Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, SARS-CoV-2 Variants of Concern and Monkeypox Virus
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Ligands and Receptors Executed
4.1.1. Ligands
4.1.2. Receptors
4.2. Modeling and Preparation of Selected Macromolecules
4.3. Molecular Docking Analysis
4.4. Estimation of Binding Free Energy/Docking Energy and Determination of the Root Mean Square Distance
4.5. Simulation of Molecular Ligand-Receptor Interactions
4.6. Mutation and Structure Modeling of Bacterial AMPs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.; Delius, B.; DeLeo, G.A.; Hudson, P.J.; Jouanard, N.; Nguyen, K.N.; Ostfeld, R.S.; et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef]
- Piret, J.; Boivin, G. Pandemics Throughout History. Front. Microbiol. 2021, 11, 631736. [Google Scholar] [CrossRef]
- Grubaugh, N.D.; Ladner, J.T.; Lemey, P.; Pybus, O.G.; Rambaut, A.; Holmes, E.C.; Andersen, K.G. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 2019, 4, 10–19. [Google Scholar] [CrossRef]
- Reperant, L.A.; Osterhaus, A.D.M.E. AIDS, Avian flu, SARS, MERS, Ebola, Zika… what next? Vaccine 2017, 35, 4470–4474. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.; Barry, M.; Memish, Z. International outbreaks of Monkeypox virus infection with no established travel: A public health concern with significant knowledge gap. Travel Med. Infect. Dis. 2022, 49, 102364. [Google Scholar] [CrossRef]
- Shao, W.; Li, X.; Goraya, M.U.; Wang, S.; Chen, J.L.; Shao, W. Evolution of Influenza A Virus by Mutation and Re-Assortment. Int. J. Mol. Sci. 2017, 18, 1650. [Google Scholar] [CrossRef]
- Van de Sandt, C.; Li, X.; Goraya, M.U.; Wang, S.; Chen, J.L. Invasion of Influenza A Viruses from Innate and Adaptive Immune Responses. Viruses 2012, 4, 1438–1476. [Google Scholar] [CrossRef]
- Wilder-Smith, A. COVID-19 in comparison with other emerging viral diseases: Risk of geographic spread via travel. Trop. Dis. Travel Med. Vaccines 2021, 7, 3. [Google Scholar] [CrossRef]
- Burrell, C.J. Epidemiology of Viral Infections. In Fenner and White’s Medical Virology; Academic Press: Cambridge, MA, USA, 2017; pp. 185–203. [Google Scholar] [CrossRef]
- Ansah, J.P.; Matchar, D.B.; Shao, W.S.L.; Low, J.G.; Pourghaderi, A.R.; Siddiqui, F.J.; Min, T.L.S.; Weiyan, A.C.; Ong, M.E.H. The effectiveness of public health interventions against COVID-19: Lessons from the Singapore experience. PLoS ONE 2021, 16, e0248742. [Google Scholar] [CrossRef]
- Bickley, S.J.; Chan, H.F.; Skali, A.; Stadelmann, D.; Torgler, B. How does globalization affect COVID-19 responses? Glob. Health 2021, 17, 57. [Google Scholar] [CrossRef]
- Adalja, A.; Inglesby, T. Broad-Spectrum Antiviral Agents: A Crucial Pandemic Tool. Expert Rev. Anti-Infect. Ther. 2019, 17, 467–470. [Google Scholar] [CrossRef]
- Hoffmann, A.R.; Guha, S.; Wu, E.; Ghimire, J.; Wang, Y.; He, J.; Garry, R.F.; Wimley, W.C. Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides. J. Virol. 2020, 94, e01682-20. [Google Scholar] [CrossRef]
- Zelikin, A.; Stellacci, F. Broad-Spectrum Antiviral Agents Based on Multivalent Inhibitors of Viral Infectivity. Adv. Healthc. Mater. 2021, 10, 2001433. [Google Scholar] [CrossRef]
- Geraghty, R.; Aliota, M.; Bonnac, L. Broad-Spectrum Antiviral Strategies and Nucleoside Analogues. Viruses 2021, 13, 667. [Google Scholar] [CrossRef]
- Artese, A.; Svicher, V.; Costa, G.; Salpini, R.; Di Maio, V.C.; Alkhatib, M.; Ambrosio, F.A.; Santoro, M.M.; Assaraf, Y.G.; Alcaro, S. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resist. Updates 2020, 3, 100721. [Google Scholar] [CrossRef]
- Mulder, K.C.; Lima, L.A.; Miranda, V.J.; Dias, S.C.; Franco, O.L. Current scenario of peptide-based drugs: The key roles of cationic antitumor and antiviral peptides. Front. Microbiol. 2013, 4, 321. [Google Scholar] [CrossRef]
- Ghildiyal, R.; Prakash, V.; Chaudhary, V.K.; Gupta, V.; Gabrani, R. Phytochemicals as Antiviral Agents: Recent Updates. In Plant-Derived Bioactives: Production, Properties and Therapeutic Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 279–295. [Google Scholar] [CrossRef]
- Balmeh, N.; Mahmoundi, S.; Fard, N.A. Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease. Inform. Med. Unlocked 2021, 23, 100515. [Google Scholar] [CrossRef]
- Murad, F.; Atta-ur-Rahman, B.K. Infectious Diseases; Bentham Science Publishers: Sharjah, United Arab Emirates, 2021. [Google Scholar]
- Saunders-Hastings, P.R.; Krewski, D. Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. Pathogens 2016, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Gao, G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 2021, 21, 73–82. [Google Scholar] [CrossRef]
- Gagnière, H.; Di Martino, P. Protein and peptide research applied to Covid-19 and SARS-CoV-2. Open Access Res. J. Biol. Pharm. 2021, 2, 27–28. [Google Scholar] [CrossRef]
- Kozakov, D.; Beglov, D.; Bohnuud, T.; Mottarella, S.E.; Xia, B.; Hall, D.R.; Vajda, S. How good is automated protein docking? Proteins Struct. Funct. Bioinform. 2013, 81, 2159–2166. [Google Scholar] [CrossRef]
- Schrödinger, L.; De Lano, W. Incentive PyMOL Software Package. 2020. Available online: https://pymol.org/2/ (accessed on 8 August 2021).
