Spatial Reorganization of Liquid Crystalline Domains of Red Blood Cells in Type 2 Diabetic Patients with Peripheral Artery Disease
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Population under Study
2.2. Evaluation of RBC Plasma Membrane Fluidity
2.3. Characterisation of Sub-Micrometric LC Domains in RBC Membrane
3. Discussion
4. Materials and Methods
4.1. Patients’ Recruitment
4.2. Sample Preparation and Measurements
4.3. Isolation and Analysis of RBC Membrane LC Domains
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armstrong, E.J.; Waltenberger, J.; Rogers, J.H. Percutaneous Coronary Intervention in Patients with Diabetes: Current Concepts and Future Directions. J. Diabetes Sci. Technol. 2014, 8, 581–589. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.J.; Rutledge, J.C.; Rogers, J.H. Coronary Artery Revascularization in Patients with Diabetes Mellitus. Circulation 2013, 128, 1675–1685. [Google Scholar] [CrossRef]
- American Diabetes Association Peripheral Arterial Disease in People With Diabetes. Diabetes Care 2003, 26, 3333–3341. [CrossRef] [PubMed]
- Vogt, M.T.; Cauley, J.A.; Kuller, L.H.; Nevitt, M.C. Functional Status and Mobility among Elderly Women with Lower Extremity Arterial Disease: The Study of Osteoporotic Fractures. J. Am. Geriatr. Soc. 1994, 42, 923–929. [Google Scholar] [CrossRef]
- Jeffcoate, W.J.; Chipchase, S.Y.; Ince, P.; Game, F.L. Assessing the Outcome of the Management of Diabetic Foot Ulcers Using Ulcer-Related and Person-Related Measures. Diabetes Care 2006, 29, 1784–1787. [Google Scholar] [CrossRef]
- Prompers, L.; Huijberts, M.; Apelqvist, J.; Jude, E.; Piaggesi, A.; Bakker, K.; Edmonds, M.; Holstein, P.; Jirkovska, A.; Mauricio, D.; et al. High Prevalence of Ischaemia, Infection and Serious Comorbidity in Patients with Diabetic Foot Disease in Europe. Baseline Results from the Eurodiale Study. Diabetologia 2007, 50, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, A.T.; Hartman, L.; Town, R.J.; Virnig, B.A. National Health Care Costs of Peripheral Arterial Disease in the Medicare Population. Vasc. Med. 2008, 13, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Fowkes, F.G.R.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.A.; Williams, L.J.; Mensah, G.A.; et al. Comparison of Global Estimates of Prevalence and Risk Factors for Peripheral Artery Disease in 2000 and 2010: A Systematic Review and Analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef]
- MacGregor, A.S.; Price, J.F.; Hau, C.M.; Lee, A.J.; Carson, M.N.; Fowkes, F.G. Role of Systolic Blood Pressure and Plasma Triglycerides in Diabetic Peripheral Arterial Disease. The Edinburgh Artery Study. Diabetes Care 1999, 22, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Selvin, E.; Marinopoulos, S.; Berkenblit, G.; Rami, T.; Brancati, F.L.; Powe, N.R.; Golden, S.H. Meta-Analysis: Glycosylated Hemoglobin and Cardiovascular Disease in Diabetes Mellitus. Ann. Intern. Med. 2004, 141, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark. Insights 2016, 11, 95–104. [Google Scholar] [CrossRef] [PubMed]
- The Diabetes Control and Complications Trial Research Group Clustering of Long-Term Complications in Families With Diabetes in the Diabetes Control and Complications Trial. Diabetes 1997, 46, 1829–1839. [CrossRef]
