA maintenance, mitochondrial transcription and translation | MGI:2137221 | Mrpl20 | |||
MGI:2153111 | Mrps6 | ||||
MGI:2443470 | Mrm1 | ||||
MGI:1914216 | Trit1 | ||||
Mitochondria quality control | MGI:1916193 | Pink1 | |||
MGI:98889 | Ubc | ||||
MGI:2444207 | Vps13c | ||||
Mitochondrial dynamics, membrane trafficking | MGI:88025 | Ank2 | |||
MGI:1261831 | Hap1 | ||||
MGI:108426 | Kif1b | ||||
MGI:1349450 | Vat1 | ||||
MGI:1913687 | Fis1 | ||||
MGI:1928394 | Mtor | ||||
MGI:1921393 | Opa1 | ||||
MGI:1925498 | Armcx1 | ||||
Mitochondrial import, transport, translocation (metabolites, proteins, lipids, ions) | MGI:1915517 | Slc25a22 | |||
MGI:1100517 | Clpb | ||||
MGI:2444911 | Slc25a29 | ||||
MGI:2137681 | Sfxn5 | ||||
Metabolic enzymes | MGI:1919289 | Mccc1 | |||
MGI:2685870 | Pdp1 | ||||
MGI:87989 | Alas1 | ||||
MGI:88407 | Ckb | ||||
MGI:1913637 | Nudt8 | ||||
MGI:1918993 | Coasy | ||||
MGI:2385920 | Dip2a | ||||
MGI:1858208 | Ech1 | ||||
MGI:2441982 | Aldh5a1 | ||||
Mitochondrial regulation and signaling | MGI:97592 | Prkaca | |||
MGI:97138 | Mpv17 | ||||
Genes for mitochondrial proteins that modify SMN levels/activity | |||||
OXPHOS | NM_001286264 | MRS2 | HEK293 cells | human | [200] |
Apoptosis | NM_003334 | UBA1 | |||
NM_001291921 | RXRA | larvae, NMJ between muscles 6/7 in A2 segment | D. melanogaster | [199] | |
Mitochondrial dynamics, membrane trafficking | NM_004958 | RPS6KB1 | HEK293 cells | human | [200] |
Mitochondrial import, transport, translocation (metabolites, proteins, lipids, ions) | NM_003356 | UCP3 | |||
Metabolic enzymes | NM_001098 | ACO2 | |||
Mitochondrial regulation and signaling | NM_001144012 | TXNDC14 |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wirth, B.; Karakaya, M.; Kye, M.J.; Mendoza-Ferreira, N. Twenty-Five Years of Spinal Muscular Atrophy Research: From Phenotype to Genotype to Therapy, and What Comes Next. Annu. Rev. Genom. Hum. Genet. 2020, 21, 231–261. [Google Scholar] [CrossRef] [PubMed]
- Finkel, R.S.; Mercuri, E.; Meyer, O.H.; Simonds, A.K.; Schroth, M.K.; Graham, R.J.; Kirschner, J.; Iannaccone, S.T.; Crawford, T.O.; Woods, S.; et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul. Disord. 2018, 28, 197–207. [Google Scholar] [CrossRef]
- Mercuri, E.; Finkel, R.S.; Muntoni, F.; Wirth, B.; Montes, J.; Main, M.; Mazzone, E.S.; Vitale, M.; Snyder, B.; Quijano-Roy, S.; et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul. Disord. 2018, 28, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Yeo, C.J.J.; Darras, B.T. Overturning the Paradigm of Spinal Muscular Atrophy as Just a Motor Neuron Disease. Pediatr. Neurol. 2020, 109, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, S.; Burglen, L.; Reboullet, S.; Clermont, O.; Burlet, P.; Viollet, L.; Benichou, B.; Cruaud, C.; Millasseau, P.; Zeviani, M.; et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995, 80, 155–165. [Google Scholar] [CrossRef]
- Feldkotter, M.; Schwarzer, V.; Wirth, R.; Wienker, T.F.; Wirth, B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: Fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet. 2002, 70, 358–368. [Google Scholar] [CrossRef]
- Wirth, B.; Brichta, L.; Schrank, B.; Lochmuller, H.; Blick, S.; Baasner, A.; Heller, R. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum. Genet. 2006, 119, 422–428. [Google Scholar] [CrossRef]
- Lorson, C.L.; Hahnen, E.; Androphy, E.J.; Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 1999, 96, 6307–6311. [Google Scholar] [CrossRef]
- Cartegni, L.; Krainer, A.R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 2002, 30, 377–384. [Google Scholar] [CrossRef]
- Kashima, T.; Rao, N.; Manley, J.L. An intronic element contributes to splicing repression in spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 2007, 104, 3426–3431. [Google Scholar] [CrossRef] [Green Version]
- Lorson, C.L.; Strasswimmer, J.; Yao, J.M.; Baleja, J.D.; Hahnen, E.; Wirth, B.; Le, T.; Burghes, A.H.; Androphy, E.J. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat. Genet. 1998, 19, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Ramos, D.M.; d’Ydewalle, C.; Gabbeta, V.; Dakka, A.; Klein, S.K.; Norris, D.A.; Matson, J.; Taylor, S.J.; Zaworski, P.G.; Prior, T.W.; et al. Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. J. Clin. Invest. 2019, 129, 4817–4831. [Google Scholar] [CrossRef] [PubMed]
- Wirth, B. Spinal Muscular Atrophy: In the Challenge Lies a Solution. Trends Neurosci. 2021, 44, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, E.; Pera, M.C.; Scoto, M.; Finkel, R.; Muntoni, F. Spinal muscular atrophy—Insights and challenges in the treatment era. Nat. Rev. Neurol. 2020, 16, 706–715. [Google Scholar] [CrossRef]
- Vill, K.; Schwartz, O.; Blaschek, A.; Glaser, D.; Nennstiel, U.; Wirth, B.; Burggraf, S.; Roschinger, W.; Becker, M.; Czibere, L.; et al. Newborn screening for spinal muscular atrophy in Germany: Clinical results after 2 years. Orphanet J. Rare Dis. 2021, 16, 153. [Google Scholar] [CrossRef]
- Finkel, R.S.; Chiriboga, C.A.; Vajsar, J.; Day, J.W.; Montes, J.; De Vivo, D.C.; Yamashita, M.; Rigo, F.; Hung, G.; Schneider, E.; et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: A phase 2, open-label, dose-escalation study. Lancet 2016, 388, 3017–3026. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef]
- Baranello, G.; Darras, B.T.; Day, J.W.; Deconinck, N.; Klein, A.; Masson, R.; Mercuri, E.; Rose, K.; El-Khairi, M.; Gerber, M.; et al. Risdiplam in Type 1 Spinal Muscular Atrophy. N. Engl. J. Med. 2021, 384, 915–923. [Google Scholar] [CrossRef]
- Ratni, H.; Ebeling, M.; Baird, J.; Bendels, S.; Bylund, J.; Chen, K.S.; Denk, N.; Feng, Z.; Green, L.; Guerard, M.; et al. Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 ( SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). J. Med. Chem. 2018, 61, 6501–6517. [Google Scholar] [CrossRef]
- Foust, K.D.; Wang, X.; McGovern, V.L.; Braun, L.; Bevan, A.K.; Haidet, A.M.; Le, T.T.; Morales, P.R.; Rich, M.M.; Burghes, A.H.; et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol. 2010, 28, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Sahashi, K.; Rigo, F.; Hung, G.; Horev, G.; Bennett, C.F.; Krainer, A.R. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 2011, 478, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, S.; Burglen, L.; Frezal, J.; Munnich, A.; Melki, J. The role of the SMN gene in proximal spinal muscular atrophy. Hum. Mol. Genet. 1998, 7, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