- Hiremath, S.; Kumar, H.; Nandan, M.; Mantesh, M.; Shankarappa, K.S.; Venkataravanappa, V.; Basha, C.; Reddy, C. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech 2021, 11, 44. [Google Scholar] [CrossRef]
- Shityakov, S.; Sohajda, T.; Puskás, I.; Roewer, N.; Förster, C.; Broscheit, J.A. Ionization states, cellular toxicity and molecular modeling studies of midazolam complexed with trimethyl-β-cyclodextrin. Molecules 2014, 19, 16861–16876. [Google Scholar] [CrossRef]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Tsilingiris, D.; Christodoulatos, G.S.; Karampela, I.; Dalamaga, M. Anti-viral treatment for SARS-CoV-2 infection: A race against time amidst the ongoing pandemic. Metab. Open 2021, 10, 100096. [Google Scholar] [CrossRef]
- Longet, S.; Mellors, J.; Carroll, M.W.; Tipton, T. Ebolavirus: Comparison of Survivor Immunology and Animal Models in the Search for a Correlate of Protection. Front. Immunol. 2021, 11, 599568. [Google Scholar] [CrossRef]
- Hickman, M.R.; Saunders, D.L.; Bigger, C.A.; Kane, C.D.; Iversen, P.L. The development of broad-spectrum antiviral medical countermeasures to treat viral hemorrhagic fevers caused by natural or weaponized virus infections. PLoS Negl. Trop. Dis. 2022, 16, e0010220. [Google Scholar] [CrossRef]
- Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 2017, 9, eaal3653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus Disease 2019–COVID-19. Clin. Microbiol. Rev. 2020, 33, e00028-20. [Google Scholar] [CrossRef]
- Zhu, J.D.; Meng, W.; Wang, X.J.; Wang, H.C. Broad-spectrum antiviral agents. Front. Microbiol. 2015, 6, 517. [Google Scholar] [CrossRef]
- Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; et al. COVID-19: Drug Targets and Potential Treatments. J. Med. Chem. 2020, 63, 12359–12386. [Google Scholar] [CrossRef] [PubMed]
- ElongNgono, A.; Shresta, S. Immune Response to Dengue and Zika. Annu. Rev. Immunol. 2018, 36, 279–308. [Google Scholar] [CrossRef] [PubMed]
- Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Mandalari, G.; Sciortino, M.T. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021, 13, 828. [Google Scholar] [CrossRef] [PubMed]
- Biedenkopf, N.; Lange-Grünweller, K.; Schulte, F.W.; Weißer, A.; Müller, C.; Becker, D.; Becker, S.; Hartmann, R.K.; Grünweller, A. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antivir. Res. 2017, 137, 76–81. [Google Scholar] [CrossRef]
- Elgner, F.; Sabino, C.; Basic, M.; Ploen, D.; Grünweller, A.; Hildt, E. Inhibition of Zika Virus Replication by Silvestrol. Viruses 2018, 10, 149. [Google Scholar] [CrossRef]
- Todt, D.; Moeller, N.; Praditya, D.; Kinast, V.; Friesland, M.; Engelmann, M.; Verhoye, L.; Sayed, I.M.; Behrendt, P.; Dao Thi, V.L. The natural compound silvestrol inhibits hepatitis E virus (HEV) replication in vitro and in vivo. Antivir. Res. 2018, 157, 151–158. [Google Scholar] [CrossRef]
- Müller, C.; Schulte, F.W.; Lange-Grünweller, K.; Obermann, W.; Madhugiri, R.; Pleschka, S.; Ziebuhr, J.; Hartmann, R.K.; Grünweller, A. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antivir. Res. 2018, 150, 123–129. [Google Scholar] [CrossRef]
- Singh, R.; Singh, P.K.; Kumar, R.; Kabir, M.T.; Kamal, M.A.; Rauf, A.; Albadrani, G.M.; Sayed, A.A.; Mousa, S.A.; Abdel-Daim, M.M.; et al. Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19. Front. Pharmacol. 2021, 12, 652335. [Google Scholar] [CrossRef]
- Harwansh, R.; Bahadur, S. Herbal Medicines to Fight Against COVID-19: New Battle with an Old Weapon. Curr. Pharm. Biotechnol. 2022, 23, 235–260. [Google Scholar] [CrossRef]
- Henss, L.; Scholz, T.; Grünweller, A.; Schnierle, B.S. Silvestrol Inhibits Chikungunya Virus Replication. Viruses 2018, 10, 592. [Google Scholar] [CrossRef]
- Müller, C.; Obermann, W.; Karl, N.; Wendel, H.G.; Taroncher-Oldenburg, G.; Pleschka, S.; Hartmann, R.K.; Grünweller, A.; Ziebuhr, J. The rocaglate CR-31-B (−) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo. Antivir. Res. 2021, 186, 105012. [Google Scholar] [CrossRef] [PubMed]
- Lim, X.Y.; Chan, J.S.W.; Tan, T.Y.C.; Teh, B.P.; Mohd, A.R.; Mohd, R.; Mohamad, S.; Mohamed, A.F.S. Andrographispaniculata (Burm. F.) Wall. Ex Nees, Andrographolide, and Andrographolide Analogues as SARS-CoV-2 Antivirals? A Rapid Review. Nat. Prod. Commun. 2021, 16, 1934578X2110166. [Google Scholar] [CrossRef]
- Panraksa, P.; Ramphan, S.; Khongwichit, S.; Smith, D.R. Activity of andrographolide against dengue virus. Antivir. Res. 2017, 139, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Adiguna, S.P.; Panggabean, J.A.; Atikana, A.; Untari, F.; Izzati, F.; Bayu, A.; Rosyidah, A.; Rahmawati, S.I.; Putra, M.Y. Antiviral and Immunostimulant Activities of Andrographis paniculata. HAYATI J. Biosci. 2015, 22, 67–72. [Google Scholar] [CrossRef]
- Wintachai, P.; Kaur, P.; Lee, R.; Ramphan, S.; Kuadkitkan, A.; Wikan, N.; Ubol, S.; Roytrakul, S.; Chu, J.J.; Smith, D.R. Activity of andrographolide against chikungunya virus infection. Sci. Rep. 2015, 5, 14179. [Google Scholar] [CrossRef]
- Seubsasana, S.; Pientong, C.; Ekalaksananan, T.; Thongchai, S.; Aromdee, C. A Potential Andrographolide Analogue against the Replication of Herpes Simplex Virus Type 1 in Vero Cells. Med. Chem. 2011, 7, 237–244. [Google Scholar] [CrossRef]
