Molecular and Functional Characterization of a Short-Type Peptidoglycan Recognition Protein, Ct-PGRP-S1 in the Giant Triton Snail Charonia tritonis
Abstract
:1. Introduction
2. Results
2.1. Identification of Ct-PGRP-S1 cDNA Sequence from Transcriptome of C. tritonis
2.2. Molecular Characterization and Bioinformatic Analyses of Ct-PGRP-S1
2.3. Expression Profiles of Ct-PGRP-S1 mRNA in Different Tissues
2.4. Prokaryotic Expression Vector Construction and Purification of rCt-PGRP-S1
2.5. Amidase Activity and Antibacterial Activity of rCt-PGRP-S1 Protein
3. Discussion
4. Materials and Methods
4.1. Animals and Tissue Collection
4.2. Molecular Cloning and Bioinformatics Analysis of Ct-PGRP-S1
4.3. RNA Isolation and Quantitative Reverse Transcription PCR (qRT-PCR) Analysis
4.4. Construction of Prokaryotic Expression Vector
4.5. Over-Expression and Purification of Recombinant Ct-PGRP-S1 Protein
4.6. Amidase Activity Assay
4.7. Antimicrobial Activity Assay
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, X.; Yang, D.; Li, H.; Zhao, T.; Jiang, H.; Liu, X.; Yang, J. Peptidoglycan recognition protein of Solen grandis (SgPGRP-S1) mediates immune recognition and bacteria clearance. Fish Shellfish Immunol. 2018, 73, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Kurata, S. Peptidoglycan recognition proteins in Drosophila immunity. Dev. Comp. Immunol. 2014, 42, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Sulpizio, A.G.; Kelley, A.; Alvarez, L.; Murphy, S.G.; Fan, L.X.; Cava, F.; Mao, Y.X.; Saper, M.A.; Dorr, T. Structural basis of peptidoglycan endopeptidase regulation. Proc. Natl. Acad. Sci. USA 2020, 117, 11692–11702. [Google Scholar] [CrossRef]
- Yoshida, H.; Kinoshita, K.; Ashida, M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 1996, 271, 13854–13860. [Google Scholar] [CrossRef]
- Werner, T.; Liu, G.; Kang, D.; Ekengren, S.; Steiner, H.; Hultmark, D. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2000, 97, 13772–13777. [Google Scholar] [CrossRef]
- Christophides, G.K.; Zdobnov, E.; Barillas-Mury, C.; Birney, E.; Blandin, S.; Blass, C.; Brey, P.T.; Collins, F.H.; Danielli, A.; Dimopoulos, G.; et al. Immunity-related genes and gene families in Anopheles gambiae. Science 2002, 298, 159–165. [Google Scholar] [CrossRef]
- Werner, T.; Borge-Renberg, K.; Mellroth, P.; Steiner, H.; Hultmark, D. Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J. Biol. Chem. 2003, 278, 26319–26322. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Z.J.; Gupta, D.; Dziarski, R. Peptidoglycan recognition proteins—A novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 2001, 276, 34686–34694. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Z.N. The first evidence of positive selection in peptidoglycan recognition protein (PGRP) genes of Crassostrea gigas. Fish Shellfish Immunol. 2013, 34, 1352–1355. [Google Scholar] [CrossRef]
- Wolf, A.J.; Underhill, D.M. Peptidoglycan recognition by the innate immune system. Nat. Rev. Immunol. 2018, 18, 243–254. [Google Scholar] [CrossRef]