- Coovert, D.D.; Le, T.T.; McAndrew, P.E.; Strasswimmer, J.; Crawford, T.O.; Mendell, J.R.; Coulson, S.E.; Androphy, E.J.; Prior, T.W.; Burghes, A.H. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 1997, 6, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.N.; Howell, M.D.; Ottesen, E.W.; Singh, N.N. Diverse role of survival motor neuron protein. Biochim. Biophys. Acta 2017, 1860, 299–315. [Google Scholar] [CrossRef] [PubMed]
- Groen, E.J.N.; Talbot, K.; Gillingwater, T.H. Advances in therapy for spinal muscular atrophy: Promises and challenges. Nat. Rev. Neurol. 2018, 14, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Wirth, B.; Brichta, L.; Hahnen, E. Spinal muscular atrophy: From gene to therapy. Semin. Pediatr. Neurol. 2006, 13, 121–131. [Google Scholar] [CrossRef]
- Oprea, G.E.; Krober, S.; McWhorter, M.L.; Rossoll, W.; Muller, S.; Krawczak, M.; Bassell, G.J.; Beattie, C.E.; Wirth, B. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 2008, 320, 524–527. [Google Scholar] [CrossRef]
- Heesen, L.; Peitz, M.; Torres-Benito, L.; Holker, I.; Hupperich, K.; Dobrindt, K.; Jungverdorben, J.; Ritzenhofen, S.; Weykopf, B.; Eckert, D.; et al. Plastin 3 is upregulated in iPSC-derived motoneurons from asymptomatic SMN1-deleted individuals. Cell. Mol. Life Sci. 2016, 73, 2089–2104. [Google Scholar] [CrossRef]
- Riessland, M.; Kaczmarek, A.; Schneider, S.; Swoboda, K.J.; Lohr, H.; Bradler, C.; Grysko, V.; Dimitriadi, M.; Hosseinibarkooie, S.; Torres-Benito, L.; et al. Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis. Am. J. Hum. Genet. 2017, 100, 297–315. [Google Scholar] [CrossRef]
- Wolff, L.; Strathmann, E.A.; Muller, I.; Mahlich, D.; Veltman, C.; Niehoff, A.; Wirth, B. Plastin 3 in health and disease: A matter of balance. Cell. Mol. Life Sci. 2021, 78, 5275–5301. [Google Scholar] [CrossRef]
- Ivings, L.; Pennington, S.R.; Jenkins, R.; Weiss, J.L.; Burgoyne, R.D. Identification of Ca2+-dependent binding partners for the neuronal calcium sensor protein neurocalcin delta: Interaction with actin, clathrin and tubulin. Biochem. J. 2002, 363, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Hosseinibarkooie, S.; Peters, M.; Torres-Benito, L.; Rastetter, R.H.; Hupperich, K.; Hoffmann, A.; Mendoza-Ferreira, N.; Kaczmarek, A.; Janzen, E.; Milbradt, J.; et al. The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype. Am. J. Hum. Genet. 2016, 99, 647–665. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadi, M.; Sleigh, J.N.; Walker, A.; Chang, H.C.; Sen, A.; Kalloo, G.; Harris, J.; Barsby, T.; Walsh, M.B.; Satterlee, J.S.; et al. Conserved genes act as modifiers of invertebrate SMN loss of function defects. PLoS Genet. 2010, 6, e1001172. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.B.; Janzen, E.; Wingrove, E.; Hosseinibarkooie, S.; Muela, N.R.; Davidow, L.; Dimitriadi, M.; Norabuena, E.M.; Rubin, L.L.; Wirth, B.; et al. Genetic modifiers ameliorate endocytic and neuromuscular defects in a model of spinal muscular atrophy. BMC Biol. 2020, 18, 127. [Google Scholar] [CrossRef] [PubMed]
- Wirth, B.; Mendoza-Ferreira, N.; Torres-Benito, L. Spinal Muscular Atrophy Disease Modifiers A2. In Spinal Muscular Atrophy; Paushkin, S., Ko, C.-P., Eds.; Academic Press: Cambridge, MA, USA, 2017; Chapter 12; pp. 191–210. [Google Scholar] [CrossRef]
- Keller, N.; Paketci, C.; Altmueller, J.; Fuhrmann, N.; Wunderlich, G.; Schrank, B.; Unver, O.; Yilmaz, S.; Boostani, R.; Karimiani, E.G.; et al. Genomic variants causing mitochondrial dysfunction are common in hereditary lower motor neuron disease. Hum. Mutat. 2021, 42, 460–472. [Google Scholar] [CrossRef]
- Jankovic, M.; Novakovic, I.; Gamil Anwar Dawod, P.; Gamil Anwar Dawod, A.; Drinic, A.; Abdel Motaleb, F.I.; Ducic, S.; Nikolic, D. Current Concepts on Genetic Aspects of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2021, 22, 9832. [Google Scholar] [CrossRef]
- McCray, B.A.; Scherer, S.S. Axonal Charcot-Marie-Tooth Disease: From Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021, 18, 2269–2285. [Google Scholar] [CrossRef]
- Canto-Santos, J.; Grau-Junyent, J.M.; Garrabou, G. The Impact of Mitochondrial Deficiencies in Neuromuscular Diseases. Antioxidants 2020, 9, 964. [Google Scholar] [CrossRef]
- Attwell, D.; Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 2001, 21, 1133–1145. [Google Scholar] [CrossRef]
- Devine, M.J.; Kittler, J.T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 2018, 19, 63–80. [Google Scholar] [CrossRef]
- Vanhauwaert, R.; Bharat, V.; Wang, X. Surveillance and transportation of mitochondria in neurons. Curr. Opin. Neurobiol. 2019, 57, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.M.; Gallo, G. The role of mitochondria in axon development and regeneration. Dev. Neurobiol. 2018, 78, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Manzaneda, M.; Fuentes-Moliz, A.; Tabares, L. Presynaptic Mitochondria Communicate With Release Sites for Spatio-Temporal Regulation of Exocytosis at the Motor Nerve Terminal. Front. Synaptic. Neurosci. 2022, 14, 858340. [Google Scholar] [CrossRef] [PubMed]
- Rangaraju, V.; Lauterbach, M.; Schuman, E.M. Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity. Cell 2019, 176, 73–84.e15. [Google Scholar] [CrossRef] [PubMed]
- Shigeoka, T.; Jung, H.; Jung, J.; Turner-Bridger, B.; Ohk, J.; Lin, J.Q.; Amieux, P.S.; Holt, C.E. Dynamic Axonal Translation in Developing and Mature Visual Circuits. Cell 2016, 166, 181–192. [Google Scholar] [CrossRef]
- Yoon, B.C.; Jung, H.; Dwivedy, A.; O’Hare, C.M.; Zivraj, K.H.; Holt, C.E. Local translation of extranuclear lamin B promotes axon maintenance. Cell 2012, 148, 752–764. [Google Scholar] [CrossRef]
- Cioni, J.M.; Lin, J.Q.; Holtermann, A.V.; Koppers, M.; Jakobs, M.A.H.; Azizi, A.; Turner-Bridger, B.; Shigeoka, T.; Franze, K.; Harris, W.A.; et al. Late Endosomes Act as mRNA Translation Platforms and Sustain Mitochondria in Axons. Cell 2019, 176, 56–72.e15. [Google Scholar] [CrossRef]
- Benarroch, E. What Is the Role of Mitochondrial Fission in Neurologic Disease? Neurology 2022, 98, 662–668. [Google Scholar] [CrossRef]
- Popov, V.; Medvedev, N.I.; Davies, H.A.; Stewart, M.G. Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: A three-dimensional ultrastructural study. J. Comp. Neurol. 2005, 492, 50–65. [Google Scholar] [CrossRef]
- Lewis, T.L., Jr.; Kwon, S.K.; Lee, A.; Shaw, R.; Polleux, F. MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat. Commun. 2018, 9, 5008. [Google Scholar] [CrossRef]
