Synthesis of Novel α-Trifluoroanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Target Compounds
2.2. Greenhouse Herbicidal Activity Assays
2.3. Analysis of In Vitro PPO Inhibitory Activity
2.4. Docking Analysis
3. Materials and Methods
3.1. Instrumentation
3.2. Synthesis
3.2.1. General Approach to the Synthesis of Compounds 3a–3i
3.2.2. General Approach to the Synthesis of Compounds 5l–5r, 6l–6r
3.2.3. General Approach to Synthesis of Compounds 7a–7r
3.3. Herbicidal Activities Assay
3.3.1. Herbicidal Activities Glasshouse Assay
3.3.2. Weed Spectrum and Crop Injury Tests
3.3.3. Herbicidal Activities Glasshouse Assay against Abutilon theophrasti and Amaranthus retroflexus
3.4. In Vitro Analysis of NtPPO Inhibitory Activity
3.5. Molecular Docking Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartucca, M.L.; Di Michele, A.; Del Buono, D. Interference of three herbicides on iron acquisition in maize plants. Chemosphere 2018, 206, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Shrestha, S.; Kunwar, S.; Tseng, T.M. Crop diversification for improved weed management: A review. Agriculture 2021, 11, 461. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/news/story/en/item/280489/icode/ (accessed on 5 December 2021).
- Gao, Y.-Q.; Li, L.-L.; Chen, H.; Li, J.; Song, Z.-Q.; Shang, S.-B.; Song, J.; Wang, Z.-D.; Xiao, G.-M. High value-added application of rosin as a potential renewable source for the synthesis of acrylopimaric acid-based botanical herbicides. Ind. Crops Prod. 2015, 78, 131–140. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Taft, R.W. A survey of hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
- Leo, A.; Hansch, C.; Elkins, D. Partition coefficients and their uses. Chem. Rev. 1971, 71, 525–616. [Google Scholar] [CrossRef]
- Annis, G.D.; Barnette, W.E.; McCann, S.F.; Wing, K.D. Preparation of Indenooxadiazine Carboxamides as Arthropodicides. WO Patent WO9211249, 9 July 1992. [Google Scholar]
- Sirrenberg, W.; Klauke, E.; Hammann, I.; Stendel, W. Substituted N-phenyl-N’-benzoylureas and Their Use as Insecticides. DE Patent DE2601780, 19 January 1977. [Google Scholar]
- Takagi, K.; Ohtani, T.; Nishida, T.; Hamaguchi, H.; Nishimatsu, T.; Kanaoka, A. Preparation of Phenylhydrazine Carboxamide Derivatives as Insecticides. EP Patent EP462456A1, 27 December 1991. [Google Scholar]
- Obata, T.; Fujii, K.; Ooka, A.; Yamanaka, Y. Preparation of 4-(phenethylamino)pyrimidines as Pesticides. EP Patent EP665225A1, 2 August 1995. [Google Scholar]
- Yamamoto, K.; Horikoshi, R.; Oyama, K.; Kurihara, H.; Shimano, S.; Miyake, T.; Hotta, H.; Iwabuchi, J. Preparation of Quinoline Derivatives as Insecticides, Acaricides, and Nematocides. WO Patent WO2006013896, 9 February 2006. [Google Scholar]
- Mueller, K.H.; Koenig, K.; Kluth, J.; Luerssen, K.; Santel, H.J.; Schmidt, R.R. Preparation of α-sulfonylaminocarbonyl-1,2,4-triazol-3-ones as Herbicides. EP Patent EP0507171, 7 October 1992. [Google Scholar]
- Alt, G.H.; Pratt, J.K.; Phillips, W.G.; Srouji, G.H. Preparation of thiazole-5-carboxanilides as Agrochemical Fungicides. U.S. Patent US5045554, 6 June 1991. [Google Scholar]