- Luo, S.; Wang, L.-C.; Shuai, Z.-H.; Yang, G.-J.; Lu, J.-F.; Chen, J. A short peptidoglycan recognition protein protects Boleophthalmus pectinirostris against bacterial infection via inhibiting bacterial activity. Fish Shellfish Immunol. 2022, 127, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Dziarski, R. Peptidoglycan recognition proteins (PGRPs). Mol. Immunol. 2004, 40, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Ni, D.J.; Song, L.S.; Wu, L.T.; Chang, Y.Q.; Yu, Y.D.; Qiu, L.M.; Wang, L.L. Molecular cloning and mRNA ex-pression of peptidoglycan recognition protein (PGRP) gene in bay scallop (Argopecten irradians, Lamarck 1819). Dev. Comp. Immunol. 2007, 31, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Dziarski, R.; Gupta, D. The peptidoglycan recognition proteins (PGRPs). Genome Biol. 2006, 7, 232. [Google Scholar] [CrossRef]
- Hou, J.; Gan, Z.; Chen, S.N.; Nie, P. Molecular and functional characterization of a short-type peptidoglycan recognition protein, PGRP-S in the amphibian Xenopus laevis. Dev. Comp. Immunol. 2019, 98, 13–19. [Google Scholar] [CrossRef]
- Hou, J.; Gan, Z.; Chen, S.; Cheng, J.; Lu, Y.; Huang, B.; Nie, P.; Xia, L. Identification and functional characterization of a short-type peptidoglycan recognition protein, PGRP-S in the orange-spotted grouper, Epinephelus coioides. Aquac. Rep. 2021, 20, 100739. [Google Scholar] [CrossRef]
- Huang, L.; Chen, S.N.; Gan, Z.; Nie, P. Molecular and functional identification of a short-type peptidoglycan recognition protein, PGRP-S, in the Chinese soft-shelled turtle Pelodiscus sinensis. Dev. Comp. Immunol. 2021, 117, 103965. [Google Scholar] [CrossRef]
- Yang, J.L.; Wang, W.; Wei, X.M.; Qiu, L.M.; Wang, L.L.; Zhang, H.A.; Song, L.S. Peptidoglycan recognition protein of Chlamys farreri (CfPGRP-S1) mediates immune defenses against bacterial infection. Dev. Comp. Immunol. 2010, 34, 1300–1307. [Google Scholar] [CrossRef]
- Yao, F.; Li, Z.H.; Zhang, Y.J.; Zhang, S.C. A novel short peptidoglycan recognition protein in amphioxus: Identification, expression and bioactivity. Dev. Comp. Immunol. 2012, 38, 332–341. [Google Scholar] [CrossRef]
- Sun, Q.L.; Sun, L. A short-type peptidoglycan recognition protein from tongue sole (Cynoglossus semilaevis) promotes phagocytosis and defense against bacterial infection. Fish Shellfish Immunol. 2015, 47, 313–320. [Google Scholar] [CrossRef]
- Meng, Y.; Dai, W.; Lin, Z.; Zhang, W.; Dong, Y. Expression and functional characterization of peptidoglycan recognition protein-S6 involved in antibacterial responses in the razor clam Sinonovacula constricta. Dev. Comp. Immunol. 2022, 129, 104331. [Google Scholar] [CrossRef] [PubMed]
- Premachandra, H.K.A.; Elvitigala, D.A.S.; Whang, I.; Lee, J. Identification of a novel molluscan short-type peptidoglycan recognition protein in disk abalone (Haliotis discus discus) involved in host antibacterial defense. Fish Shellfish Immunol. 2014, 39, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Coteur, G.; Mellroth, P.; De Lefortery, C.; Gillan, D.; Dubois, P.; Communi, D.; Steiner, H. Peptidoglycan recognition proteins with amidase activity in early deuterostornes (Echinodermata). Dev. Comp. Immunol. 2007, 31, 790–804. [Google Scholar] [CrossRef] [PubMed]
- Li, M.F.; Zhang, M.; Wang, C.L.; Sun, L. A peptidoglycan recognition protein from Sciaenops ocellatus is a zinc amidase and a bactericide with a substrate range limited to Gram-positive bacteria. Fish Shellfish Immunol. 2012, 32, 322–330. [Google Scholar] [CrossRef]
