GSTT1/GSTM1 Genotype and Anti-Tuberculosis Drug-Induced Hepatotoxicity in Peruvian Patients
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods and Materials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chamorro, J.G.; Castagnino, J.P.; Musella, R.M.; Nogueras, M.; Aranda, F.M.; Frías, A.; Visca, M.; Aidar, O.; Perés, S.; de Larrañaga, G.F. Sex, ethnicity, and slow acetylator profile are the major causes of hepatotoxicity induced by antituberculosis drugs. J. Gastroenterol. Hepatol. 2013, 28, 323–328. Available online: http://www.ncbi.nlm.nih.gov/pubmed/23190413 (accessed on 20 August 2019). [CrossRef] [PubMed]
- Possuelo, L.G.; Castelan, J.A.; de Brito, T.C.; Ribeiro, A.W.; Cafrune, P.I.; Picon, P.D.; Santos, A.R.; Teixeira, R.L.F.; Gregianini, T.S.; Hutz, M.H.; et al. Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. Eur. J. Clin. Pharmacol. 2008, 64, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Yimer, G.; Ueda, N.; Habtewold, A.; Amogne, W.; Suda, A.; Riedel, K.-D.; Burhenne, J.; Aderaye, G.; Lindquist, L.; Makonnen, E.; et al. Pharmacogenetic & pharmacokinetic biomarker for efavirenz based ARV and rifampicin based anti-TB drug induced liver injury in TB-HIV infected patients. PLoS ONE 2011, 6, e27810. [Google Scholar]
- Simon, T.; Becquemont, L.; Mary-Krause, M.; de Waziers, I.; Beaune, P.; Funck-Brentano, C.; Jaillon, P. Combined glutathione-S-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin. Pharmacol. Ther. 2000, 67, 432–437. [Google Scholar] [CrossRef]
- Gupta, V.H.; Singh, M.; Amarapurkar, D.N.; Sasi, P.; Joshi, J.M.; Baijal, R.; Kumar, H.R.P.; Amarapurkar, A.D.; Joshi, K.; Wangikar, P.P. Association of GST null genotypes with anti-tuberculosis drug induced hepatotoxicity in Western Indian population. Ann. Hepatol. 2013, 12, 959–965. Available online: https://www.elsevier.es/en-revista-annals-hepatology-16-articulo-association-gst-null-genotypes-with-S166526811931302X (accessed on 31 May 2022). [CrossRef]
- De Teixeira, R.L.F.; Morato, R.G.; Cabello, P.H.; Muniz, L.M.K.; Moreira, A.d.S.R.; Kritski, A.L.; Mello, F.C.Q.; Suffys, P.N.; de Miranda, A.B. Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients. Mem. Inst. Oswaldo Cruz. 2011, 106, 716–724. [Google Scholar] [CrossRef]
- Lv, X.; Tang, S.; Xia, Y.; Zhang, Y.; Wu, S.; Yang, Z.; Li, X.; Tu, D.; Chen, Y.; Deng, P.; et al. NAT2 genetic polymorphisms and anti-tuberculosis drug-induced hepatotoxicity in Chinese community population. Ann. Hepatol. 2012, 11, 700–707. [Google Scholar] [CrossRef]
- Strange, R.C.; Jones, P.W.; Fryer, A.A. Glutathione S-transferase: Genetics and role in toxicology. Toxicol. Lett. 2000, 112–113, 357–363. [Google Scholar] [CrossRef]
- Meister, A. Selective modification of glutathione metabolism. Science 1983, 220, 472–477. [Google Scholar] [CrossRef]
- Meyer, D.J.; Coles, B.; Pemble, S.E.; Gilmore, K.S.; Fraser, G.M.; Ketterer, B. Theta, a new class of glutathione transferases purified from rat and man. Biochem. J. 1991, 274, 409–414. [Google Scholar] [CrossRef]
- Pemble, S.; Schroeder, K.R.; Spencer, S.R.; Meyer, D.J.; Hallier, E.; Bolt, H.M.; Ketterer, B.; Taylor, J.B. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem. J. 1994, 300 Pt 1, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Chowdhury, A.; Kundu, S.; Santra, A.; Dey, B.; Chakraborty, M.; Majumder, P.P. Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 “null” mutation. J. Gastroenterol. Hepatol. 2001, 16, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-S.; Su, W.-J.; Huang, Y.-H.; Chen, C.-Y.; Chang, F.-Y.; Lin, H.-C.; Lee, S.D. Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H:quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. J. Hepatol. 2007, 47, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Lyle, N.; Mandal, A.; Kundu, S. GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. J. Clin. Pharm. Ther. 2010, 35, 465–470. [Google Scholar] [CrossRef]