- Benefiel, R.L.; Krumkalns, E.V. Novel fluoroalkoxyphenyl-substituted Nitrogen Heterocycles. U.S. Patent US4002628, 19 January 1977. [Google Scholar]
- Xue, N.; Zhou, Y.-H.; Wang, G.-W.; Miao, W.-R.; Qu, J.-P. Syntheses and herbicidal activity of pyrazolyl benzoxazole derivatives. J. Heterocyclic Chem. 2010, 47, 15–21. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Chen, Y.-H.; Miao, W.-R.; Qu, J.-P. Synthesis, structures, and herbicidal activity of isoxazole derivatives. J. Heterocyclic Chem. 2010, 47, 1310–1316. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y.; Liu, X.-H.; Li, Y.-H.; Song, H.-B.; Li, Z.-M. Synthesis, herbicidal activities and comparative molecular field analysis study of some novel triazolinone derivatives. Chem. Biol. Drug Des. 2010, 73, 674–681. [Google Scholar] [CrossRef]
- Hu, F.-Z.; Cheng, X.-X.; Niu, Z.-X.; Yang, X.-B.; Li, D.; Wan, L.; Li, J.-X.; Liu, B.; Zou, X.-M.; Yang, H.-Z.; et al. Synthesis and herbicidal activities of 3-(4-chloro-2-fluoro-5- substituted phenyl)benzo[d][1,2,3]triazin-4(3H)-one derivatives. J. Heterocyclic Chem. 2015, 52, 793–801. [Google Scholar] [CrossRef]
- Liu, W.-J.; Wang, Z.-C.; Xu, F.-B.; Li, Q.-S.; Wang, H.-X.; Bian, Q.; Hu, F.-Z. Synthesis and activity investigation of novel 1H-purin-6(9H)-one and 3H-imidazo[4,5-d][1,2,3]triazin-4(7H)-one derivatives. Omega 2019, 4, 15742–15753. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-C.; Guan, A.-Y.; Wu, Q.; Cui, D.-L.; Liu, C.-L. Design, synthesis and herbicidal evaluation of novel uracil derivatives containing an isoxazoline moiety. Pest Manag. Sci. 2020, 76, 3395–3402. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Li, X.-T.; Ren, D.; Sun, S.-S.; Huo, J.-Q.; Wang, Y.-E.; Chen, L.; Zhang, J.-L. Design and synthesis of N-phenyl phthalimides as potent protoporphyrinogen oxidase inhibitors. Molecules 2019, 24, 4363. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, P.; Hampreche, G.; Puhl, M.; Westphalen, K.O.; Zagaret, C. Synthesis and herbicidal activity of phenylpyridines—A new lead. Chimia Int. J. Chem. 2003, 57, 715–719. [Google Scholar] [CrossRef]
- Schaefer, P.; Hampreche, G.; Heistracher, E.; Koenig, H.; Klintz, R.; Muenster, P.; Rang, H.; Westphalen, K.O.; Gerber, M.; Walter, H. Preparation of Substituted 2-phenylpyriden Herbicides. DE Patent DE4323916A1, 19 January 1995. [Google Scholar]
- Xie, Y.; Chi, H.W.; Guan, A.Y.; Liu, C.L.; Ma, H.J.; Cui, D.L. Design, synthesis, and herbicidal activity of novel substituted 3-(pyridin-2-yl)benzenesulfonamide derivatives. J. Agric. Food Chem. 2014, 62, 12491–12496. [Google Scholar] [CrossRef]
- Xie, Y.; Peng, W.; Ding, F.; Liu, S.J.; Ma, H.J.; Liu, C.L. Quantitative structure-activity relationship (QSAR) directed the discovery of 3-(pyridin-2-yl)benzenesulfonamide derivatives as novel herbicidal agents. Pest Manag. Sci. 2017, 74, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chi, H.W.; Guan, A.Y.; Liu, C.L.; Ma, H.J.; Cui, D.L. Synthesis and evaluation of substituted 3-(pyridin-2-yl)-benzenesulfonamide derivatives as potent herbicidal agents. Bioorg. Med. Chem. 2016, 24, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Kasugai, H.; Matsuya, K.; Sato, K.; Ohta, H.; Nakazawa, M. Tetrahydrophthalimide Derivatives for Weed Control. JP Patent JP48103736, 26 December 1973. [Google Scholar]