- Ikuta, T.; Tame, A.; Saito, M.; Aoki, Y.; Nagai, Y.; Sugimura, M.; Inoue, K.; Fujikura, K.; Ohishi, K.; Maruyama, T.; et al. Identification of cells expressing two peptidoglycan recognition proteins in the gill of the vent mussel, Bathymodiolus septemdierurn. Fish Shellfish Immunol. 2019, 93, 815–822. [Google Scholar] [CrossRef]
- Troll, J.V.; Bent, E.H.; Pacquette, N.; Wier, A.M.; Goldman, W.E.; Silverman, N.; McFall-Ngai, M.J. Taming the symbiont for coexistence: A host PGRP neutralizes a bacterial symbiont toxin. Environ. Microbiol. 2010, 12, 2190–2203. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, S.; Wang, X.; Guan, X.; Wang, B.; Chen, Z.; Zhao, Z.; Sun, H.; Dong, Y.; Zhou, Z. The role of a novel secretory peptidoglycan recognition protein from the sea cucumber Apostichopus japonicus in innate immunity. Aquaculture 2022, 546, 737339. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Meng, F.; Li, S.; Xu, Q.; Qi, Z. Characterization of the ligand binding of PGRP-L in half-smooth tongue sole (Cynoglossus semilaevis) by molecular dynamics and free energy calculation. Electron. J. Biotechnol. 2018, 31, 93–99. [Google Scholar] [CrossRef]
- Zhang, G.G.; Xu, M.; Zhang, C.L.; Jia, H.X.; Zhang, H.; He, M.X.; Liu, W.G. Comparative Transcriptomic and Expression Profiles Between the Foot Muscle and Mantle Tissues in the Giant Triton Snail Charonia tritonis. Front. Physiol. 2021, 12, 632518. [Google Scholar] [CrossRef]
- Doxa, C.K.; Divanach, P.; Kentouri, M. Consumption rates and digestibility of four food items by the marine gastropod Charonia seguenzae (Aradas & Benoit, 1870). J. Exp. Mar. Biol. Ecol. 2013, 446, 10–16. [Google Scholar] [CrossRef]
- Chang, C.I.; Pili-Floury, S.; Herve, M.; Parquet, C.; Chelliah, Y.; Lemaitre, B.; Mengin-Lecreulx, D.; Deisenhofer, J. A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual L,D-carboxypeptidase activity. PLoS Biol. 2004, 2, 1293–1302. [Google Scholar] [CrossRef]
- Reiser, J.B.; Teyton, L.; Wilson, I.A. Crystal structure of the drosophila peptidoglycan recognition protein (PGRP)-SA at 1.56 angstrom resolution. J. Mol. Biol. 2004, 340, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.J.; Wang, Q.; Sundberg, E.J.; Mariuzza, R.A. Crystal structure of human peptidoglycan recognition protein S (PGRP-S) at 1.70 angstrom resolution. J. Mol. Biol. 2005, 347, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Dziarski, R.; Gupta, D. Mammalian PGRPs: Novel antibacterial proteins. Cell. Microbiol. 2006, 8, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Royet, J.; Dziarski, R. Peptidoglycan recognition proteins: Pleiotropic sensors and effectors of antimicrobial defences. Nat. Rev. Microbiol. 2007, 5, 264–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Li, X.N.; Cocklin, R.R.; Wang, M.H.; Wang, M.; Fukase, K.; Inamura, S.; Kusumoto, S.; Gupta, D.; Dziarski, R. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J. Biol. Chem. 2003, 278, 49044–49052. [Google Scholar] [CrossRef]
- Dionne, U.; Percival, L.J.; Chartier, F.J.M.; Landry, C.R.; Bisson, N. SRC homology 3 domains: Multifaceted binding modules. Trends Biochem. Sci. 2022, 47, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Li, L.; Li, S.S.C. The SH3 domain—A family of versatile peptide- and protein-recognition module. Front. Biosci. -Landmark 2008, 13, 4938–4952. [Google Scholar] [CrossRef]