- Li, F.; Khanom, W.; Sun, X.; Paemanee, A.; Roytrakul, S.; Wang, D.; Smith, D.R. Andrographolide and Its 14-Aryloxy Analogues Inhibit Zika and Dengue Virus Infection. Molecules 2020, 25, 5037. [Google Scholar] [CrossRef]
- Sa-ngiamsuntorn, K.; Suksatu, A.; Pewkliang, Y.; Thongsri, P.; Kanjanasirirat, P.; Manopwisedjaroen, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Pitiporn, S. Anti-SARS-CoV-2 Activity of Andrographis paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives. J. Nat. Prod. 2021, 84, 1261–1270. [Google Scholar] [CrossRef]
- Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn. 2021, 39, 3092–3098. [Google Scholar] [CrossRef]
- Chen, H.; Hoover, D.G. Bacteriocins and their Food Applications. Compr. Rev. Food Sci. Food Saf. 2003, 2, 82–100. [Google Scholar] [CrossRef]
- Małaczewska, J.; Kaczorek-Łukowska, E.; Wójcik, R.; Siwicki, A.K. Antiviral effects of nisin, lysozyme, lactoferrin and their mixtures against bovine viral diarrhoea virus. BMC Vet Res. 2019, 15, 318. [Google Scholar] [CrossRef] [PubMed]
- El-Baz, F.K.; El-Senousy, W.M.; El-Sayed, A.B.; Kamel, M. In vitro antiviral and antimicrobial activities of Spirulina platensis extract. J. Appl. Pharm. Sci. 2013, 3, 052–056. [Google Scholar] [CrossRef]
- Aminu, S.; Ibrahim, M.A.; Sallau, A.B. Interaction of SARS-CoV-2 spike protein with angiotensin converting enzyme inhibitors and selected compounds from the chemical entities of biological interest. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 48. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, W.; Chen, K.; Jiang, H. New technologies in computer-aided drug design: Toward target identification and new chemical entity discovery. Drug Discov. Today Technol. 2006, 3, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev. 2013, 66, 334–395. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Lu, C.; Qiu, L.; Song, X.; Jia, H.; Cui, D.; Zhang, G. The efficacy of probiotics in patients with severe COVID-19. Ann. Palliat. Med. 2021, 10, 12374–12380. [Google Scholar] [CrossRef]
- Mirashrafi, S.; Moravejolahkami, A.R.; Balouch, Z.Z.; Hojjati, K.M.A.; Bahreini-Esfahani, N.; Haratian, M.; Ganjali, D.M.; Pourhossein, M. The efficacy of probiotics on virus titres and antibody production in virus diseases: A systematic review on recent evidence for COVID-19 treatment. Clin. Nutr. ESPEN 2021, 46, 1–8. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, S.; Wang, Y.; Li, Y.; Wang, X.; Yang, Q. Surfactin Inhibits Membrane Fusion during Invasion of Epithelial Cells by Enveloped Viruses. J. Virol. 2018, 92, e00809-18. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Tiwari, S.P.; Rai, A.K.; Mohapatra, T.M. Cyanobacteria: An emerging source for drug discovery. J. Antibiot. 2011, 64, 401–412. [Google Scholar] [CrossRef]
- Pagarete, A.; Ramos, A.S.; Puntervoll, P.; Allen, M.J.; Verdelho, V. Antiviral Potential of Algal Metabolites—A Comprehensive Review. Mar. Drugs 2021, 19, 94. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Desta, I.T.; Porter, K.A.; Xia, B.; Kozakov, D.; Vajda, S. Performance and Its Limits in Rigid Body Protein-Protein Docking. Structure 2020, 28, 1071–1081. [Google Scholar] [CrossRef]
- Vajda, S.; Yueh, C.; Beglov, D.; Bohnuud, T.; Mottarella, S.E.; Xia, B.; Hall, D.R.; Kozakov, D. New additions to the ClusPro server motivated by CAPRI. Proteins Struct. Funct. Bioinform. 2017, 85, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Mohagaonkar, S.; Sen, A.; Khanam, U.; Rathi, B. In-silico study of peptide-protein interaction of antimicrobial peptides potentially targeting SARS and SARS-CoV-2 nucleocapsid protein. In Silico Pharmacol. 2021, 9, 46. [Google Scholar] [CrossRef] [PubMed]
- Comeau, S.R.; Gatchell, D.W.; Vajda, S.; Camacho, C.J. ClusPro: A fully automated algorithm for protein-protein docking. Nucleic Acids Res. 2004, 32, W96–W99. [Google Scholar] [CrossRef] [PubMed]
- Zarbafian, S.; Moghadasi, M.; Roshandelpoor, A.; Nan, F.; Li, K.; Vakli, P.; Vajda, S.; Kozakov, D. Protein docking refinement by convex underestimation in the low-dimensional subspace of encounter complexes. Sci. Rep. 2018, 8, 5896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ligand (Negative Control) | Receptor | Docking Energy/Binding Affinity (kcal/mol) | ||
---|---|---|---|---|
Molecule ID | Name | PDB ID | Name | |
2R69 | Fab 1A1D-2 (DENV neutralizing antibody) | 1TG8 | Dengue virus envelope protein | −803 |
5JHL | 2A10G6 Fab (ZIKV neutralizing antibody) | 5JHM | Zika virus protein E | −859.5 |
5FHB | mAb100 (EBOV neutralizing antibody) | 5JQ3 | Ebola virus glycoprotein | −954.1 |
7JMX | COVA1-16 Fab (SARS-CoV-2 neutralizing antibody) | 7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | −801.9 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | −789.2 | ||
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | −850.7 | ||
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | −806 | ||
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | −874.9 | ||
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | −754.3 | ||
145996610 | Molnupiravir (anti-SARS-CoV-2 drug candidate) | 7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | −7.2 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | −7.5 | ||
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | −7.2 | ||