- Leiro, V.; Fernández-Villar, A.; Valverde, D.; Constenla, L.; Vázquez, R.; Piñeiro, L.; González-Quintela, A. Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. Liver Int. 2008, 28, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.-W.; Lv, X.-Z.; Zhang, Y.; Wu, S.-S.; Yang, Z.-R.; Xia, Y.-Y.; Tu, D.-H.; Deng, P.-Y.; Ma, Y.; Chen, D.-F.; et al. CYP2E1, GSTM1 and GSTT1 genetic polymorphisms and susceptibility to antituberculosis drug-induced hepatotoxicity: A nested case-control study. J. Clin. Pharm. Ther. 2012, 37, 588–593. [Google Scholar] [CrossRef]
- Lu, Y.-F.; Goldstein, D.B.; Angrist, M.; Cavalleri, G. Personalized medicine and human genetic diversity. Cold Spring Harb. Perspect. Med. 2014, 4, a008581. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25059740 (accessed on 1 August 2019). [CrossRef]
- Suarez-Kurtz, G.; Pena, S.D.J. Pharmacogenomics in the Americas: The impact of genetic admixture. Curr. Drug Targets 2006, 7, 1649–1658. [Google Scholar] [CrossRef]
- Guio, H.; Poterico, J.A.; Levano, K.S.; Cornejo-Olivas, M.; Mazzetti, P.; Manassero-Morales, G.; Ugarte-Gil, M.F.; Acevedo-Vásquez, E.; Dueñas-Roque, M.; Piscoya, A. Genetics and genomics in Peru: Clinical and research perspective. Mol. Genet. Genomic Med. 2018, 6, 873–886. Available online: http://www.ncbi.nlm.nih.gov/pubmed/30584990 (accessed on 1 August 2019). [CrossRef]
- Rohrer Vitek, C.R.; Nicholson, W.T.; Schultz, C.; Caraballo, P.J. Evaluation of the use of clinical decision support and online resources for pharmacogenomics education. Pharmacogenomics 2015, 16, 1595–1603. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26419532 (accessed on 1 August 2019). [CrossRef]
- Weinshilboum, R.; Wang, L. Pharmacogenomics: Bench to bedside. Nat. Rev. Drug. Discov. 2004, 3, 739–748. Available online: http://www.ncbi.nlm.nih.gov/pubmed/15340384 (accessed on 1 August 2019). [CrossRef] [PubMed]
- Fuselli, S.; Gilman, R.H.; Chanock, S.J.; Bonatto, S.L.; De Stefano, G.; Evans, C.A.; Labuda, D.; Luiselli, D.; Salzano, F.M.; Soto, G.; et al. Analysis of nucleotide diversity of NAT2 coding region reveals homogeneity across Native American populations and high intra-population diversity. Pharm. J. 2007, 7, 144–152. Available online: http://www.ncbi.nlm.nih.gov/pubmed/16847467 (accessed on 15 April 2018). [CrossRef] [PubMed]
- Bisso-Machado, R.; Ramallo, V.; Paixão-Côrtes, V.R.; Acuña-Alonzo, V.; Demarchi, D.A.; Sandoval, J.R.S.; Granara, A.A.S.; Salzano, F.M.; Hünemeier, T.; Bortolini, M.C. NAT2 gene diversity and its evolutionary trajectory in the Americas. Pharm. J. 2016, 16, 559–565. Available online: https://pubmed.ncbi.nlm.nih.gov/26503810/ (accessed on 12 March 2021). [CrossRef]
- Levano, K.S.; Jaramillo-Valverde, L.; Tarazona, D.D.; Sanchez, C.; Capristano, S.; Solari, L.; Mendoza-Ticona, A.; Soto, A.; Rojas, C.; Zegarra-Chapoñan, R.; et al. Allelic and Genotypic Frequencies of NAT2, CYP2E1 and AADAC genes in a cohort of Peruvian Tuberculosis Patients. bioRxiv 2021, 9, e1764. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.N.; Song, W.; Shetty, A.C.; Levano, K.S.; Cáceres, O.; Padilla, C.; Borda, V.; Tarazona, D.; Trujillo, O.; Sanchez, C.; et al. Evolutionary genomic dynamics of Peruvians before, during, and after the Inca Empire. Proc. Natl. Acad. Sci. USA 2018, 115, E6526–E6535. Available online: http://www.ncbi.nlm.nih.gov/pubmed/29946025 (accessed on 27 February 2019). [CrossRef]
- Bolt, H.; Thier, R. Relevance of the Deletion Polymorphisms of the Glutathione S-Transferases GSTT1 and GSTM1 in Pharmacology and Toxicology. Curr. Drug. Metab. 2006, 7, 613–628. [Google Scholar] [CrossRef]
- Metabolic Gene Polymorphism Frequencies in Control Populations1|Cancer Epidemiology, Biomarkers & Prevention|American Association for Cancer Research. Available online: https://aacrjournals.org/cebp/article/10/12/1239/164217/Metabolic-Gene-Polymorphism-Frequencies-in-Control (accessed on 31 May 2022).