- Bianchetti, G.; Spirito, M.D.; Maulucci, G. Unsupervised Clustering of Multiparametric Fluorescent Images Extends the Spectrum of Detectable Cell Membrane Phases with Sub-Micrometric Resolution. Biomed. Opt. Express 2020, 11, 5728–5744. [Google Scholar] [CrossRef] [PubMed]
- Bianchetti, G.; Viti, L.; Scupola, A.; Di Leo, M.; Tartaglione, L.; Flex, A.; De Spirito, M.; Pitocco, D.; Maulucci, G. Erythrocyte Membrane Fluidity as a Marker of Diabetic Retinopathy in Type 1 Diabetes Mellitus. Eur. J. Clin. Investig. 2021, 51, e13455. [Google Scholar] [CrossRef] [PubMed]
- van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane Lipids: Where They Are and How They Behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef]
- Marsh, D. Handbook of Lipid Bilayers; CRC Press: Boca Raton, FL, USA, 2013; ISBN 978-0-429-19312-5. [Google Scholar]
- Lenaz, G. Lipid Fluidity and Membrane Protein Dynamics. Biosci. Rep. 1987, 7, 823–837. [Google Scholar] [CrossRef]
- Maulucci, G.; Cohen, O.; Daniel, B.; Sansone, A.; Petropoulou, P.I.; Filou, S.; Spyridonidis, A.; Pani, G.; De Spirito, M.; Chatgilialoglu, C.; et al. Fatty Acid-Related Modulations of Membrane Fluidity in Cells: Detection and Implications. Free Radic. Res. 2016, 50, S40–S50. [Google Scholar] [CrossRef] [PubMed]
- Bianchetti, G.; Di Giacinto, F.; Pitocco, D.; Rizzi, A.; Rizzo, G.E.; De Leva, F.; Flex, A.; di Stasio, E.; Ciasca, G.; De Spirito, M.; et al. Red Blood Cells Membrane Micropolarity as a Novel Diagnostic Indicator of Type 1 and Type 2 Diabetes. Anal. Chim. Acta X 2019, 3, 100030. [Google Scholar] [CrossRef]
- Maulucci, G.; Cordelli, E.; Rizzi, A.; De Leva, F.; Papi, M.; Ciasca, G.; Samengo, D.; Pani, G.; Pitocco, D.; Soda, P.; et al. Phase Separation of the Plasma Membrane in Human Red Blood Cells as a Potential Tool for Diagnosis and Progression Monitoring of Type 1 Diabetes Mellitus. PLoS ONE 2017, 12, e0184109. [Google Scholar] [CrossRef] [Green Version]
- Gwozdzinski, K.; Pieniazek, A.; Tabaczar, S.; Jegier, A.; Brzeszczynska, J. Investigation of Oxidative Stress Parameters in Different Lifespan Erythrocyte Fractions in Young Untrained Men after Acute Exercise. Exp. Physiol. 2017, 102, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Diederich, L.; Suvorava, T.; Sansone, R.; Keller, T.C.S.; Barbarino, F.; Sutton, T.R.; Kramer, C.M.; Lückstädt, W.; Isakson, B.E.; Gohlke, H.; et al. On the Effects of Reactive Oxygen Species and Nitric Oxide on Red Blood Cell Deformability. Front. Physiol. 2018, 9, 332. [Google Scholar] [CrossRef]
- Oresic, M.; Simell, S.; Sysi-Aho, M.; Näntö-Salonen, K.; Seppänen-Laakso, T.; Parikka, V.; Katajamaa, M.; Hekkala, A.; Mattila, I.; Keskinen, P.; et al. Dysregulation of Lipid and Amino Acid Metabolism Precedes Islet Autoimmunity in Children Who Later Progress to Type 1 Diabetes. J. Exp. Med. 2008, 205, 2975–2984. [Google Scholar] [CrossRef] [PubMed]
- Susztak, K.; Ciccone, E.; McCue, P.; Sharma, K.; Böttinger, E.P. Multiple Metabolic Hits Converge on CD36 as Novel Mediator of Tubular Epithelial Apoptosis in Diabetic Nephropathy. PLoS Med. 2005, 2, e45. [Google Scholar] [CrossRef]