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | −8.3 | ||
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | −7.8 | ||
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | −7.7 | ||
121304016 | Remdesivir (anti-EBOV drug candidate) | 5JQ3 | Ebola virus glycoprotein | −7.5 |
45375808 | Sofosbuvir (anti-DENV and anti-ZIKV drug candidate) | 1TG8 | Dengue virus envelope protein | −6.5 |
5JHM | Zika virus protein E | −7.1 | ||
483477 | Brincidofovir (antiviral drug for MPV) | 4QWO | A42R Profilin-like protein of MPV | −9.8 |
16124688 | Tecovirimat (antiviral drug for MPV) | −9.6 | ||
1SL4 | DC-SIGN | 1TG8 | Dengue virus envelope protein | −879.7 |
5U6B | AXL | 5JHM | Zika virus protein E | −986.4 |
2OR8 | TIM-1 | 5JQ3 | Ebola virus glycoprotein | −1012.2 |
3J0A | Toll-like receptor 5 | 4QWO | A42R Profilin-like protein of MPV | −1239.9 |
4M76 | CR3/Mac-1 | −937.6 | ||
5LGD | CD36 | −941.5 | ||
1H9V | FcγRIIA | −749.6 | ||
1R42 | ACE2 | 7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | −942.7 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | −1152.8 | ||
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | −1003.5 | ||
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | −903 | ||
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | −1096 | ||
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | −969.9 |
Receptor (Positive Control) | Ligand | Docking Energy/Binding Affinity (kcal/mol) | ||
---|---|---|---|---|
PDB ID | Name | Molecule ID | Name | |
1SL4 | DC-SIGN | 2MVI | Bacteriocin plantaricin ASM1 | −928 |
2KUY | Bacteriocin glycocin F | −975.2 | ||
2JPK | Bacteriocin lactococcin-G | −964.5 | ||
5XHB | Nisin | −816.5 | ||
1AJ1 | Gardimycin | −821.3 | ||
1JMK | Surfactin | −771 | ||
11787114 | Silvestrol | −6.9 | ||
5318517 | Andrographolide | −7.9 | ||
10032587 | Lyngbyabellin A | −6.7 | ||
21671525 | Hapalindole H | −7.9 | ||
5U6B | AXL | 2MVI | Bacteriocin plantaricin ASM1 | −1336.2 |
2KUY | Bacteriocin glycocin F | −1225.2 | ||
2JPK | Bacteriocin lactococcin-G | −1071.4 | ||
5XHB | Nisin | −793.5 | ||
1AJ1 | Gardimycin | −892.5 | ||
11787114 | Silvestrol | −3.6 | ||
5318517 | Andrographolide | −3 | ||
10032587 | Lyngbyabellin A | −2.8 | ||
21671525 | Hapalindole H | −3.7 | ||
1JMK | Surfactin | −806.3 | ||
2OR8 | TIM-1 | 2MVI | Bacteriocin plantaricin ASM1 | −1142.2 |
2KUY | Bacteriocin glycocin F | −1163.1 | ||
2JPK | Bacteriocin lactococcin-G | −959.7 | ||
5XHB | Nisin | −756.8 | ||
1AJ1 | Gardimycin | −812.1 | ||
1JMK | Surfactin | −798.6 | ||
11787114 | Silvestrol | −3.6 | ||
5318517 | Andrographolide | −7.4 | ||
10032587 | Lyngbyabellin A | −7.1 | ||
21671525 | Hapalindole H | −8.3 | ||
7JMX | ACE2 | 2MVI | Bacteriocin plantaricin ASM1 | −996.5 |
2KUY | Bacteriocin glycocin F | −985.2 | ||
2JPK | Bacteriocin lactococcin-G | −1018.9 | ||
5XHB | Nisin | −609.3 | ||
1AJ1 | Gardimycin | −868.4 | ||
1JMK | Surfactin | −697 | ||
11787114 | Silvestrol | −4.0 | ||
5318517 | Andrographolide | −3.4 | ||
10032587 | Lyngbyabellin A | −3.2 | ||
21671525 | Hapalindole H | −2.8 | ||
3J0A | Toll-like receptor 5 | 2MVI | Bacteriocin plantaricin ASM1 | −1372.7 |
2KUY | Bacteriocin glycocin F | −1505.5 | ||
2JPK | Bacteriocin lactococcin-G | −1331.7 | ||
5XHB | Nisin | −958.2 | ||
1AJ1 | Gardimycin | −1060.3 | ||
1JMK | Surfactin | −1126.3 | ||
11787114 | Silvestrol | −6.8 | ||
5318517 | Andrographolide | −6.3 | ||
10032587 | Lyngbyabellin A | −6.4 | ||
21671525 | Hapalindole H | −7.1 | ||
4M76 | CR3/Mac-1 | 2MVI | Bacteriocin plantaricin ASM1 | −1114.9 |
2KUY | Bacteriocin glycocin F | −1068.0 | ||
2JPK | Bacteriocin lactococcin-G | −825.2 | ||
5XHB | Nisin | −719.0 | ||
1AJ1 | Gardimycin | −815.1 | ||
1JMK | Surfactin | −869.7 | ||
11787114 | Silvestrol | −7.3 | ||
5318517 | Andrographolide | −7.6 | ||
10032587 | Lyngbyabellin A | −6.1 | ||
21671525 | Hapalindole H | −6.8 | ||
5LGD | CD36 | 2MVI | Bacteriocin plantaricin ASM1 | −910.8 |
2KUY | Bacteriocin glycocin F | −1134.2 | ||
2JPK | Bacteriocin lactococcin-G | −906.6 | ||
5XHB | Nisin | −579.9 | ||
1AJ1 | Gardimycin | −771.7 | ||
1JMK | Surfactin | −711.7 | ||
11787114 | Silvestrol | −7.7 | ||
5318517 | Andrographolide | −7.7 | ||
10032587 | Lyngbyabellin A | −6.8 | ||
21671525 | Hapalindole H | −8.8 | ||
1H9V | FcγRIIA | 2MVI | Bacteriocin plantaricin ASM1 | −886.3 |
2KUY | Bacteriocin glycocin F | −995.1 | ||
2JPK | Bacteriocin lactococcin-G | −986.6 | ||
5XHB | Nisin | −606.6 | ||
1AJ1 | Gardimycin | −762.7 | ||
1JMK | Surfactin | −706.5 | ||
11787114 | Silvestrol | −6.6 | ||
5318517 | Andrographolide | −6.8 | ||
10032587 | Lyngbyabellin A | −6.8 | ||
21671525 | Hapalindole H | −6.6 |
Receptor | Interacting Amino Acids of Bacteriocin PlantaricinASM1 with Receptor | Interacting Amino Acids of Receptor (Viral Protein) | Active Binding Site/Interacting Domain of Receptor (Viral Protein) | Docking Energy (kcal/mol) | |
---|---|---|---|---|---|
PDB ID | Name | ||||
1TG8 | Dengue virus envelope protein | TYR 16 | HIS 346 | N-Terminal of Domain 1 | −990.5 |
5JQ3 | Ebola virus glycoprotein | GLY 39, HIS 42 | LYS 588, ASP 591, LEU 594 | N-Domain | −1090.6 |
5JHM | Zika virus protein E | TRP 6, LEU 9, ALA 10, ASP 17 | ASP 98, ASN 103, LYS 251, ARG 252 | C-Terminal of Domain 1 | −1167.4 |