- Chanhom, N.; Udomsinprasert, W.; Chaikledkaew, U.S.A.; Mahasirimongkol, S.; Wattanapokayakit, S.; Jittikoon, J. GSTM1 and GSTT1 genetic polymorphisms and their association with antituberculosis drug-induced liver injury. Biomed Rep. 2020, 12, 153. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054707/ (accessed on 25 July 2022). [CrossRef]
- Kim, S.H.; Kim, S.H.; Yoon, H.J.; Shin, D.H.; Park, S.S.; Kim, Y.S.; Jae-Seuk, P.; Young Koo, J. GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. Tuberculosis 2010, 90, 39–43. [Google Scholar] [CrossRef]
- Voso, M.T.; D’Alo’, F.; Putzulu, R.; Mele, L.; Scardocci, A.; Chiusolo, P.; Latagliata, R.; Lo-Coco, F.; Rutella, S.; Pagano, L.; et al. Negative prognostic value of glutathione S-transferase (GSTM1 and GSTT1) deletions in adult acute myeloid leukemia. Blood 2002, 100, 2703–2707. Available online: https://pubmed.ncbi.nlm.nih.gov/12351375/ (accessed on 31 May 2022). [CrossRef]
- Haase, D.; Binder, C.; Bünger, J.; Fonatsch, C.; Streubel, B.; Schnittger, S.; Griesinger, F.; Westphal, G.; Schoch, C.; Knopp, A.; et al. Increased risk for therapy-associated hematologic malignancies in patients with carcinoma of the breast and combined homozygous gene deletions of glutathione transferases M1 and T1. Leuk. Res. 2002, 26, 249–254. Available online: https://europepmc.org/article/med/11792413 (accessed on 31 May 2022). [CrossRef]
- Huang, C.C.; Chien, W.P.; Wong, R.H.; Cheng, Y.W.; Chen, M.C.; Chou, M.C.; Lee, H. NAT2 Fast Acetylator Genotype is Associated with an Increased Risk of Colorectal Cancer in Taiwan. Dis. Colon. Rectum. 2007, 50, 981–989. [Google Scholar] [CrossRef]
- Guio, H.; Levano, K.S.; Sanchez, C.; Tarazona, D. The role of pharmacogenomics in the tuberculosis treatment regime. Rev. Peru Med. Exp. Salud. Publica 2015, 32, 794–800. [Google Scholar] [CrossRef]
- Shaikh, R.S.; Amir, M.; Masood, A.I.; Sohail, A.; Athar, H.U.R.; Siraj, S.; Ali, M.; Anjam, M.S. Frequency distribution of GSTM1 and GSTT1 null allele in Pakistani population and risk of disease incidence. Environ. Toxicol. Pharmacol. 2010, 30, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Long, J.; Hu, X.; Zhou, Y. GSTM1 and GSTT1 genetic polymorphisms and risk of anti-tuberculosis drug-induced hepatotoxicity: An updated meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Deng, R.; Wang, Y.; Lin, M.; Li, H.; Qiu, Y.; Hong, M.; Zhou, G. GSTM1 and GSTT1 null polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury: A meta-analysis. Int. J. Tuberc. Lung Dis. 2013, 17, 17–25. [Google Scholar] [CrossRef] [PubMed]
- MINSA. Norma Técnica de Salud Para la Atención Integral de las Personas Afectadas por Tuberculosis. 2013. Available online: http://www.minsa.gob.pe (accessed on 21 November 2021).