- Lopez-Carmona, M.D.; Plaza-Seron, M.C.; Vargas-Candela, A.; Tinahones, F.J.; Gomez-Huelgas, R.; Bernal-Lopez, M.R. CD36 Overexpression: A Possible Etiopathogenic Mechanism of Atherosclerosis in Patients with Prediabetes and Diabetes. Diabetol. Metab. Syndr. 2017, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Yeung, D.C.Y.; Xu, A.; Tso, A.W.K.; Chow, W.S.; Wat, N.M.S.; Fong, C.H.Y.; Tam, S.; Sham, P.C.; Lam, K.S.L. Circulating Levels of Adipocyte and Epidermal Fatty Acid–Binding Proteins in Relation to Nephropathy Staging and Macrovascular Complications in Type 2 Diabetic Patients. Diabetes Care 2009, 32, 132–134. [Google Scholar] [CrossRef]
- Turpin, C.; Catan, A.; Meilhac, O.; Bourdon, E.; Canonne-Hergaux, F.; Rondeau, P. Erythrocytes: Central Actors in Multiple Scenes of Atherosclerosis. Int. J. Mol. Sci. 2021, 22, 5843. [Google Scholar] [CrossRef]
- Perona, J.S. Membrane Lipid Alterations in the Metabolic Syndrome and the Role of Dietary Oils. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Bagatolli, L.A.; Gratton, E. Two Photon Fluorescence Microscopy of Coexisting Lipid Domains in Giant Unilamellar Vesicles of Binary Phospholipid Mixtures. Biophys. J. 2000, 78, 290–305. [Google Scholar] [CrossRef]
- Jacob, R.F.; Mason, R.P. Lipid Peroxidation Induces Cholesterol Domain Formation in Model Membranes*. J. Biol. Chem. 2005, 280, 39380–39387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.-D.; Zhao, H.-B. Effects of Intense Noise Exposure on the Outer Hair Cell Plasma Membrane Fluidity. Hear. Res. 2007, 226, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Heberle, F.A.; Feigenson, G.W. Phase Separation in Lipid Membranes. Cold Spring Harb. Perspect. Biol. 2011, 3, a004630. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, J.; Davis, J.H.; Sharom, F.J. Fluorescent Probe Partitioning in GUVs of Binary Phospholipid Mixtures: Implications for Interpreting Phase Behavior. Biochim. Biophys. Acta 2012, 1818, 19–26. [Google Scholar] [CrossRef]
- Maulucci, G.; Troiani, D.; Eramo, S.L.M.; Paciello, F.; Podda, M.V.; Paludetti, G.; Papi, M.; Maiorana, A.; Palmieri, V.; De Spirito, M.; et al. Time Evolution of Noise Induced Oxidation in Outer Hair Cells: Role of NAD(P)H and Plasma Membrane Fluidity. Biochim. Biophys. Acta 2014, 1840, 2192–2202. [Google Scholar] [CrossRef]
- Pilon, M. Revisiting the Membrane-Centric View of Diabetes. Lipids Health Dis. 2016, 15, 167. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, L.F.; Pino, J.A.; Soto-Arriaza, M.A.; Cuevas, F.J.; Sánchez, S.; Sotomayor, C.P. Differential Dynamic and Structural Behavior of Lipid-Cholesterol Domains in Model Membranes. PLoS ONE 2012, 7, e40254. [Google Scholar] [CrossRef]
- Kamada, T.; Otsuji, S. Lower Levels of Erythrocyte Membrane Fluidity in Diabetic Patients: A Spin Label Study. Diabetes 1983, 32, 585–591. [Google Scholar] [CrossRef]
- Bianchetti, G.; Azoulay-Ginsburg, S.; Keshet-Levy, N.Y.; Malka, A.; Zilber, S.; Korshin, E.E.; Sasson, S.; De Spirito, M.; Gruzman, A.; Maulucci, G. Investigation of the Membrane Fluidity Regulation of Fatty Acid Intracellular Distribution by Fluorescence Lifetime Imaging of Novel Polarity Sensitive Fluorescent Derivatives. Int. J. Mol. Sci. 2021, 22, 3106. [Google Scholar] [CrossRef]