4QWO | A42R Profilin-like protein of monkeypox virus | LYS 1, ASP 17, TYR 23, TRP 6 | ARG 115, ARG 114, SER 73, ASP 76, GLU 83 | - | −1102.8 |
7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | LYS 1, TRP 4, ALA 14, GLY 15, TYR 16, THR 20, ASP 22, TYR 25, HIS 27, VAL 31, SER 40, HIS 42 | LYS 378, ASP 405, ARG 408, PRO 412, ASP 985, GLU 988, ARG 995, LYS 378, TYR 380, GLY 413, VAL 991, GLN 992, ARG 995 | N-Terminal of S1 Domain | −1329.9 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | LYS 1, TRP 4, TRP 6, TYR 7, THR 8, THR 20, ASP 22, TYR 23, SER 34, SER 35, GLY 36, SER 40, TYR 41 | THR 553, ASP 574, ASP 586, ILE 587, PRO 589, LYS 278, GLU 281, LEU 303, LYS 304, THR 732, VAL 826, ASN 960 | The intersection between C-Terminal of S1 Domain and S2 Domain | −1399.3 |
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | TRP 6, TYR 7, ASP 17, SER 26, GLY 38, GLY 39 | ALA 67, HIS 69, ASP 80, THR 95, GLU 96, PHE 186, ARG 246 | C-Terminal of S1 Domain | −1274 |
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | ALA 10, TYR 16, SER 40, TYR 41, HIS 42 | ARG 19, ASP 54, SER 735, VAL 736, ASM 764, THR 768, THR 859 | The intersection between N-Terminal of S1 Domain and S2 Domain | −1351 |
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | LYS 1, TRP 6, THR 8, SER 26, SER 40 | THR 825, LEU 826, LYS 852, ASP 865, GLN 947 | S2 Domain | −1322.6 |
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | LYS 1, TRP 4, TRP 6, SER 18, ASP 22, TYR 23, TYR 25, HIS 27, SER 34, SER 40, TYR 41, HIS 42, CYS 43 | GLU 281, SER 305, PHE 306, GLU 309, THR 732, ARG 815, VAL 826, LYS 856, VAL 860, LEU 948, ASN 960, HIS 961 | S2 Domain | −1237.5 |
Receptor | Interacting Amino Acids of Bacteriocin Lactococcin G with Receptor | Interacting Amino Acids of Receptor (Viral Protein) | Active Binding Site/Interacting Domain of Receptor (Viral Protein) | Docking Energy (kcal/mol) | |
---|---|---|---|---|---|
PDB ID | Name | ||||
1TG8 | Dengue virus envelope protein | TRP 8 | TRP 212 | N-Terminal of Domain 1 | −932.5 |
5JQ3 | Ebola virus glycoprotein | LYS 2, TRP 3, ASN 28 | THR 600, TRP 615, THR 616 | N-Domain | −1056.6 |
5JHM | Zika virus protein E | LYS 1, ASP 10 | ASN 103, ASP 247 | N-Terminal of Domain 1 | −982.4 |
4QWO | A42R Profilin-like protein of monkeypox virus | ALA 7, TRP 5, GLU 26, ASN 28, ASP 30, LYS 29, TRP 5, ALA 7 | LYS 59, ASN 54, ARG 114, VAL 91, THR 111 | - | −880.6 |
7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | LYS 1, GLY 4, TRP 5, LEU 6, ASP 10, GLU 14, GLY 20, LYS 29, ASP 30, LYS 33, ASN 34 | LYS 1086, ARG 1090, ARG 1091, GLU 1092, HIS 1101, TRP 1102, VAL 1104, ASN 1135, THR 1136, GLN 1142, PRO 1143, GLU 1144 | S2 Domain | −1100.1 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | ASP 10, LYS 21, GLU 26, ASN 28, LYS 31, LYS 33, ASN 34 | HIS 519, ASN 544, ASP 88, ASP 198, ARG 983 | C-Terminal of S1 Domain | −1075.9 |
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | LYS 2, ASP 10, GLU 14, GLY 18, LYS 21, GLU 26 | THR 95, SER 98, VAL 213, ARG 214, HIS 245, ARG 246, TYR 248 | C-Terminal of S1 Domain | −1121.8 |
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | LYS 1, TRP 5, LEU 6, ASP 10, GLU 14, LYS 17, LYS 21, LYS 25, GLU 26, LYS 29, ASP 30, LYS 31, LYS 33, ASN 34 | GLN 644, ASN 334, ARG 357, PRO 463, GLU 465, ARG 466, HIS 519, ASP 40, THR 51, GLN 52, ASP 88, LYS 195, ASP 198, ASN 57 | C-Terminal of S1 Domain | −1262.3 |
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | LYS 1, LYS 2, TRP 3, ASP 10, LYS 21, ASN 34 | LYS 41, TYR 168, SER 170, GLN 171, ASN 194, GLY 197, LEU 224, SER 980 | N-Terminal of S1 Domain | −1105.7 |
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | LYS 1, LEU 6, ASP 10, LYS 21, LYS 33, ASN 34, ILE 35 | LYS 41, GLN 115, ASN 165, CYS 166, THR 167, PRO 174, LYS 202, ILE 203, PRO 230, ILE 231, SER 982 | N-Terminal of S1 Domain | −1009.9 |
Receptor | Interacting Amino Acids of Nisin with Receptor | Interacting Amino Acids of Receptor (Viral Protein) | Active Binding Site/Interacting Domain of Receptor (Viral Protein) | Docking Energy (kcal/mol) | |
---|---|---|---|---|---|
PDB ID | Name | ||||
1TG8 | Dengue virus envelope protein | - | - | C-Terminal of Domain 3 | −633.2 |
5JQ3 | Ebola virus glycoprotein | TYR 65, LYS 83, ASN 91, PHE 129 | THR 600, CYS 601, GLU 611, ASP 614 | N-Domain | −737.3 |
5JHM | Zika virus protein E | ARG 29, ASP 41, ASN 42 | HIS 214, GLU 216, TRP 217, ASP 220, GLY 271 | C-Terminal of Domain 2 | −734.2 |
4QWO | A42R Profilin-like protein of monkeypox virus | SER 193, ARG 192, GLU 211, ASP 213, ASN 234, ALA 177, LEU 176 | PRO 110, THR 112, SER 113, ARG 115, VAL 91, ARG 114, TYR 70 | - | −783.6 |
7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | LYS 73, LYS 83, ASP 137, ASN 139, PHE 140, VAL 141, ASP 151, ARG 192, SER 193, GLU 194, ASP 213 | ALA 27, TYR 28, THR 29, ASN 30, ASN 61, ASP 80, ASN 81, PRO 295, GLU 298, SER 316, GLN 321, THR 599, GLN 607, GLU 619 | N-Terminal of S1 Domain | −798.6 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | SER 193, ASP 213, GLU 232 | ARG 102, LYS 129, ASN 164, ASN 165 | N-Terminal of S1 Domain | −797 |
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | AGR 192, SER 193, TRP 195, GLU 211, ASP 213, GLY 215, GLU 216, GLU 232, ASN 234, ASP 235 | TRP 64, ASP 80, SER 94, THR 95, LYS 97, PHE 186, HIS 245, ARG 246, LEU 249, THR 250 | C-Terminal of S1 Domain | −751.9 |