- Yang, D.; Ying, J.; Wang, X.; Zhao, T.; Yoon, S.; Fang, Y.; Zheng, Q.; Liu, X.; Yu, W.; Hua, F. Mitochondrial Dynamics: A Key Role in Neurodegeneration and a Potential Target for Neurodegenerative Disease. Front. Neurosci. 2021, 15, 654785. [Google Scholar] [CrossRef] [PubMed]
- Simic, G.; Mladinov, M.; Seso Simic, D.; Jovanov Milosevic, N.; Islam, A.; Pajtak, A.; Barisic, N.; Sertic, J.; Lucassen, P.J.; Hof, P.R.; et al. Abnormal motoneuron migration, differentiation, and axon outgrowth in spinal muscular atrophy. Acta Neuropathol. 2008, 115, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Harding, B.N.; Kariya, S.; Monani, U.R.; Chung, W.K.; Benton, M.; Yum, S.W.; Tennekoon, G.; Finkel, R.S. Spectrum of neuropathophysiology in spinal muscular atrophy type I. J. Neuropathol. Exp. Neurol. 2015, 74, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Kuru, S.; Sakai, M.; Konagaya, M.; Yoshida, M.; Hashizume, Y.; Saito, K. An autopsy case of spinal muscular atrophy type III (Kugelberg-Welander disease). Neuropathology 2009, 29, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hernandez, R.; Bernal, S.; Also-Rallo, E.; Alias, L.; Barcelo, M.J.; Hereu, M.; Esquerda, J.E.; Tizzano, E.F. Synaptic defects in type I spinal muscular atrophy in human development. J. Pathol. 2013, 229, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Custer, S.K.; Gilson, T.D.; Li, H.; Todd, A.G.; Astroski, J.W.; Lin, H.; Liu, Y.; Androphy, E.J. Altered mRNA Splicing in SMN-Depleted Motor Neuron-Like Cells. PLoS ONE 2016, 11, e0163954. [Google Scholar] [CrossRef]
- Goncalves, I.; Brecht, J.; Thelen, M.P.; Rehorst, W.A.; Peters, M.; Lee, H.J.; Motameny, S.; Torres-Benito, L.; Ebrahimi-Fakhari, D.; Kononenko, N.L.; et al. Neuronal activity regulates DROSHA via autophagy in spinal muscular atrophy. Sci. Rep. 2018, 8, 7907. [Google Scholar] [CrossRef]
- Rossoll, W.; Jablonka, S.; Andreassi, C.; Kroning, A.K.; Karle, K.; Monani, U.R.; Sendtner, M. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J. Cell Biol. 2003, 163, 801–812. [Google Scholar] [CrossRef]
- Fallini, C.; Zhang, H.; Su, Y.; Silani, V.; Singer, R.H.; Rossoll, W.; Bassell, G.J. The survival of motor neuron (SMN) protein interacts with the mRNA-binding protein HuD and regulates localization of poly(A) mRNA in primary motor neuron axons. J. Neurosci. 2011, 31, 3914–3925. [Google Scholar] [CrossRef]
- Akten, B.; Kye, M.J.; Hao, L.T.; Wertz, M.H.; Singh, S.; Nie, D.; Huang, J.; Merianda, T.T.; Twiss, J.L.; Beattie, C.E.; et al. Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc. Natl. Acad. Sci. USA 2011, 108, 10337–10342. [Google Scholar] [CrossRef]
- Jablonka, S.; Beck, M.; Lechner, B.D.; Mayer, C.; Sendtner, M. Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy. J. Cell Biol. 2007, 179, 139–149. [Google Scholar] [CrossRef]
- Fallini, C.; Donlin-Asp, P.G.; Rouanet, J.P.; Bassell, G.J.; Rossoll, W. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons. J. Neurosci. 2016, 36, 3811–3820. [Google Scholar] [CrossRef]
- Bernabo, P.; Tebaldi, T.; Groen, E.J.N.; Lane, F.M.; Perenthaler, E.; Mattedi, F.; Newbery, H.J.; Zhou, H.; Zuccotti, P.; Potrich, V.; et al. In Vivo Translatome Profiling in Spinal Muscular Atrophy Reveals a Role for SMN Protein in Ribosome Biology. Cell Rep. 2017, 21, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadi, M.; Derdowski, A.; Kalloo, G.; Maginnis, M.S.; O’Hern, P.; Bliska, B.; Sorkac, A.; Nguyen, K.C.; Cook, S.J.; Poulogiannis, G.; et al. Decreased function of survival motor neuron protein impairs endocytic pathways. Proc. Natl. Acad. Sci. USA 2016, 113, E4377–E4386. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.L.; Lin, Y.T.; Ting, C.H.; Lin-Chao, S.; Li, H.; Hsieh-Li, H.M. Stathmin, a microtubule-destabilizing protein, is dysregulated in spinal muscular atrophy. Hum. Mol. Genet. 2010, 19, 1766–1778. [Google Scholar] [CrossRef] [PubMed]
- Torres-Benito, L.; Neher, M.F.; Cano, R.; Ruiz, R.; Tabares, L. SMN requirement for synaptic vesicle, active zone and microtubule postnatal organization in motor nerve terminals. PLoS ONE 2011, 6, e26164. [Google Scholar] [CrossRef]
- Hensel, N.; Claus, P. The Actin Cytoskeleton in SMA and ALS: How Does It Contribute to Motoneuron Degeneration? Neuroscientist 2018, 24, 54–72. [Google Scholar] [CrossRef]
- Miller, N.; Shi, H.; Zelikovich, A.S.; Ma, Y.C. Motor neuron mitochondrial dysfunction in spinal muscular atrophy. Hum. Mol. Genet. 2016, 25, 3395–3406. [Google Scholar] [CrossRef]
- Neve, A.; Trub, J.; Saxena, S.; Schumperli, D. Central and peripheral defects in motor units of the diaphragm of spinal muscular atrophy mice. Mol. Cell Neurosci. 2016, 70, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Fulceri, F.; Biagioni, F.; Limanaqi, F.; Busceti, C.L.; Ryskalin, L.; Lenzi, P.; Fornai, F. Ultrastructural characterization of peripheral denervation in a mouse model of Type III spinal muscular atrophy. J. Neural Transm. 2021, 128, 771–791. [Google Scholar] [CrossRef]
- Kariya, S.; Park, G.H.; Maeno-Hikichi, Y.; Leykekhman, O.; Lutz, C.; Arkovitz, M.S.; Landmesser, L.T.; Monani, U.R. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 2008, 17, 2552–2569. [Google Scholar] [CrossRef] [PubMed]
- Voigt, T.; Meyer, K.; Baum, O.; Schumperli, D. Ultrastructural changes in diaphragm neuromuscular junctions in a severe mouse model for Spinal Muscular Atrophy and their prevention by bifunctional U7 snRNA correcting SMN2 splicing. Neuromuscul. Disord. 2010, 20, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.C.; Denton, K.R.; Wang, Z.B.; Zhang, X.; Li, X.J. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy. Dis. Models Mech. 2016, 9, 39–49. [Google Scholar] [CrossRef]
- Thelen, M.P.; Wirth, B.; Kye, M.J. Mitochondrial defects in the respiratory complex I contribute to impaired translational initiation via ROS and energy homeostasis in SMA motor neurons. Acta Neuropathol. Commun. 2020, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, C.; Ma, L.; Mou, Y.; Zhang, B.; Zhou, S.; Tian, Y.; Trinh, J.; Zhang, X.; Li, X.J. Drug screening with human SMN2 reporter identifies SMN protein stabilizers to correct SMA pathology. Life Sci. Alliance 2019, 2, e201800268. [Google Scholar] [CrossRef]
- Chen, H.; Chomyn, A.; Chan, D.C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol. Chem. 2005, 280, 26185–26192. [Google Scholar] [CrossRef]
- Strauss, M.; Hofhaus, G.; Schroder, R.R.; Kuhlbrandt, W. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 2008, 27, 1154–1160. [Google Scholar] [CrossRef]
- Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–525. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Karbowski, M. Structural changes of mitochondria related to apoptosis. Biol. Signals Recept. 2001, 10, 26–56. [Google Scholar] [CrossRef]
- Simic, G.; Seso-Simic, D.; Lucassen, P.J.; Islam, A.; Krsnik, Z.; Cviko, A.; Jelasic, D.; Barisic, N.; Winblad, B.; Kostovic, I.; et al. Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig-Hoffmann disease. J. Neuropathol. Exp. Neurol. 2000, 59, 398–407. [Google Scholar] [CrossRef]
- Piras, A.; Schiaffino, L.; Boido, M.; Valsecchi, V.; Guglielmotto, M.; De Amicis, E.; Puyal, J.; Garcera, A.; Tamagno, E.; Soler, R.M.; et al. Inhibition of autophagy delays motoneuron degeneration and extends lifespan in a mouse model of spinal muscular atrophy. Cell Death Dis. 2017, 8, 3223. [Google Scholar] [CrossRef] [PubMed]
- Sareen, D.; Ebert, A.D.; Heins, B.M.; McGivern, J.V.; Ornelas, L.; Svendsen, C.N. Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy. PLoS ONE 2012, 7, e39113. [Google Scholar] [CrossRef] [PubMed]
- Godena, V.K.; Ning, K. Phosphatase and tensin homologue: A therapeutic target for SMA. Signal Transduct. Target. Ther. 2017, 2, 17038. [Google Scholar] [CrossRef] [PubMed]
- Ando, S.; Funato, M.; Ohuchi, K.; Kameyama, T.; Inagaki, S.; Seki, J.; Kawase, C.; Tsuruma, K.; Shimazawa, M.; Kaneko, H.; et al. Edaravone is a candidate agent for spinal muscular atrophy: In vitro analysis using a human induced pluripotent stem cells-derived disease model. Eur. J. Pharmacol. 2017, 814, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wang, X.; Choe, D.W.; Polley, M.; Burnett, B.G.; Bosch-Marce, M.; Griffin, J.W.; Rich, M.M.; Sumner, C.J. Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J. Neurosci. 2009, 29, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Bora, G.; Hensel, N.; Rademacher, S.; Koyunoglu, D.; Sunguroglu, M.; Aksu-Menges, E.; Balci-Hayta, B.; Claus, P.; Erdem-Yurter, H. Microtubule-associated protein 1B dysregulates microtubule dynamics and neuronal mitochondrial transport in spinal muscular atrophy. Hum. Mol. Genet. 2021, 29, 3935–3944. [Google Scholar] [CrossRef]
- Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443, 787–795. [Google Scholar] [CrossRef]
- Boyd, P.J.; Tu, W.Y.; Shorrock, H.K.; Groen, E.J.N.; Carter, R.N.; Powis, R.A.; Thomson, S.R.; Thomson, D.; Graham, L.C.; Motyl, A.A.L.; et al. Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy. PLoS Genet. 2017, 13, e1006744. [Google Scholar] [CrossRef]
- Acsadi, G.; Lee, I.; Li, X.; Khaidakov, M.; Pecinova, A.; Parker, G.C.; Huttemann, M. Mitochondrial dysfunction in a neural cell model of spinal muscular atrophy. J. Neurosci. Res. 2009, 87, 2748–2756. [Google Scholar] [CrossRef]
- Ashrafi, G.; Wu, Z.; Farrell, R.J.; Ryan, T.A. GLUT4 Mobilization Supports Energetic Demands of Active Synapses. Neuron 2017, 93, 606–615.e3. [Google Scholar] [CrossRef]
- Patitucci, T.N.; Ebert, A.D. SMN deficiency does not induce oxidative stress in SMA iPSC-derived astrocytes or motor neurons. Hum. Mol. Genet. 2016, 25, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, D.G. Oxidative stress and energy crises in neuronal dysfunction. Ann. N. Y. Acad. Sci. 2008, 1147, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Araki, S.; Arai, N.; Kumada, S.; Itoh, M.; Tamagawa, K.; Oda, M.; Morimatsu, Y. Oxidative stress and disturbed glutamate transport in spinal muscular atrophy. Brain Dev. 2002, 24, 770–775. [Google Scholar] [CrossRef]
- Wang, Z.B.; Zhang, X.; Li, X.J. Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy. Cell Res. 2013, 23, 378–393. [Google Scholar] [CrossRef] [PubMed]
- Shababi, M.; Habibi, J.; Ma, L.; Glascock, J.J.; Sowers, J.R.; Lorson, C.L. Partial restoration of cardio-vascular defects in a rescued severe model of spinal muscular atrophy. J. Mol. Cell. Cardiol. 2012, 52, 1074–1082. [Google Scholar] [CrossRef]
- Lopez-Manzaneda, M.; Franco-Espin, J.; Tejero, R.; Cano, R.; Tabares, L. Calcium is reduced in presynaptic mitochondria of motor nerve terminals during neurotransmission in SMA mice. Hum. Mol. Genet. 2021, 30, 629–643. [Google Scholar] [CrossRef]
- Perry, S.W.; Norman, J.P.; Barbieri, J.; Brown, E.B.; Gelbard, H.A. Mitochondrial membrane potential probes and the proton gradient: A practical usage guide. Biotechniques 2011, 50, 98–115. [Google Scholar] [CrossRef]
- Bernardi, P.; Di Lisa, F. The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. J. Mol. Cell Cardiol. 2015, 78, 100–106. [Google Scholar] [CrossRef]
- Kroemer, G.; Galluzzi, L.; Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 2007, 87, 99–163. [Google Scholar] [CrossRef]
- You, Y.; Cheng, A.C.; Wang, M.S.; Jia, R.Y.; Sun, K.F.; Yang, Q.; Wu, Y.; Zhu, D.; Chen, S.; Liu, M.F.; et al. The suppression of apoptosis by alpha-herpesvirus. Cell Death Dis. 2017, 8, e2749. [Google Scholar] [CrossRef]
- Parker, G.C.; Li, X.; Anguelov, R.A.; Toth, G.; Cristescu, A.; Acsadi, G. Survival motor neuron protein regulates apoptosis in an in vitro model of spinal muscular atrophy. Neurotox. Res. 2008, 13, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Trulzsch, B.; Garnett, C.; Davies, K.; Wood, M. Knockdown of SMN by RNA interference induces apoptosis in differentiated P19 neural stem cells. Brain Res. 2007, 1183, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.Y.; Soh, B.S.; Rodriguez-Muela, N.; Hendrickson, D.G.; Price, F.; Rinn, J.L.; Rubin, L.L. Genome-wide RNA-Seq of Human Motor Neurons Implicates Selective ER Stress Activation in Spinal Muscular Atrophy. Cell Stem Cell 2015, 17, 569–584. [Google Scholar] [CrossRef]
- Iwahashi, H.; Eguchi, Y.; Yasuhara, N.; Hanafusa, T.; Matsuzawa, Y.; Tsujimoto, Y. Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy. Nature 1997, 390, 413–417. [Google Scholar] [CrossRef]
- Sato, K.; Eguchi, Y.; Kodama, T.S.; Tsujimoto, Y. Regions essential for the interaction between Bcl-2 and SMN, the spinal muscular atrophy disease gene product. Cell Death Differ. 2000, 7, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Young, P.J.; Day, P.M.; Zhou, J.; Androphy, E.J.; Morris, G.E.; Lorson, C.L. A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. J. Biol. Chem. 2002, 277, 2852–2859. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.; Mahadevan, M.S.; McLean, M.; Shutler, G.; Yaraghi, Z.; Farahani, R.; Baird, S.; Besner-Johnston, A.; Lefebvre, C.; Kang, X.; et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995, 80, 167–178. [Google Scholar] [CrossRef]