- Tatarova, Z.; Brabek, J.; Rosel, D.; Novotny, M. SH3 Domain Tyrosine Phosphorylation—Sites, Role and Evolution. PLoS ONE 2012, 7, e36310. [Google Scholar] [CrossRef]
- Mayer, B.J. The discovery of modular binding domains: Building blocks of cell signalling. Nat. Rev. Mol. Cell Biol. 2015, 16, 691–698. [Google Scholar] [CrossRef]
- Ponting, C.P.; Aravind, L.; Schultz, J.; Bork, P.; Koonin, E.V. Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J. Mol. Biol. 1999, 289, 729–745. [Google Scholar] [CrossRef] [PubMed]
- Anantharaman, V.; Aravind, L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol. 2003, 4, R11. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.P.; Mengin-Lecreulx, D.; Liu, X.Q.W.; Patin, D.; Farr, C.L.; Grant, J.C.; Chiu, H.J.; Jaroszewski, L.; Knuth, M.W.; Godzik, A.; et al. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains. mBio 2015, 6, e02327-14. [Google Scholar] [CrossRef] [PubMed]
- Tamai, E.; Yoshida, H.; Sekiya, H.; Nariya, H.; Miyata, S.; Okabe, A.; Kuwahara, T.; Maki, J.; Kamitori, S. X-ray structure of a novel endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Mol. Microbiol. 2014, 92, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Yun, J.; Lim, J.-A.; Kang, D.-H.; Ryu, S. Characterization of an endolysin, LysBPS13, from a Bacillus cereus bacteriophage. FEMS Microbiol. Lett. 2012, 332, 76–83. [Google Scholar] [CrossRef]
- Klein, A.H.; Motti, C.A.; Hillberg, A.K.; Ventura, T.; Thomas-Hall, P.; Armstrong, T.; Barker, T.; Whatmore, P.; Cummins, S.F. Development and Interrogation of a Transcriptomic Resource for the Giant Triton Snail (Charonia tritonis). Mar. Biotechnol. 2021, 23, 501–515. [Google Scholar] [CrossRef]
- Ucko, M.; Colorni, A.; Dubytska, L.; Thune, R.L. Edwardsiella piscicida-like pathogen in cultured grouper. Dis. Aquat. Org. 2016, 121, 141–148. [Google Scholar] [CrossRef]
- Shen, G.M.; Shi, C.Y.; Fan, C.; Jia, D.; Wang, S.Q.; Xie, G.S.; Li, G.Y.; Mo, Z.L.; Huang, J. Isolation, identification and pathogenicity of Vibrio harveyi, the causal agent of skin ulcer disease in juvenile hybrid groupers Epinephelus fuscoguttatus x Epinephelus lanceolatus. J. Fish Dis. 2017, 40, 1351–1362. [Google Scholar] [CrossRef]
- Travers, M.-A.; Miller, K.B.; Roque, A.; Friedman, C.S. Bacterial diseases in marine bivalves. J. Invertebr. Pathol. 2015, 131, 11–31. [Google Scholar] [CrossRef]
- Yoshida, T. Streptococcosis in aquaculture. Fish Pathol. 2016, 51, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.L.; Tyagi, B.C. An eye disease in silver carp, Hypophthalmichthys molitrix, held in tropical ponds, associated with the bacterium Staphylococcus aureus. Aquaculture 1986, 55, 1–4. [Google Scholar] [CrossRef]
- Rajan, V.; Sivaraman, G.K.; Vijayan, A.; Elangovan, R.; Prendiville, A.; Bachmann, T.T. Genotypes and phenotypes of methicillin-resistant staphylococci isolated from shrimp aquaculture farms. Environ. Microbiol. Rep. 2022, 14, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.L.; Gao, T.H.; Jiang, H.H.; Qiang, F.Q.; Zhang, Y.; Pan, J. Staphylococcus aureus causes hepatopancreas browned disease and hepatopancreatic necrosis complications in Chinese mitten crab, Eriocheir sinensis. Aquac. Int. 2019, 27, 1301–1314. [Google Scholar] [CrossRef]