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | THR 162, THR 163, VAL 164, ASP 183, SER 186, LYS 188, SER 193, GLU 194, TRP 195, SER 208, ARG 209, GLU 211, ASP 213, ASP 235 | ASN 81, VAL 83, GLU 96, LYS 97, ILE 100, ASN 137, ARG 158, LYS 42, LYS 45, THR 56, GLU 1, ASP 110 | C-Terminal of S1 Domain | −741.3 |
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | LYS 50, GLU 55, ILE 142, GLU 171, TYR 172, GLN 173, ASP 174, VAL 175, ALA 177, GLU 178, ARG 180, ARG 192, GLU 211, ASP 213 | ARG 401, ASP 403, TYR 447, ARG 450, GLY 480, GLU 482, PHE 488, GLN 491, SER 492, GLN 496, ASN 499, VAL 501, TYR 503, LYS 113, ASN 435, ASN 438, GLN 504 | C-Terminal of S1 Domain | −803.6 |
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | TYR 152, ASP 166, GLU 167, TYR 172, ASP 174, VAL 175, ALA 177, ASP 183, ARG 192, SER 208, GLU 216, ARG 221 | TYR 200, ASP 985, ARG 403, ARG 408, GLU 409, GLY 413, GLN 414, THR 415, ASN 417, TYR 453, LYS 478, TYR 489, ARG 493 | C-Terminal of S1 Domain | −826 |
Receptor | Interacting Amino Acids of Bacteriocin Glycocin F with Receptor | Interacting Amino Acids of Receptor (Viral Protein) | Active Binding Site/Interacting Domain of Receptor (Viral Protein) | Docking Energy (kcal/mol) | |
---|---|---|---|---|---|
PDB ID | Name | ||||
1TG8 | Dengue virus envelope protein | TYR 25 | TRP 212 | C-Terminal of Domain 2 | −1184.6 |
5JQ3 | Ebola virus glycoprotein | GLY 13, TYR 16, SER 38 | TRP 597, CYS 609, LYS 622 | N-Domain | −1208.2 |
5JHM | Zika virus protein E | ALA 3, TRP 4, CYS 5, TYR 25, CYS 28 | ASP 247, ARG 252, THR 254 | N-Terminal of Domain 1 | −1015 |
4QWO | A42R Profilin-like protein of monkeypox virus | ASP 22, LYS 32, SER 36, HIS 33, ASP 17, SER 38, SER 40, TYR 41 | ARG 114, ALA 89, ILE 94, LYS 65, GLU 83, PRO 110, THR 112, ARG 115 | - | −1144.7 |
7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | MET 11, ALA 14, GLY 15, TYR 16, TYR 23, TYR 25, PHE 29, GLY 30, LYS 32 | GLU 988, GLN 992, ARG 995, LYS 378, GLN 414, THR 415, ASP 420 | N-Terminal of S1 Domain | −1505.6 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | TYR 7, CYS 12, TYR 16, ASP 17, SER 18, THR 20, TYR 23, TYR 25, HIS 27, GLY 30, ILE 31 | LYS 386, ASP 389, ASN 544, GLY 545, THR 547, LYS 41, ASP 198, TYR 200, ASP 228, PRO 272, SER 975 | C-Terminal of S1 Domain | −1327.4 |
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | LYS 1, PRO 2, ALA 3, ALA 10, TYR 16, ASP 17, SER 18, THR 20, TYR 25, CYS 28, PHE 29 | TRP 64, HIS 69, ASN 81, GLU 96, LYS 97, ASN 99, ARG 214, ALA 243, HIS 245, ARG 246, SER 247, TYR 248 | C-Terminal of S1 Domain | −1364.5 |
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | LYS 1, ALA 3, TRP 4, MET 11, ASP 17, SER 18, THR 20, ASP 22, TYR 25, IEL 31, LYS 32, HIS 33, HIS 34 | LYS 378, TYR 380, PRO 412, GLY 413, GLN 414, GLU 988, GLU 990, HIS 66, LYS 378, TYR 380, GLN 414, ASP 428, TYR 756, ASP 994, ARG 995, THR 998 | The intersection between N-Terminal of S1 Domain and C-Terminal of S1 Domain | −1756.7 |
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | LYS 1, PRO 2, TRP 4, TYR 7, ASP 17, SER 26, HIS 27, CYS 28, PHE 29, LYS 32, HIS 33, HIS 34, SER 35, SER 36, GLY 37, SER 38, SER 39, SER 40, TYR 41, HIS 42, CYS 43 | ARG 401, ASP 403, ARG 406, GLN 412, TYR 503, GLU 988, ASP 992, TYR 367, SER 369, PHE 372, SER 373, PHE 375, LYS 376, GLY 402, ASP 425, ASP 426, PHE 427, ASN 435, GLN 990 | C-Terminal of S1 Domain | −1333.5 |
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | TYP 16, ASP 17, SER 18, THR 20, ASP 22, TYR 25, SER 26, HIS 27, CYS 28, PHE 29, GLY 30, LYS 32, HIS 33, SER 35, SER 36, SER 40 | ASN 544, GLU 564, ARG 567, THR 573, ARG 577, LYS 41, HIS 49, GLU 52, ASP 53, GLN 173, ASP 228, LYS 969, SER 975, ARG 983 | The intersection between N-Terminal of S1 Domain and C-Terminal of S1 Domain | −1219.4 |
Receptor | Interacting Amino Acids of Gardimycinwith Receptor | Interacting Amino Acids of Receptor (Viral Protein) | Active Binding Site/Interacting Domain of Receptor (Viral Protein) | Docking Energy (kcal/mol) | |
---|---|---|---|---|---|
PDB ID | Name | ||||
1TG8 | Dengue virus envelope protein | - | - | C-Terminal of Domain 2 | −803.7 |
5JQ3 | Ebola virus glycoprotein | ILE 16 | TRP 597 | N-Domain | −815.6 |
5JHM | Zika virus protein E | TRP 4 | TRP 217 | The intersection between N-Terminal of Domain 2 and C-Terminal of Domain 2 | −1009 |
4QWO | A42R Profilin-like protein of monkeypox virus | CYS 17, ALA 18, VAL 15, GLY 13, CYS 12, ALA 18 | TYR 118, ARG 114, THR 71 | - | −754 |
7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | SER 2, GLY 3, VAL 5, CYS 6, LEU 8, CYS 12, ALA 18, CYS 19 | THR 588, PRO 589, CYS 590, ASN 616, THR 618, GLU 619, ARG 646 | C-Terminal of S1 Domain | −985.8 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | SER 2, GLU 11, GLY 13, VAL 15, IEL 16 | ARG 646, HIS 1058 | The intersection between C-Terminal of S1 Domain and S2 Domain | −978.5 |
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | TRP 4, VAL 5, GLU 11, VAL 15, ILE 16 | HIS 69, GLU 96, HIS 245, TYR 248 | N-Terminal of S1 Domain | −977.4 |