- Ramappa, V.; Aithal, G.P. Hepatotoxicity Related to Anti-tuberculosis Drugs: Mechanisms and Management. J. Clin. Exp. Hepatol. 2013, 3, 37–49. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25755470 (accessed on 12 October 2019). [CrossRef]
- Araujo-Mariz, C.; Militão de Albuquerque, M.F.P.; Lopes, E.P.; Ximenes, R.A.A.; Lacerda, H.R.; Miranda-Filho, D.B.; Lustosa-Martins, B.B.; Pastor, A.F.P.; Acioli-Santos, B. Hepatotoxicity during TB treatment in people with HIV/AIDS related to NAT2 polymorphisms in Pernambuco, Northeast Brazil. Ann. Hepatol. 2020, 19, 153–160. [Google Scholar] [CrossRef]
- Jaramillo-Valverde, L.; Levano, K.S.; Tarazona, D.D.; Capristano, S.; Zegarra-Chapoñan, R.; Sanchez, C.; Yufra-Picardo, V.M.; Tarazona-Santos, E.; Ugarte-Gil, C.; Guio, H. NAT2 and CYP2E1 polymorphisms and antituberculosis drug-induced hepatotoxicity in Peruvian patients. Mol. Genet. Genomic Med. 2022, 10, e1987. [Google Scholar] [CrossRef]
- Schiaffino, A.; Rodríguez, M.; Pasarín, M.I.; Regidor, E.; Borrell, C.; Fernández, E. ¿Odds ratio o razón de proporciones? Su utilización en estudios transversales. Gac. Sanit. 2003, 17, 70–74. [Google Scholar] [CrossRef]
Total | Adverse Reaction (DILI) | ||||||
---|---|---|---|---|---|---|---|
Variables | Yes | No | p-Value | ||||
N | % | N | % | N | % | ||
Sex | |||||||
Male | 207 | 54.91 | 10 | 62.50 | 197 | 54.57 | |
Female | 170 | 45.09 | 6 | 37.50 | 164 | 45.43 | 0.533 a |
Age (years) | - | - | 24.3 * | (20.3–30.8) † | 24.2 * | (20.9–29.6) † | 0.995 b |
Alcohol consumption | |||||||
No | 49 | 13.00 | 3 | 18.75 | 46 | 12.74 | |
Yes | 328 | 87.00 | 13 | 81.25 | 315 | 87.26 | 0.346 c |
Cholesterol (mg/dL) | - | - | 154.0 * | (141.2–185.0) † | 169 * | (149.0–189.0) † | 0.214 b |
Hemoglobin (g/dL) | - | - | 13.9 * | (12.2–15.6) † | 13.6 * | (12.4–14.9) † | 0.769 b |
Glucose (mg/dL) | - | - | 89.5 * | (80.0–95.0) † | 83.1 * | (77.9–91.1) † | 0.084 b |
BMI (kg/m2) | - | - | 21.1 * | (19.7–22.5) † | 22 * | (20.3–23.6) † | 0.182 b |
GSTM1 genotype | |||||||
Present | 199 | 52.79 | 6 | 3.02 | 193 | 96.98 | |
Null | 178 | 47.21 | 10 | 5.62 | 168 | 94.38 | 0.160 c |
GSTT1 genotype | |||||||
Present | 263 | 69.76 | 10 | 3.8 | 253 | 96.20 | |
Null | 114 | 30.24 | 6 | 5.26 | 108 | 94.74 | 0.346 c |
Adverse Reaction (DILI) | ||||
---|---|---|---|---|
Yes = 16 (%) | No = 361 (%) | OR (CI 95%) | p-Value | |
GSTM1 | ||||
Present (M+) | 6 (3.02) | 193 (96.98) | - | |
Null (M−) | 10 (5.62) | 168 (94.38) | 1.915 (0.61–6.54) | 0.211 |
GSTT1 | ||||
Present (T+) | 10 (3.80) | 253 (96.20) | - | |
Null (T−) | 6 (5.26) | 108 (94.74) | 1.406 (0.41–4.39) | 0.518 |
Both GSTM1 and T1 | - | |||
M+/T+ | 13 (3.96) | 314 (96.04) | ||
M+/T− | 7 (5.47) | 121 (94.53) | 1.397 (0.46–3.87) | 0.485 |
M−/T+ | 3 (4.92) | 61 (95.08) | 1.188 (0.21–4.50) | 0.793 |
M−/T− | 3 (6.00) | 47 (96.00) | 1.542 (0.27–5.90) | 0.508 |
Adverse Reaction (DILI) | |||||||
---|---|---|---|---|---|---|---|
GSTM1 | GSTT1 | CYP2E1 | NAT2 | Yes = 16 (%) | No = 361 (%) | OR (IC 95%) | p-Value |
Present | Present | C1/C1 | Slow | 3 | 33 | Reference | |
Null | Present | C1/C1 | Slow | 3 | 33 | 1 (0.12–8.02) | 1 |