- Ando, S.; Funato, M.; Ohuchi, K.; Inagaki, S.; Sato, A.; Seki, J.; Kawase, C.; Saito, T.; Nishio, H.; Nakamura, S.; et al. The Protective Effects of Levetiracetam on a Human iPSCs-Derived Spinal Muscular Atrophy Model. Neurochem. Res. 2019, 44, 1773–1779. [Google Scholar] [CrossRef]
- Saal, L.; Briese, M.; Kneitz, S.; Glinka, M.; Sendtner, M. Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation. RNA 2014, 20, 1789–1802. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.Y.; Gish, G.; Braunschweig, U.; Li, Y.; Ni, Z.; Schmitges, F.W.; Zhong, G.; Liu, K.; Li, W.; Moffat, J.; et al. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 2016, 529, 48–53. [Google Scholar] [CrossRef]
- Fallini, C.; Rouanet, J.P.; Donlin-Asp, P.G.; Guo, P.; Zhang, H.; Singer, R.H.; Rossoll, W.; Bassell, G.J. Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. Dev. Neurobiol. 2014, 74, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Lauria, F.; Bernabo, P.; Tebaldi, T.; Groen, E.J.N.; Perenthaler, E.; Maniscalco, F.; Rossi, A.; Donzel, D.; Clamer, M.; Marchioretto, M.; et al. SMN-primed ribosomes modulate the translation of transcripts related to spinal muscular atrophy. Nat. Cell Biol. 2020, 22, 1239–1251. [Google Scholar] [CrossRef] [PubMed]
- Rage, F.; Boulisfane, N.; Rihan, K.; Neel, H.; Gostan, T.; Bertrand, E.; Bordonne, R.; Soret, J. Genome-wide identification of mRNAs associated with the protein SMN whose depletion decreases their axonal localization. RNA 2013, 19, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
- Bleck, C.K.E.; Kim, Y.; Willingham, T.B.; Glancy, B. Subcellular connectomic analyses of energy networks in striated muscle. Nat. Commun. 2018, 9, 5111. [Google Scholar] [CrossRef] [PubMed]
- Willingham, T.B.; Ajayi, P.T.; Glancy, B. Subcellular Specialization of Mitochondrial Form and Function in Skeletal Muscle Cells. Front. Cell Dev. Biol. 2021, 9, 757305. [Google Scholar] [CrossRef]
- Vincent, A.E.; White, K.; Davey, T.; Philips, J.; Ogden, R.T.; Lawless, C.; Warren, C.; Hall, M.G.; Ng, Y.S.; Falkous, G.; et al. Quantitative 3D Mapping of the Human Skeletal Muscle Mitochondrial Network. Cell Rep. 2019, 27, 321. [Google Scholar] [CrossRef]
- Kuznetsov, A.V.; Javadov, S.; Margreiter, R.; Hagenbuchner, J.; Ausserlechner, M.J. Analysis of Mitochondrial Function, Structure, and Intracellular Organization In Situ in Cardiomyocytes and Skeletal Muscles. Int. J. Mol. Sci. 2022, 23, 2252. [Google Scholar] [CrossRef]
- Slavin, M.B.; Memme, J.M.; Oliveira, A.N.; Moradi, N.; Hood, D.A. Regulatory networks coordinating mitochondrial quality control in skeletal muscle. Am. J. Physiol. Cell Physiol. 2022, 322, C913–C926. [Google Scholar] [CrossRef]
- Leduc-Gaudet, J.P.; Hussain, S.N.A.; Barreiro, E.; Gouspillou, G. Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. Int. J. Mol. Sci. 2021, 22, 8179. [Google Scholar] [CrossRef]
- Territo, P.R.; Mootha, V.K.; French, S.A.; Balaban, R.S. Ca(2+) activation of heart mitochondrial oxidative phosphorylation: Role of the F(0)/F(1)-ATPase. Am. J. Physiol. Cell Physiol. 2000, 278, C423–C435. [Google Scholar] [CrossRef]
- Michelucci, A.; Liang, C.; Protasi, F.; Dirksen, R.T. Altered Ca(2+) Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites 2021, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.N.; Hoffman, S.; Reddi, P.P.; Singh, R.N. Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim. Biophys. Acta-Mol. Basis Dis. 2021, 1867, 166063. [Google Scholar] [CrossRef] [PubMed]
- Hayhurst, M.; Wagner, A.K.; Cerletti, M.; Wagers, A.J.; Rubin, L.L. A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein. Dev. Biol. 2012, 368, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Khayrullina, G.; Moritz, K.E.; Schooley, J.F.; Fatima, N.; Viollet, C.; McCormack, N.M.; Smyth, J.T.; Doughty, M.L.; Dalgard, C.L.; Flagg, T.P.; et al. SMN-deficiency disrupts SERCA2 expression and intracellular Ca(2+) signaling in cardiomyocytes from SMA mice and patient-derived iPSCs. Skelet. Muscle 2020, 10, 16. [Google Scholar] [CrossRef]
- Sambrook, P.; Rickards, D.; Cumming, W.J. CT muscle scanning in the evaluation of patients with spinal muscular atrophy (SMA). Neuroradiology 1988, 30, 487–495. [Google Scholar] [CrossRef]
- Millino, C.; Fanin, M.; Vettori, A.; Laveder, P.; Mostacciuolo, M.L.; Angelini, C.; Lanfranchi, G. Different atrophy-hypertrophy transcription pathways in muscles affected by severe and mild spinal muscular atrophy. BMC Med. 2009, 7, 14. [Google Scholar] [CrossRef]
- Ling, K.K.; Gibbs, R.M.; Feng, Z.; Ko, C.P. Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy. Hum. Mol. Genet. 2011, 21, 185–195. [Google Scholar] [CrossRef]
- Fulceri, F.; Bartalucci, A.; Paparelli, S.; Pasquali, L.; Biagioni, F.; Ferrucci, M.; Ruffoli, R.; Fornai, F. Motor neuron pathology and behavioral alterations at late stages in a SMA mouse model. Brain Res. 2012, 1442, 66–75. [Google Scholar] [CrossRef]
- Feng, W.; Gubitz, A.K.; Wan, L.; Battle, D.J.; Dostie, J.; Golembe, T.J.; Dreyfuss, G. Gemins modulate the expression and activity of the SMN complex. Hum. Mol. Genet. 2005, 14, 1605–1611. [Google Scholar] [CrossRef] [Green Version]
- Shafey, D.; Cote, P.D.; Kothary, R. Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology. Exp. Cell Res. 2005, 311, 49–61. [Google Scholar] [CrossRef]
- Boyer, J.G.; Deguise, M.O.; Murray, L.M.; Yazdani, A.; De Repentigny, Y.; Boudreau-Lariviere, C.; Kothary, R. Myogenic program dysregulation is contributory to disease pathogenesis in spinal muscular atrophy. Hum. Mol. Genet. 2014, 23, 4249–4259. [Google Scholar] [CrossRef] [PubMed]
- Bricceno, K.V.; Martinez, T.; Leikina, E.; Duguez, S.; Partridge, T.A.; Chernomordik, L.V.; Fischbeck, K.H.; Sumner, C.J.; Burnett, B.G. Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Hum. Mol. Genet. 2014, 23, 4745–4757. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Jha, N.N.; Feng, Z.; Faleiro, M.R.; Chiriboga, C.A.; Wei-Lapierre, L.; Dirksen, R.T.; Ko, C.P.; Monani, U.R. Muscle-specific SMN reduction reveals motor neuron-independent disease in spinal muscular atrophy models. J. Clin. Investig. 2020, 130, 1271–1287. [Google Scholar] [CrossRef]
- Gavrilina, T.O.; McGovern, V.L.; Workman, E.; Crawford, T.O.; Gogliotti, R.G.; DiDonato, C.J.; Monani, U.R.; Morris, G.E.; Burghes, A.H. Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Hum. Mol. Genet. 2008, 17, 1063–1075. [Google Scholar] [CrossRef]