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | SER 2, GLY 3, TRP 4, VAL 5, CYS 6, LEU 8, GLU 11, VAL 15, ILE 16, CYS 17, ALA 18 | TYR 449, GLY 496, GLU 498, ASN 501, TYR 505, THR 28, PHE 29, TYR 103, ASP 104, TYR 111, ASP 113 | N-Terminal of S1 Domain | −998.4 |
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | GLY 3, LEU 8, VAL 15, ILE 16 | THR 732, LEU 826, ASN 958 | S2 Domain | −992 |
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | GLY 13 | ARG 646 | S2 Domain | −938.1 |
Receptor | Interacting Amino Acids of Surfactin with Receptor | Interacting Amino Acids of Receptor (Viral Protein) | Active Binding Site/Interacting Domain of Receptor (Viral Protein) | Docking Energy (kcal/mol) | |
---|---|---|---|---|---|
PDB ID | Name | ||||
1TG8 | Dengue virus envelope protein | ASP 116, ASP 118, ARG 120, ASP 180, ASP 182, GLU 185 | ASP 98, ARG 99, GLY 102, ASN 103, LYS 110, LYS 246 | C-Terminal of Domain 3 | −742 |
5JQ3 | Ebola virus glycoprotein | ASP 180, ARG 202, THR 194, THR 195 | ASP 614, TRP 615, ASN 618, LYS 622 | N-Domain | −952.4 |
5JHM | Zika virus protein E | ARG 57, SER 115, SER 124, GLU 127, LYS 149, HIS 153, ASN 161, ASP 180, PHE 181, ASP 182 | PRO 75, THR 76, GLN 77, GLY 77, GLU 78, LEU 107, PHE 108, THR 313, PHE 314, GLU 320, GLN 331, HIS 401 | The intersection between C-Terminal of Domain 3 and N-Terminal of Domain 2 | −851.4 |
4QWO | A42R Profilin-like protein of monkeypox virus | LYS 67, GLY 2, GLY 6, ASP 9 | ARG 115, THR 71, THR 112 | - | −818.3 |
7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | GLN 112, ASP 116, LEU 117, GLY 119, ARG 120, VAL 122, GLU 123, SER 124, ASN 161, GLU 185, TRP 186 | CYS 336, SER 366, ASN 370, ASN 388, LYS 529, LYS 417, ARG 457, TYR 473, SER 477 | The intersection between C-Terminal of S1 Domain and S2 Domain | −888.1 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | SER 124, ASP 180, PHE 181, ASP 182, TRP 186, ARG 202, GLN 112, GLU 192 | ASN 81, LEU 110, ASP 111, CYS 136, ASN 137, GLY 142, ARG 237, GLN 239, LEU 242 | N-Terminal of S1 Domain | −884.5 |
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | GLY 112, SER 124, ASP 125, TYR 159, GLU 191, ARG 202 | ILE 68, HIS 69, VAL 143, ALA 243, HIS 245, ARG 246, SER 247, TYR 248 | C-Terminal of S1 Domain | −975.5 |
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | LYS 149, TYR 156, ASN 161, ASP 180, ASP 182, ILE 183, GLU 185, TRP 186, LEU 187 | TRP 64, HIS 66, GLU 96, LYS 97, ASN 99, ILE 100, ARG 158, LYS 187, ARG 214, GLN 3 | N-Terminal of S1 Domain | −895.1 |
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | ASP 107, TYR 109, SER 115, SER 124, ASP 125, GLU 127, ALA 179, ASP 180, PHE 181, ASP 182, GLU 191 | ASN 17, LEU 18, ARG 19, ARG 21, THR 22, GLU 23, PRO 25, HIS 66, HIS 243, ARG 244, SER 245 | C-Terminal of S1 Domain | −941.2 |
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | ASP 116, ASP 118, ASP 180, PHE 181, ASP 182, GLU 185 | ARG 346, ASN 439, LYS 440, LYS 444, ASN 448, ASN 450 | C-Terminal of S1 Domain | −785.4 |
Receptor | Interacting Amino Acids of Receptor | Active Binding Site/Interacting Domain of Receptor | Binding Affinity (kcal/mol) | |
---|---|---|---|---|
PDB ID | Name | |||
1TG8 | Dengue virus envelope protein | LYS 58, ASN 124, LYS 202 | N-Terminal of Domain 2 | −6.2 |
5JQ3 | Ebola virus glycoprotein | THR 294, PHE 290, THR 293 | N-Domain | −7.2 |
5JHM | Zika virus protein E | TRP 217 | The intersection between C-Terminal of Domain 2 and N-Terminal of Domain 2 | −7.8 |
4QWO | A42R Profilin-like protein of monkeypox virus | ASN 78, ASN 116, ARG 119, ARG 129 | - | −8.2 |
7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | GLN 954, ARG 955, ARG 765 | S2 Domain | −8 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | GLN 954 | The intersection between C-Terminal of S1 Domain and S2 Domain | −8.4 |
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | GLN 954, GLN 957 | The intersection between C-Terminal of S1 Domain and S2 Domain | −7.6 |
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | THR 998, GLN 1002 | The intersection between C-Terminal of S1 Domain and S2 Domain | −8.2 |
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | ARG 1012 | S2 Domain | −7.2 |
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | HIS 954, GLU 1017, ARG 1019, ASN 1023 | S2 Domain | −8 |
Receptor | Interacting Amino Acids of Receptor | Active Binding Site/Interacting Domain of Receptor | Binding Affinity (kcal/mol) | |
---|---|---|---|---|
PDB ID | Name | |||
1TG8 | Dengue virus envelope protein | ALA 313, GLU 314, NDG 402 | C-Terminal of Domain 2 | −6.5 |
5JQ3 | Ebola virus glycoprotein | GLN 570, ARG 574 | C-Domain | −7.6 |
5JHM | Zika virus protein E | LYS 209, HIS 210 | The intersection between C-Terminal of Domain 2 and N-Terminal of Domain 2 | −6.6 |
4QWO | A42R Profilin-like protein of monkeypox virus | ASN 14, TYR 80, ARG 127, ARG 129 | - | −7.4 |
7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | GLN 1002, TYR 756, TYR 756, ASP 994, THR 998 | N-Terminal of S1 Domain and C-Terminal of S1 Domain | −7.7 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | ARG 1014, ARG 1019 | S2 Domain | −7.5 |
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | ARG 1014 | S2 Domain | −7.6 |
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | PHE 970 | The intersection between C-Terminal of S1 Domain and S2 Domain | −7 |