- Wakabayashi, O.; Matsuya, K.; Ohta, H.; Jikihara, T.; Watanabe, I. N-Aryl-3-substituted-3,4,5,6-tetrahydrophthalimides as Herbicides. JP Patent JP50142730, 26 December 1975. [Google Scholar]
- Theodoridis, G. 2-[(4-Triazolonylphenoxymethyl)phenoxy]alkanoate Herbicides. U.S. Patent US5262390, 16 November 1993. [Google Scholar]
- Cao, Y.Y.; Mao, D.J.; Wang, W.W.; Du, X.H. Kresoxim-methyl derivatives: Synthesis and herbicidal activities of (pyridinylphenoxymethylene)phenyl methoxyiminoacetates. J. Agric. Food Chem. 2017, 65, 6114–6121. [Google Scholar] [CrossRef]
- Sri Ramya, P.V.; Angapelly, S.; Guntuku, L.; Singh Digwal, C.; Nagendra Babu, B.; Naidu, V.G.M.; Kamal, A. Synthesis and biological evaluation of curcumin inspired indole analogues as tubulin polymerization inhibitors. Eur. J. Med. Chem. 2017, 127, 100–114. [Google Scholar] [CrossRef]
- Cao, Y.-Y.; Cai, Z.-F.; Zhang, W.-L.; Du, X.-H. Synthesis and herbicidal activity of novel β-methoxyacrylate derivatives containing a substituted phenylpyridine moiety. Chem. Res. Chin. Univ. 2019, 35, 1008–1011. [Google Scholar] [CrossRef]
- Cao, Y.Y.; Wang, W.W.; Du, X.H. Synthesis, crystal structure and herbicidal activity of methyl (E)-α-(methoxyimino)-2-((4-(3-chloro-5-(trifluoromethyl)-pyridine-2-yl)phenoxy)methyl)benzeneacetate. Chin. J. Struct. Chem. 2019, 38, 1123–1128. [Google Scholar]
- Cai, Z.-F.; Zhang, W.-L.; Cao, Y.-Y.; Du, X.-H. Synthesis and herbicidal activities of 2-phenylpyridine compounds containing alkenyl moieties. J. Heterocyclic Chem. 2022, 59, 1247–1252. [Google Scholar] [CrossRef]
- Shepherd, M.; Dailey, H.A. A continuous fluorimetric assay for protoporphyrinogen oxidase by monitoring porphyrin accumulation. Anal. Biochem. 2005, 344, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.W.; Zhang, H.; Yu, S.Y.; Zhang, R.B.; Liang, L.; Wang, X.; Yang, H.Z.; Xi, Z. Discovery of a potent thieno[2,3-d]pyrimidine-2,4-dione-Based Protoporphyrinogen IX Oxidase Inhibitor through an In Silico Structure-Guided Optimization Approach. J. Agric. Food Chem. 2021, 69, 14115–14125. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-H.; Yu, W.; Min, L.-J.; Wedge, D.E.; Tan, C.-X.; Weng, J.-Q.; Wu, H.-K.; Cantrell, C.L.; Bajsa-Hirschel, J.; Hua, X.-W.; et al. Synthesis and pesticidal activities of new quinoxalines. J. Agric. Food Chem. 2020, 68, 7324–7332. [Google Scholar] [CrossRef]
- Lang, P.T.; Brozell, S.R.; Mukherjee, S.; Pettersen, E.T.; Meng, E.C.; Thomas, V.; Rizzo, R.C.; Case, D.A.; James, T.L.; Kuntz, I.D. DOCK 6: Combining techniques to model RNA-small molecule complexes. RNA 2009, 15, 1219–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Chemical Structure | Herbicidal Activity (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | E. crusgalli | D. sanguinalis | S. viridis | A. theophrasti | A. retroflexus | E. prostrate | |
7a | H | H | H | H | 90 ± 5 | 100 ± 0 | 95 ± 3 | 100 ± 0 | 100 ± 0 | 100 ± 0 |
7b | CH3 | H | H | H | 50 ± 4 | 80 ± 2 | 80 ± 4 | 100 ± 0 | 100 ± 0 | 90 ± 5 |
7c | H | F | H | H | 40 ± 4 | 90 ± 2 | 80 ± 5 | 100 ± 0 | 100 ± 0 | 90 ± 2 |