- Hamilton, G.; Gillingwater, T.H. Spinal muscular atrophy: Going beyond the motor neuron. Trends Mol. Med. 2013, 19, 40–50. [Google Scholar] [CrossRef]
- Stump, A.D.; Dillon-White, M.; Gu, S. Molecular evolution of the moonlighting protein SMN in metazoans. Comp. Biochem. Physiol. Part D Genomics Proteomics 2013, 8, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Osman, E.Y.; Bolding, M.R.; Villalon, E.; Kaifer, K.A.; Lorson, Z.C.; Tisdale, S.; Hao, Y.; Conant, G.C.; Pires, J.C.; Pellizzoni, L.; et al. Functional characterization of SMN evolution in mouse models of SMA. Sci. Rep. 2019, 9, 9472. [Google Scholar] [CrossRef]
- Gobernado, J.M.; Gosalvez, M.; Cortina, C.; Lousa, M.; Riva, C.; Gimeno, A. Mitochondrial functions in chronic spinal muscular atrophy. J. Neurol. Neurosurg. Psychiatry. 1980, 43, 546–549. [Google Scholar] [CrossRef]
- Ohtaki, E. Secondarily reduced cytochrome c oxidase activity in various neuromuscular disorders. Brain Dev. 1990, 12, 326–333. [Google Scholar] [CrossRef]
- Pons, R.; Andreetta, F.; Wang, C.H.; Vu, T.H.; Bonilla, E.; DiMauro, S.; De Vivo, D.C. Mitochondrial myopathy simulating spinal muscular atrophy. Pediatr. Neurol. 1996, 15, 153–158. [Google Scholar] [CrossRef]
- Sperl, W.; Skladal, D.; Gnaiger, E.; Wyss, M.; Mayr, U.; Hager, J.; Gellerich, F.N. High resolution respirometry of permeabilized skeletal muscle fibers in the diagnosis of neuromuscular disorders. Mol. Cell Biochem. 1997, 174, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Vielhaber, S.; Winkler, K.; Kirches, E.; Kunz, D.; Buchner, M.; Feistner, H.; Elger, C.E.; Ludolph, A.C.; Riepe, M.W.; Kunz, W.S. Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J. Neurol. Sci. 1999, 169, 133–139. [Google Scholar] [CrossRef]
- Jongpiputvanich, S.; Sueblinvong, T.; Norapucsunton, T. Mitochondrial respiratory chain dysfunction in various neuromuscular diseases. J. Clin. Neurosci. 2005, 12, 426–428. [Google Scholar] [CrossRef] [PubMed]
- Ripolone, M.; Ronchi, D.; Violano, R.; Vallejo, D.; Fagiolari, G.; Barca, E.; Lucchini, V.; Colombo, I.; Villa, L.; Berardinelli, A.; et al. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy. JAMA Neurol. 2015, 72, 666–675. [Google Scholar] [CrossRef]
- Berger, A.; Mayr, J.A.; Meierhofer, D.; Fotschl, U.; Bittner, R.; Budka, H.; Grethen, C.; Huemer, M.; Kofler, B.; Sperl, W. Severe depletion of mitochondrial DNA in spinal muscular atrophy. Acta Neuropathol. 2003, 105, 245–251. [Google Scholar] [CrossRef]
- Bevan, A.K.; Hutchinson, K.R.; Foust, K.D.; Braun, L.; McGovern, V.L.; Schmelzer, L.; Ward, J.G.; Petruska, J.C.; Lucchesi, P.A.; Burghes, A.H.; et al. Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Hum. Mol. Genet. 2010, 19, 3895–3905. [Google Scholar] [CrossRef]
- Sheng, L.; Wan, B.; Feng, P.; Sun, J.; Rigo, F.; Bennett, C.F.; Akerman, M.; Krainer, A.R.; Hua, Y. Downregulation of Survivin contributes to cell-cycle arrest during postnatal cardiac development in a severe spinal muscular atrophy mouse model. Hum. Mol. Genet. 2018, 27, 486–498. [Google Scholar] [CrossRef]
- Chan, D.C. Mitochondrial Dynamics and Its Involvement in Disease. Annu. Rev. Pathol. 2020, 15, 235–259. [Google Scholar] [CrossRef]
- Bowerman, M.; Anderson, C.L.; Beauvais, A.; Boyl, P.P.; Witke, W.; Kothary, R. SMN, profilin IIa and plastin 3: A link between the deregulation of actin dynamics and SMA pathogenesis. Mol. Cell. Neurosci. 2009, 42, 66–74. [Google Scholar] [CrossRef]
- Giesemann, T.; Rathke-Hartlieb, S.; Rothkegel, M.; Bartsch, J.W.; Buchmeier, S.; Jockusch, B.M.; Jockusch, H. A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocalize with smn in nuclear gems. J. Biol. Chem. 1999, 274, 37908–37914. [Google Scholar] [CrossRef]
- Fan, L.; Simard, L.R. Survival motor neuron (SMN) protein: Role in neurite outgrowth and neuromuscular maturation during neuronal differentiation and development. Hum. Mol. Genet. 2002, 11, 1605–1614. [Google Scholar] [CrossRef] [PubMed]
- Schultz, J.; Lee, S.J.; Cole, T.; Hoang, H.D.; Vibbert, J.; Cottee, P.A.; Miller, M.A.; Han, S.M. The secreted MSP domain of C. elegans VAPB homolog VPR-1 patterns the adult striated muscle mitochondrial reticulum via SMN-1. Development 2017, 144, 2175–2186. [Google Scholar] [CrossRef]
- Egile, C.; Rouiller, I.; Xu, X.P.; Volkmann, N.; Li, R.; Hanein, D. Mechanism of filament nucleation and branch stability revealed by the structure of the Arp2/3 complex at actin branch junctions. PLoS Biol. 2005, 3, 1902–1909. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.S.; Wong, Y.C.; Simpson, C.L.; Holzbaur, E.L. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks. Nat. Commun. 2016, 7, 12886. [Google Scholar] [CrossRef] [PubMed]
- Giganti, A.; Plastino, J.; Janji, B.; Van Troys, M.; Lentz, D.; Ampe, C.; Sykes, C.; Friederich, E. Actin-filament cross-linking protein T-plastin increases Arp2/3-mediated actin-based movement. J. Cell Sci. 2005, 118, 1255–1265. [Google Scholar] [CrossRef]
- Rajendra, T.K.; Gonsalvez, G.B.; Walker, M.P.; Shpargel, K.B.; Salz, H.K.; Matera, A.G. A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle. J. Cell Biol. 2007, 176, 831–841. [Google Scholar] [CrossRef]
- Walker, M.P.; Rajendra, T.K.; Saieva, L.; Fuentes, J.L.; Pellizzoni, L.; Matera, A.G. SMN complex localizes to the sarcomeric Z-disc and is a proteolytic target of calpain. Hum. Mol. Genet. 2008, 17, 3399–3410. [Google Scholar] [CrossRef]
- Berciano, M.T.; Castillo-Iglesias, M.S.; Val-Bernal, J.F.; Lafarga, V.; Rodriguez-Rey, J.C.; Lafarga, M.; Tapia, O. Mislocalization of SMN from the I-band and M-band in human skeletal myofibers in spinal muscular atrophy associates with primary structural alterations of the sarcomere. Cell Tissue Res. 2020, 381, 461–478. [Google Scholar] [CrossRef]
- Houdebine, L.; D’Amico, D.; Bastin, J.; Chali, F.; Desseille, C.; Rumeau, V.; Soukkari, J.; Oudot, C.; Rouquet, T.; Bariohay, B.; et al. Low-Intensity Running and High-Intensity Swimming Exercises Differentially Improve Energy Metabolism in Mice With Mild Spinal Muscular Atrophy. Front. Physiol. 2019, 10, 1258. [Google Scholar] [CrossRef]
- Hellbach, N.; Peterson, S.; Haehnke, D.; Shankar, A.; LaBarge, S.; Pivaroff, C.; Saenger, S.; Thomas, C.; McCarthy, K.; Ebeling, M.; et al. Impaired myogenic development, differentiation and function in hESC-derived SMA myoblasts and myotubes. PLoS ONE 2018, 13, e0205589. [Google Scholar] [CrossRef]