- Bagatolli, L. LAURDAN Fluorescence Properties in Membranes: A Journey from the Fluorometer to the Microscope. In Fluorescent Methods to Study Biological Membranes; Springer: Berlin/Heidelberg, Germany, 2012; Volume 13, pp. 3–35. ISBN 978-3-642-33127-5. [Google Scholar]
- Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.N.; Kausler, B.X.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M.; et al. Ilastik: Interactive Machine Learning for (Bio)Image Analysis. Nat. Methods 2019, 16, 1226–1232. [Google Scholar] [CrossRef]
Variable | CTRL, N = 10 1 | DM, N = 12 1 | DM+PAD, N = 15 1 | p-Value 2 | Post-hoc Comparison (p-adj 3) | ||
---|---|---|---|---|---|---|---|
CTRL-DM | CTRL-PAD | DM-PAD | |||||
Duration of diabetes (y) | - | 19.6 ± 6.0 | 24.3 ± 7.0 | <0.0001 | <0.0001 (****) | <0.0001 (****) | 0.08 |
Age (y) | 65.8 ± 8.3 | 72.0 ± 6.5 | 72.9 ± 9.0 | 0.09 | |||
HbA1c (%) | 5.6 ± 0.3 | 6.5 ± 0.7 | 7.3 ± 1.6 | 0.006 | 0.003 (**) | 0.01 (*) | 0.15 |
BMI (kg/m2) | 26.5 ± 3.2 | 24.0 ± 4.8 | 26.2 ± 8.0 | 0.53 | |||
Total Cholesterol (mg/dL) | 203.0 ± 37.6 | 138.3 ± 52.8 | 137.1 ± 43.6 | 0.002 | 0.009 (**) | 0.002 (**) | 0.95 |
HDL (mg/dL) | 64.7 ± 21.2 | 37.5 ± 15.6 | 41.4 ± 12.4 | 0.001 | 0.008 (**) | 0.008 (**) | 0.50 |
LDL (mg/dL) | 111.5 ± 23.0 | 72.7 ± 43.3 | 70.1 ± 39.9 | 0.01 | 0.03 (*) | 0.01 (*) | 0.88 |
Triglycerides (mg/dL) | 118.6 ± 83.2 | 125.3 ± 107.4 | 123.8 ± 36.5 | 0.98 | |||
Creatinine (mg/dL) | 0.73 ± 0.12 | 0.80 ± 0.35 | 1.92 ± 2.36 | 0.16 | |||
Smoke | 0.91 | ||||||
Yes | 0/10 (0%) | 2/12 (17%) | 1/15 (7%) | ||||
No | 10/10 (100%) | 10/12 (83%) | 14/15 (93%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchetti, G.; Rizzo, G.E.; Serantoni, C.; Abeltino, A.; Rizzi, A.; Tartaglione, L.; Caputo, S.; Flex, A.; De Spirito, M.; Pitocco, D.; et al. Spatial Reorganization of Liquid Crystalline Domains of Red Blood Cells in Type 2 Diabetic Patients with Peripheral Artery Disease. Int. J. Mol. Sci. 2022, 23, 11126. https://doi.org/10.3390/ijms231911126
Bianchetti G, Rizzo GE, Serantoni C, Abeltino A, Rizzi A, Tartaglione L, Caputo S, Flex A, De Spirito M, Pitocco D, et al. Spatial Reorganization of Liquid Crystalline Domains of Red Blood Cells in Type 2 Diabetic Patients with Peripheral Artery Disease. International Journal of Molecular Sciences. 2022; 23(19):11126. https://doi.org/10.3390/ijms231911126
Chicago/Turabian StyleBianchetti, Giada, Gaetano Emanuele Rizzo, Cassandra Serantoni, Alessio Abeltino, Alessandro Rizzi, Linda Tartaglione, Salvatore Caputo, Andrea Flex, Marco De Spirito, Dario Pitocco, and et al. 2022. "Spatial Reorganization of Liquid Crystalline Domains of Red Blood Cells in Type 2 Diabetic Patients with Peripheral Artery Disease" International Journal of Molecular Sciences 23, no. 19: 11126. https://doi.org/10.3390/ijms231911126
APA StyleBianchetti, G., Rizzo, G. E., Serantoni, C., Abeltino, A., Rizzi, A., Tartaglione, L., Caputo, S., Flex, A., De Spirito, M., Pitocco, D., & Maulucci, G. (2022). Spatial Reorganization of Liquid Crystalline Domains of Red Blood Cells in Type 2 Diabetic Patients with Peripheral Artery Disease. International Journal of Molecular Sciences, 23(19), 11126. https://doi.org/10.3390/ijms231911126