Present | Null | C1/C1 | Slow | 0 | 20 | 0 (0–2.28) | 0.185 |
Null | Null | C1/C1 | Slow | 1 | 15 | 0.73 (0.01–10.09) | 0.795 |
Present | Present | C1/C2 or C2/C2 | Slow | 0 | 27 | 0 (0–1.67) | 0.124 |
Null | Present | C1/C2 or C2/C2 | Slow | 0 | 19 | 0 (0–2.4) | 0.196 |
Present | Null | C1/C2 or C2/C2 | Slow | 0 | 14 | 0 (0–3.31) | 0.265 |
Null | Null | C1/C2 or C2/C2 | Slow | 2 | 5 | 4.4 (0.28–47.68) | 0.126 |
Present | Present | C1/C1 | Intermediate | 0 | 29 | 0 (0–1.55) | 0.111 |
Null | Present | C1/C1 | Intermediate | 1 | 34 | 0.32 (0.01–4.33) | 0.317 |
Present | Null | C1/C1 | Intermediate | 0 | 16 | 0 (0–2.86) | 0.234 |
Null | Null | C1/C1 | Intermediate | 0 | 13 | 0 (0–3.58) | 0.283 |
Present | Present | C1/C2 or C2/C2 | Intermediate | 0 | 15 | 0 (0–3.08) | 0.249 |
Null | Present | C1/C2 or C2/C2 | Intermediate | 0 | 21 | 0 (0–2.16) | 0.174 |
Present | Null | C1/C2 or C2/C2 | Intermediate | 0 | 7 | 0 (0–7.04) | 0.428 |
Null | Null | C1/C2 or C2/C2 | Intermediate | 0 | 6 | 0 (0–8.36) | 0.463 |
Present | Present | C1/C1 | Rapid | 0 | 14 | 0 (0–3.31) | 0.265 |
Null | Present | C1/C1 | Rapid | 2 | 10 | 2.2 (0.16–21.78) | 0.413 |
Present | Null | C1/C1 | Rapid | 2 | 2 | 11 (0.54–186.35) | 0.017 |
Null | Null | C1/C1 | Rapid | 0 | 6 | 0 (0–8.36) | 0.463 |
Present | Present | C1/C2 or C2/C2 | Rapid | 0 | 10 | 0 (0–4.75) | 0.345 |
Null | Present | C1/C2 or C2/C2 | Rapid | 1 | 3 | 3.67 (0.05–65.57) | 0.292 |
Present | Null | C1/C2 or C2/C2 | Rapid | 1 | 2 | 5.5 (0.07–129.91) | 0.17 |
Null | Null | C1/C2 or C2/C2 | Rapid | 0 | 2 | 0 (0–28.51) | 0.671 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo-Valverde, L.; Levano, K.S.; Tarazona, D.D.; Vasquez-Dominguez, A.; Toledo-Nauto, A.; Capristano, S.; Sanchez, C.; Tarazona-Santos, E.; Ugarte-Gil, C.; Guio, H. GSTT1/GSTM1 Genotype and Anti-Tuberculosis Drug-Induced Hepatotoxicity in Peruvian Patients. Int. J. Mol. Sci. 2022, 23, 11028. https://doi.org/10.3390/ijms231911028
Jaramillo-Valverde L, Levano KS, Tarazona DD, Vasquez-Dominguez A, Toledo-Nauto A, Capristano S, Sanchez C, Tarazona-Santos E, Ugarte-Gil C, Guio H. GSTT1/GSTM1 Genotype and Anti-Tuberculosis Drug-Induced Hepatotoxicity in Peruvian Patients. International Journal of Molecular Sciences. 2022; 23(19):11028. https://doi.org/10.3390/ijms231911028
Chicago/Turabian StyleJaramillo-Valverde, Luis, Kelly S. Levano, David D. Tarazona, Andres Vasquez-Dominguez, Anel Toledo-Nauto, Silvia Capristano, Cesar Sanchez, Eduardo Tarazona-Santos, Cesar Ugarte-Gil, and Heinner Guio. 2022. "GSTT1/GSTM1 Genotype and Anti-Tuberculosis Drug-Induced Hepatotoxicity in Peruvian Patients" International Journal of Molecular Sciences 23, no. 19: 11028. https://doi.org/10.3390/ijms231911028
APA StyleJaramillo-Valverde, L., Levano, K. S., Tarazona, D. D., Vasquez-Dominguez, A., Toledo-Nauto, A., Capristano, S., Sanchez, C., Tarazona-Santos, E., Ugarte-Gil, C., & Guio, H. (2022). GSTT1/GSTM1 Genotype and Anti-Tuberculosis Drug-Induced Hepatotoxicity in Peruvian Patients. International Journal of Molecular Sciences, 23(19), 11028. https://doi.org/10.3390/ijms231911028