- Brito, M.D.; Silva, L.; Siena, A.; Chipara, M.; Sarkar, S.; Rosenstock, T.R. Oxygen Consumption Evaluation: An Important Indicator of Metabolic State, Cellular Function, and Cell Fate Along Neural Deregulation. Methods Mol. Biol. 2021, 2240, 207–230. [Google Scholar] [CrossRef] [PubMed]
- Deguise, M.O.; Pileggi, C.; De Repentigny, Y.; Beauvais, A.; Tierney, A.; Chehade, L.; Michaud, J.; Llavero-Hurtado, M.; Lamont, D.; Atrih, A.; et al. SMN Depleted Mice Offer a Robust and Rapid Onset Model of Nonalcoholic Fatty Liver Disease. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 354–377.e3. [Google Scholar] [CrossRef] [PubMed]
- Harpey, J.P.; Charpentier, C.; Paturneau-Jouas, M.; Renault, F.; Romero, N.; Fardeau, M. Secondary metabolic defects in spinal muscular atrophy type II. Lancet 1990, 336, 629–630. [Google Scholar] [CrossRef]
- Tein, I.; Sloane, A.E.; Donner, E.J.; Lehotay, D.C.; Millington, D.S.; Kelley, R.I. Fatty acid oxidation abnormalities in childhood-onset spinal muscular atrophy: Primary or secondary defect(s)? Pediatr. Neurol. 1995, 12, 21–30. [Google Scholar] [CrossRef]
- Djordjevic, S.A.; Milic-Rasic, V.; Brankovic, V.; Kosac, A.; Dejanovic-Djordjevic, I.; Markovic-Denic, L.; Djuricic, G.; Milcanovic, N.; Kovacevic, S.; Petrovic, H.; et al. Glucose and lipid metabolism disorders in children and adolescents with spinal muscular atrophy types 2 and 3. Neuromuscul. Disord. 2021, 31, 291–299. [Google Scholar] [CrossRef]
- Sproule, D.M.; Montes, J.; Montgomery, M.; Battista, V.; Koenigsberger, D.; Shen, W.; Punyanitya, M.; De Vivo, D.C.; Kaufmann, P. Increased fat mass and high incidence of overweight despite low body mass index in patients with spinal muscular atrophy. Neuromuscul. Disord. 2009, 19, 391–396. [Google Scholar] [CrossRef]
- Davis, R.H.; Miller, E.A.; Zhang, R.Z.; Swoboda, K.J. Responses to Fasting and Glucose Loading in a Cohort of Well Children with Spinal Muscular Atrophy Type II. J. Pediatrics 2015, 167, 1362–1368.e1. [Google Scholar] [CrossRef]
- Bowerman, M.; Michalski, J.P.; Beauvais, A.; Murray, L.M.; DeRepentigny, Y.; Kothary, R. Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology. Hum. Mol. Genet. 2014, 23, 3432–3444. [Google Scholar] [CrossRef]
- Bowerman, M.; Swoboda, K.J.; Michalski, J.P.; Wang, G.S.; Reeks, C.; Beauvais, A.; Murphy, K.; Woulfe, J.; Screaton, R.A.; Scott, F.W.; et al. Glucose metabolism and pancreatic defects in spinal muscular atrophy. Ann. Neurol. 2012, 72, 256–268. [Google Scholar] [CrossRef] [Green Version]
- Shababi, M.; Habibi, J.; Yang, H.T.; Vale, S.M.; Sewell, W.A.; Lorson, C.L. Cardiac defects contribute to the pathology of spinal muscular atrophy models. Hum. Mol. Genet. 2010, 19, 4059–4071. [Google Scholar] [CrossRef]
- Escobales, N.; Nunez, R.E.; Javadov, S. Mitochondrial angiotensin receptors and cardioprotective pathways. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H1426–H1438. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, E.; Sestili, P. Reactive oxygen species in skeletal muscle signaling. J. Signal Transduct. 2012, 2012, 982794. [Google Scholar] [CrossRef]
- Pollack, M.; Phaneuf, S.; Dirks, A.; Leeuwenburgh, C. The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann. N. Y. Acad. Sci. 2002, 959, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Musaro, A.; Fulle, S.; Fano, G. Oxidative stress and muscle homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Pena-Blanco, A.; Garcia-Saez, A.J. Bax, Bak and beyond—Mitochondrial performance in apoptosis. FEBS J. 2018, 285, 416–431. [Google Scholar] [CrossRef]
- Zhong, X.; Song, Z.; Song, X. Survival motor neuron protein protects H9c2 cardiomyocytes from hypoxia-induced cell injury by reducing apoptosis. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1808–1815. [Google Scholar] [CrossRef]
- Seo, J.; Singh, N.N.; Ottesen, E.W.; Sivanesan, S.; Shishimorova, M.; Singh, R.N. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene. PLoS ONE 2016, 11, e0154390. [Google Scholar] [CrossRef]
- Wijngaarde, C.A.; Blank, A.C.; Stam, M.; Wadman, R.I.; van den Berg, L.H.; van der Pol, W.L. Cardiac pathology in spinal muscular atrophy: A systematic review. Orphanet J. Rare Dis. 2017, 12, 67. [Google Scholar] [CrossRef]
- Lin, X.; Li, J.J.; Qian, W.J.; Zhang, Q.J.; Wang, Z.F.; Lu, Y.Q.; Dong, E.L.; He, J.; Wang, N.; Ma, L.X.; et al. Modeling the differential phenotypes of spinal muscular atrophy with high-yield generation of motor neurons from human induced pluripotent stem cells. Oncotarget 2017, 8, 42030–42042. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Gozalbo, M.E.; Smeitink, J.A.; Ruitenbeek, W.; Ter Laak, H.; Mullaart, R.A.; Schuelke, M.; Mariman, E.C.; Sengers, R.C.; Gabreels, F.J. Spinal muscular atrophy-like picture, cardiomyopathy, and cytochrome c oxidase deficiency. Neurology 1999, 52, 383–386. [Google Scholar] [CrossRef]
- Martin, L.J. Biology of mitochondria in neurodegenerative diseases. Prog. Mol. Biol. Transl. Sci. 2012, 107, 355–415. [Google Scholar] [CrossRef] [PubMed]
- Memme, J.M.; Erlich, A.T.; Phukan, G.; Hood, D.A. Exercise and mitochondrial health. J. Physiol. 2021, 599, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Lewelt, A.; Krosschell, K.J.; Stoddard, G.J.; Weng, C.; Xue, M.; Marcus, R.L.; Gappmaier, E.; Viollet, L.; Johnson, B.A.; White, A.T.; et al. Resistance strength training exercise in children with spinal muscular atrophy. Muscle Nerve 2015, 52, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, A.M.; Vissing, J. Exercise therapy for muscle and lower motor neuron diseases. Acta Myol. 2019, 38, 215–232. [Google Scholar]
- Bartels, B.; Montes, J.; van der Pol, W.L.; de Groot, J.F. Physical exercise training for type 3 spinal muscular atrophy. Cochrane Database Syst. Rev. 2019, 3, CD012120. [Google Scholar] [CrossRef]
- Bora, G.; Subasi-Yildiz, S.; Yesbek-Kaymaz, A.; Bulut, N.; Alemdaroglu, I.; Tunca-Yilmaz, O.; Topaloglu, H.; Karaduman, A.A.; Erdem-Yurter, H. Effects of Arm Cycling Exercise in Spinal Muscular Atrophy Type II Patients: A Pilot Study. J. Child Neurol. 2018, 33, 209–215. [Google Scholar] [CrossRef]
- Ng, S.Y.; Mikhail, A.; Ljubicic, V. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice. J. Physiol. 2019, 597, 4757–4778. [Google Scholar] [CrossRef]
- Farooq, F.; Abadia-Molina, F.; MacKenzie, D.; Hadwen, J.; Shamim, F.; O’Reilly, S.; Holcik, M.; MacKenzie, A. Celecoxib increases SMN and survival in a severe spinal muscular atrophy mouse model via p38 pathway activation. Hum. Mol. Genet. 2013, 22, 3415–3424. [Google Scholar] [CrossRef]