7d | H | Cl | H | H | 10 ± 2 | 20 ± 1 | 20 ± 4 | 100 ± 0 | 100 ± 0 | 70 ± 5 |
7e | H | NO2 | H | H | 0 ± 0 | 0 ± 0 | 0 ± 0 | 15 ± 1 | 70 ± 2 | 60 ± 4 |
7f | H | CF3 | H | H | 0 ± 0 | 0 ± 0 | 0 ± 0 | 30 ± 3 | 100 ± 0 | 30 ± 2 |
7g | H | CH3 | H | H | 0 ± 0 | 0 ± 0 | 0 ± 0 | 30 ± 4 | 20 ± 2 | 20 ± 5 |
7h | H | CN | H | H | 0 ± 0 | 10 ± 3 | 10 ± 2 | 60 ± 7 | 100 ± 0 | 20 ± 3 |
7i | F | F | H | H | 60 ± 2 | 100 ± 0 | 85 ± 5 | 100 ± 0 | 100 ± 0 | 100 ± 0 |
7j | H | H | H | Cl | 80 ± 3 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 90 ± 4 |
7k | H | H | CH3O | H | 40 ± 2 | 80 ± 4 | 80 ± 1 | 100 ± 0 | 100 ± 0 | 98 ± 1 |
7l | H | H | CH3 | H | 30 ± 2 | 75 ± 4 | 75 ± 6 | 100 ± 0 | 98 ± 1 | 100 ± 0 |
7m | H | H | H | F | 70 ± 5 | 80 ± 4 | 40 ± 3 | 100 ± 0 | 100 ± 0 | 80 ± 8 |
7n | H | H | F | H | 70 ± 6 | 100 ± 0 | 80 ± 5 | 100 ± 0 | 100 ± 0 | 95 ± 3 |
7o | H | H | H | Br | 60 ± 1 | 60 ± 2 | 50 ±3 | 100 ± 0 | 90 ± 5 | 80 ± 1 |
7p | H | H | H | I | 0 ± 0 | 30 ± 4 | 50 ± 2 | 100 ± 0 | 95 ± 3 | 98 ± 2 |
7q | H | H | H | cyclopropyl | 40 ± 7 | 30 ± 2 | 60 ± 5 | 90 ± 4 | 100 ± 0 | 90 ± 5 |
7r | H | H | H | NO2 | 0 ± 0 | 0 ± 0 | 60 ± 2 | 100 ± 0 | 100 ± 0 | 100 ± 0 |
fomesafen | / | 68 ± 4 | 76 ± 3 | 78 ± 5 | 98 ± 2 | 100 ± 0 | 76 ± 5 |
Compound | Dosage/(g a.i./hm2) | E. crusgalli | D. sanguinalis | S. viridis | A. theophrasti | A. retroflexus | E. prostrate |
---|---|---|---|---|---|---|---|
7a | 37.5 | 65 ± 2 | 80 ± 1 | 85 ± 0 | 100 ± 0 | 100 ± 0 | 80 ± 5 |
75 | 75 ± 1 | 90 ± 4 | 90 ± 2 | 100 ± 0 | 100 ± 0 | 85 ± 2 | |
7i | 37.5 | 20 ± 2 | 60 ± 3 | 70 ± 3 | 90 ± 1 | 100 ± 0 | 90 ± 5 |
75 | 50 ± 3 | 95 ± 1 | 90 ± 5 | 100 ± 0 | 100 ± 0 | 95 ± 3 | |
7j | 37.5 | 20 ± 4 | 90 ± 2 | 30 ± 6 | 100 ± 0 | 100 ± 0 | 80 ± 1 |
75 | 40 ± 1 | 90 ± 4 | 50 ± 2 | 100 ± 0 | 100 ± 0 | 90 ± 3 | |
7k | 37.5 | 0 ± 0 | 30 ± 3 | 10 ± 1 | 100 ± 0 | 100 ± 0 | 60 ± 2 |
75 | 0 ± 0 | 50 ± 1 | 50 ± 2 | 100 ± 0 | 100 ± 0 | 80 ± 5 | |
fomesafen | 37.5 | 47 ± 3 | 44 ± 2 | 56 ± 4 | 90 ± 1 | 87 ± 5 | 55 ± 2 |
75 | 63 ± 1 | 69 ± 5 | 67 ± 3 | 92 ± 2 | 95 ± 3 | 67 ± 4 |
Compound | A. theophrasti | A. retroflexus |
---|---|---|
ED50 (g a.i./hm2) | ED50 (g a.i./hm2) | |
7a | 13.32 | 5.48 |
fomesafen | 36.39 | 10.09 |
Compound | IC50 (nM) |
---|---|
7a | 9.4 ± 2.2 |
fomesafen | 110.5 ± 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Cao, Y.; Du, X. Synthesis of Novel α-Trifluoroanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. Int. J. Mol. Sci. 2022, 23, 11083. https://doi.org/10.3390/ijms231911083
Cai Z, Cao Y, Du X. Synthesis of Novel α-Trifluoroanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. International Journal of Molecular Sciences. 2022; 23(19):11083. https://doi.org/10.3390/ijms231911083
Chicago/Turabian StyleCai, Zengfei, Yangyang Cao, and Xiaohua Du. 2022. "Synthesis of Novel α-Trifluoroanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity" International Journal of Molecular Sciences 23, no. 19: 11083. https://doi.org/10.3390/ijms231911083
APA StyleCai, Z., Cao, Y., & Du, X. (2022). Synthesis of Novel α-Trifluoroanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. International Journal of Molecular Sciences, 23(19), 11083. https://doi.org/10.3390/ijms231911083