- Wang, H.; Huang, H.; Liu, Y.; Jiang, Z.; Li, J. Construction of predictive model for the growth of Staphylococcus aureus in bread shrimp. Guangdong Agric. Sci. 2014, 41, 104–108. [Google Scholar]
- Wu, X.; Su, Y.-C. Growth of Staphylococcus aureus and enterotoxin production in pre-cooked tuna meat. Food Control 2014, 42, 63–70. [Google Scholar] [CrossRef]
- Liu, B.; Gao, Q.; Zhang, X.; Chen, H.; Zhang, Y.; Sun, Y.; Yang, S.; Chen, C. CsrA Regulates Swarming Motility and Carbohydrate and Amino Acid Metabolism in Vibrio alginolyticus. Microorganisms 2021, 9, 2383. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Liu, B.; Fang, J.; Chen, H.; Sun, Y.; Yang, S.; Gao, Q.; Zhang, Y.; Chen, C. GcvB Regulon Revealed by Transcriptomic and Proteomic Analysis in Vibrio alginolyticus. Int. J. Mol. Sci. 2022, 23, 9399. [Google Scholar] [CrossRef]
- He, X.C.; Zhang, Y.; Yu, Z.N. An Mpeg (macrophage expressed gene) from the Pacific oyster Crassostrea gigas: Molecular characterization and gene expression. Fish Shellfish Immunol. 2011, 30, 870–876. [Google Scholar] [CrossRef]
Primers | Sequence (5′-3′) |
---|---|
For ORF cloning | |
Ct-PGRP-S1-F | ATGCATCTGGCCATCATTCTG |
Ct-PGRP-S1-R | GGTACCATAACGATGCAACG |
For qPCR | |
QCt-PGRP-S1-F | CAGTGGCAAGTTCTCTGCAG |
QCt-PGRP-S1-R | CTCTCACCAATAACTGCGCC |
Q18S-F | ATGGTCAGAACTACGACGGTAT |
Q18S-R | GTATTGCGGTGTTAGAGGTGAA |
For recombinant Ct-PGRP-S1 protein construction | |
pET28b-F | CACCACCACCACCACCAC |
pET28b-R | GGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTC |
Ct-PGRP-S1-orf_F | ctttaagaaggagatataccATGCATCTGGCCATCATTC |
Ct-PGRP-S1-orf_F | cagtggtggtggtggtggtgCGCACCATTATACAGCGC |
pET28b-check-F | AAGTGGCGAGCCCGATCTTC |
pET28b-check-R | CTAGGGCGCTGGCAAGTGTA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Liu, B.; Zhang, G.; Jia, H.; Zhang, Y.; Cen, X.; Yao, G.; He, M. Molecular and Functional Characterization of a Short-Type Peptidoglycan Recognition Protein, Ct-PGRP-S1 in the Giant Triton Snail Charonia tritonis. Int. J. Mol. Sci. 2022, 23, 11062. https://doi.org/10.3390/ijms231911062
Liu W, Liu B, Zhang G, Jia H, Zhang Y, Cen X, Yao G, He M. Molecular and Functional Characterization of a Short-Type Peptidoglycan Recognition Protein, Ct-PGRP-S1 in the Giant Triton Snail Charonia tritonis. International Journal of Molecular Sciences. 2022; 23(19):11062. https://doi.org/10.3390/ijms231911062
Chicago/Turabian StyleLiu, Wenguang, Bing Liu, Gege Zhang, Huixia Jia, Yang Zhang, Xitong Cen, Gaoyou Yao, and Maoxian He. 2022. "Molecular and Functional Characterization of a Short-Type Peptidoglycan Recognition Protein, Ct-PGRP-S1 in the Giant Triton Snail Charonia tritonis" International Journal of Molecular Sciences 23, no. 19: 11062. https://doi.org/10.3390/ijms231911062
APA StyleLiu, W., Liu, B., Zhang, G., Jia, H., Zhang, Y., Cen, X., Yao, G., & He, M. (2022). Molecular and Functional Characterization of a Short-Type Peptidoglycan Recognition Protein, Ct-PGRP-S1 in the Giant Triton Snail Charonia tritonis. International Journal of Molecular Sciences, 23(19), 11062. https://doi.org/10.3390/ijms231911062