- Deguise, M.O.; Baranello, G.; Mastella, C.; Beauvais, A.; Michaud, J.; Leone, A.; De Amicis, R.; Battezzati, A.; Dunham, C.; Selby, K.; et al. Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Ann. Clin. Transl. Neurol. 2019, 6, 1519–1532. [Google Scholar] [CrossRef]
- Deguise, M.O.; Chehade, L.; Kothary, R. Metabolic Dysfunction in Spinal Muscular Atrophy. Int. J. Mol. Sci. 2021, 22, 5913. [Google Scholar] [CrossRef]
- Wang, L.; Gao, J.; Liu, J.; Siedlak, S.L.; Torres, S.; Fujioka, H.; Huntley, M.L.; Jiang, Y.; Ji, H.; Yan, T.; et al. Mitofusin 2 Regulates Axonal Transport of Calpastatin to Prevent Neuromuscular Synaptic Elimination in Skeletal Muscles. Cell Metab. 2018, 28, 400–414.e408. [Google Scholar] [CrossRef] [PubMed]
- Powis, R.A.; Karyka, E.; Boyd, P.; Come, J.; Jones, R.A.; Zheng, Y.; Szunyogova, E.; Groen, E.J.; Hunter, G.; Thomson, D.; et al. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight 2016, 1, e87908. [Google Scholar] [CrossRef] [PubMed]
- Bernkopf, D.B.; Jalal, K.; Bruckner, M.; Knaup, K.X.; Gentzel, M.; Schambony, A.; Behrens, J. Pgam5 released from damaged mitochondria induces mitochondrial biogenesis via Wnt signaling. J. Cell Biol. 2018, 217, 1383–1394. [Google Scholar] [CrossRef]
- Behrens, J.; Solga, R.; Ziemann, A.; Rastetter, R.H.; Berwanger, C.; Herrmann, H.; Noegel, A.A.; Clemen, C.S. Coronin 1C-free primary mouse fibroblasts exhibit robust rearrangements in the orientation of actin filaments, microtubules and intermediate filaments. Eur. J. Cell Biol. 2016, 95, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.M.; Van Alstyne, M.; Lotti, F.; Bianchetti, E.; Tisdale, S.; Watterson, D.M.; Mentis, G.Z.; Pellizzoni, L. Stasimon Contributes to the Loss of Sensory Synapses and Motor Neuron Death in a Mouse Model of Spinal Muscular Atrophy. Cell Rep. 2019, 29, 3885–3901.e5. [Google Scholar] [CrossRef] [PubMed]
- Van Alstyne, M.; Lotti, F.; Dal Mas, A.; Area-Gomez, E.; Pellizzoni, L. Stasimon/Tmem41b localizes to mitochondria-associated ER membranes and is essential for mouse embryonic development. Biochem. Biophys. Res. Commun. 2018, 506, 463–470. [Google Scholar] [CrossRef]
- Ahmad, S.; Wang, Y.; Shaik, G.M.; Burghes, A.H.; Gangwani, L. The zinc finger protein ZPR1 is a potential modifier of spinal muscular atrophy. Hum. Mol. Genet. 2012, 21, 2745–2758. [Google Scholar] [CrossRef]
- Chang, H.C.; Dimlich, D.N.; Yokokura, T.; Mukherjee, A.; Kankel, M.W.; Sen, A.; Sridhar, V.; Fulga, T.A.; Hart, A.C.; Van Vactor, D.; et al. Modeling spinal muscular atrophy in Drosophila. PLoS ONE 2008, 3, e3209. [Google Scholar] [CrossRef]
- McCormack, N.M.; Abera, M.B.; Arnold, E.S.; Gibbs, R.M.; Martin, S.E.; Buehler, E.; Chen, Y.C.; Chen, L.; Fischbeck, K.H.; Burnett, B.G. A high-throughput genome-wide RNAi screen identifies modifiers of survival motor neuron protein. Cell Rep. 2021, 35, 109125. [Google Scholar] [CrossRef]
- Bordet, T.; Berna, P.; Abitbol, J.L.; Pruss, R.M. Olesoxime (TRO19622): A Novel Mitochondrial-Targeted Neuroprotective Compound. Pharmaceuticals 2010, 3, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Muntoni, F.; Bertini, E.; Comi, G.; Kirschner, J.; Lusakowska, A.; Mercuri, E.; Scoto, M.; van der Pol, W.L.; Vuillerot, C.; Burdeska, A.; et al. Long-term follow-up of patients with type 2 and non-ambulant type 3 spinal muscular atrophy (SMA) treated with olesoxime in the OLEOS trial. Neuromuscul. Disord. 2020, 30, 959–969. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Du, W.; Zhao, Y.; Lim, K.; Lu, L.; Zhang, C.; Li, L. Mitochondria targeting drugs for neurodegenerative diseases-Design, mechanism and application. Acta Pharm. Sin. B 2022, 12, 2778–2789. [Google Scholar] [CrossRef] [PubMed]
- Zerres, K.; Rudnik-Schoneborn, S.; Forkert, R.; Wirth, B. Genetic basis of adult-onset spinal muscular atrophy. Lancet 1995, 346, 1162. [Google Scholar] [CrossRef]
- Van Alstyne, M.; Tattoli, I.; Delestree, N.; Recinos, Y.; Workman, E.; Shihabuddin, L.S.; Zhang, C.; Mentis, G.Z.; Pellizzoni, L. Gain of toxic function by long-term SMN overexpression in the mouse motor circuit. In Proceedings of the Cure SMA Meeting 2020, Orlando, FL, USA, 11–14 June 2020. [Google Scholar]
- Anderson, K.N.; Baban, D.; Oliver, P.L.; Potter, A.; Davies, K.E. Expression profiling in spinal muscular atrophy reveals an RNA binding protein deficit. Neuromuscul. Disord. 2004, 14, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Balabanian, S.; Gendron, N.H.; MacKenzie, A.E. Histologic and transcriptional assessment of a mild SMA model. Neurol. Res. 2007, 29, 413–424. [Google Scholar] [CrossRef]
- Staropoli, J.F.; Li, H.; Chun, S.J.; Allaire, N.; Cullen, P.; Thai, A.; Fleet, C.M.; Hua, Y.; Bennett, C.F.; Krainer, A.R.; et al. Rescue of gene-expression changes in an induced mouse model of spinal muscular atrophy by an antisense oligonucleotide that promotes inclusion of SMN2 exon 7. Genomics 2015, 105, 220–228. [Google Scholar] [CrossRef]
- See, K.; Yadav, P.; Giegerich, M.; Cheong, P.S.; Graf, M.; Vyas, H.; Lee, S.G.; Mathavan, S.; Fischer, U.; Sendtner, M.; et al. SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy. Hum. Mol. Genet. 2014, 23, 1754–1770. [Google Scholar] [CrossRef]
- Gao, X.; Xu, J.; Chen, H.; Xue, D.; Pan, W.; Zhou, C.; Ma, Y.C.; Ma, L. Defective Expression of Mitochondrial, Vacuolar H(+)-ATPase and Histone Genes in a C. elegans Model of SMA. Front. Genet. 2019, 10, 410. [Google Scholar] [CrossRef]
- Huo, Q.; Kayikci, M.; Odermatt, P.; Meyer, K.; Michels, O.; Saxena, S.; Ule, J.; Schumperli, D. Splicing changes in SMA mouse motoneurons and SMN-depleted neuroblastoma cells: Evidence for involvement of splicing regulatory proteins. RNA Biol. 2014, 11, 1430–1446. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zilio, E.; Piano, V.; Wirth, B. Mitochondrial Dysfunction in Spinal Muscular Atrophy. Int. J. Mol. Sci. 2022, 23, 10878. https://doi.org/10.3390/ijms231810878
Zilio E, Piano V, Wirth B. Mitochondrial Dysfunction in Spinal Muscular Atrophy. International Journal of Molecular Sciences. 2022; 23(18):10878. https://doi.org/10.3390/ijms231810878
Chicago/Turabian StyleZilio, Eleonora, Valentina Piano, and Brunhilde Wirth. 2022. "Mitochondrial Dysfunction in Spinal Muscular Atrophy" International Journal of Molecular Sciences 23, no. 18: 10878. https://doi.org/10.3390/ijms231810878
APA StyleZilio, E., Piano, V., & Wirth, B. (2022). Mitochondrial Dysfunction in Spinal Muscular Atrophy. International Journal of Molecular Sciences, 23(18), 10878. https://doi.org/10.3390/ijms231810878