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | GLN 1000 | The intersection between C-Terminal of S1 Domain and S2 Domain | −7.7 |
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | THR 961, SER 758, ARG 765 | The intersection between N-Terminal of S1 Domain and S2 Domain | −6.9 |
Receptor | Interacting Amino Acids of Receptor | Active Binding Site/Interacting Domain of Receptor | Binding Affinity (kcal/mol) | |
---|---|---|---|---|
PDB ID | Name | |||
1TG8 | Dengue virus envelope protein | GLY 275, LYS 128 | N-Terminal of Domain 2 | −5.8 |
5JQ3 | Ebola virus glycoprotein | GLU 156, LYS 84, SER 81 | N-Domain | −7.2 |
5JHM | Zika virus protein E | THR 267 | The intersection between C-Terminal of Domain 2 and N-Terminal of Domain 2 | −6.2 |
4QWO | A42R Profilin-like protein of monkeypox virus | ASN 78, ARG 127, ARG 129 | - | −8.7 |
7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | ARG 1019, AGR 1014 | S2 Domain | −9 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | THR 739, ASN 317 | The intersection between C-Terminal of S1 Domain and S2 Domain | −7.5 |
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | GLN 954, AGR 765 | The intersection between C-Terminal of S1 Domain and S2 Domain | −8.6 |
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | THR 998, TYR 756 | The intersection between C-Terminal of S1 Domain and S2 Domain | −8 |
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | ARG 1012 | S2 Domain | −8.5 |
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | TYR 313 | S2 Domain | −8 |
Receptor | Interacting Amino Acids of Receptor | Active Binding Site/Interacting Domain of Receptor | Binding Affinity (kcal/mol) | |
---|---|---|---|---|
PDB ID | Name | |||
1TG8 | Dengue virus envelope protein | GLN 200, LYS 128, LEU 277, ALA 50 | The intersection between C-Terminal of Domain 2 and N-Terminal of Domain 2 | −6.5 |
5JQ3 | Ebola virus glycoprotein | ARG 89, LYS 155 | N-Domain | −7.8 |
5JHM | Zika virus protein E | THR 267 | The intersection between C-Terminal of Domain 2 and N-Terminal of Domain 2 | −7.2 |
4QWO | A42R Profilin-like protein of monkeypox virus | ASN 14, ASN 78, TYR 80, HIS 100, ASP 100, ARG 127, ARG 129 | - | −8.1 |
7LWS | Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | GLN 965 | The intersection between N-Terminal of S1 Domain and C-Terminal of S1 Domain | −7.6 |
7LYK | Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | ARG 765, GLN 954 | S2 Domain | −8.2 |
7M8K | Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | THR 768, SER 735, ASN 764 | The intersection between C-Terminal of S1 Domain and S2 Domain | −8.2 |
7N8H | Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | VAL 382, GLY 381 | The intersection between N-Terminal of S1 Domain and C-Terminal of S1 Domain | −7.2 |
7V7O | Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | ILE 768 | S2 Domain | −7.4 |
7T9J | Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | ARG 1014 | The intersection between C-Terminal of S1 Domain and S2 Domain | −8 |
Target Viral Receptor | Bacterial AMP | Wild-Type AMP | Mutant AMP | ||||
---|---|---|---|---|---|---|---|
Docking Energy (kcal/mol) | Amino Acid Residue/s | Docking Energy (kcal/mol) | Amino Acid Residue/s | ||||
Name | PDB Code | Name | PDB Code | ||||
Spike (S) protein of SARS-CoV-2 B.1.1.7 UK variant | 7LWS | Bacteriocin glycocin F | 2KUY | −1505.6 | MET 11, ALA 14, GLY 15, TYR 16, TYR 23, TYR 25, PHE 29, GLY 30, LYS 32 | −1344.8 | LEU 11, PHE 14, THR 15, VAL 16, VAL 23, TYR 25, VAL 29, PRO 30, PRO 32 |
Spike (S) protein of SARS-CoV-2 B.1.427 USA variant | 7N8H | Bacteriocin glycocin F | 2KUY | −1756.7 | LYS 1, ALA 3, TRP 4, MET 11, ASP 17, SER 18, THR 20, ASP 22, TYR 25, IEL 31, LYS 32, HIS 33, HIS 34 | −1431.1 | VAL 1, SER 3, PRO 4, LEU 11, CYS 17, VAL 18, PRO 20, ASP 22, VAL 25, PRO 31, LEU 32, PRO 33, THR 34 |
Spike (S) protein of SARS-CoV-2 B.1.617.2 Indian variant | 7V7O | Bacteriocin glycocin F | 2KUY | −1333.5 | LYS 1, TRP 4, ASP 17, SER 26, HIS 27, CYS 28, PHE 29, LYS 32, HIS 33, HIS 34, SER 35, SER 36, GLY 37, SER 38, HIS 42 | −1468.3 | VAL 1, PRO 4, CYS 17, VAL 26, VAL 27, LEU 28, SER 29, PRO 32, PRO 33, THR 34, VAL 35, VAL 36, VAL 37, VAL 38,PRO 42 |
Spike (S) protein of SARS-CoV-2 P.1 Japan/Brazil variant | 7M8K | Bacteriocin glycocin F | 2KUY | −1364.5 | LYS 1, PRO 2, ALA 3, ALA 10, TYR 16, ASP 17, SER 18, THR 20, TYR 25, CYS 28, PHE 29 | −1473.0 | VAL 1, VAL 2, PRO 3, VAL 10, VAL 16, PRO 17, VAL 18, VAL 20, VAL 25, PRO 28, VAL 29 |
Spike (S) protein of SARS-CoV-2 B.1.351 South African variant | 7LYK | Bacteriocin plantaricin ASM1 | 2MVI | −1399.3 | LYS 1, TRP 4, TRP 6, TYR 7, THR 8, THR 20, ASP 22, TYR 23, SER 34, SER 35, GLY 36, SER 40, TYR 41, | −1228.8 | LEU 1, CYS 4, CYS 6, THR 7, THR 8, CYS 20, CYS 22, VAL 23, VAL 34, PRO 35, PRO 36, PRO 40, PRO 41 |
Spike (S) protein of SARS-CoV-2 B.1.1.529 Omicron variant | 7T9J | Bacteriocin plantaricin ASM1 | 2MVI | −1237.5 | LYS 1, TRP 4, TRP 6, SER 18, ASP 22, TYR 23, TYR 25, HIS 27, SER 34, SER 40, TYR 41, HIS 42, CYS 43 | −1002.0 | LEU 1, CYS 4, CYS 6, LEU 18, CYS 22, VAL 23, THR 25, PRO 27, PRO 34, PRO 40, PRO 41, PRO 42, CYS 43 |
Dengue virus envelope protein | 1TG8 | Bacteriocin glycocin F | 2KUY | −1184.6 | TYR 25 | −1267.7 | VAL 25 |
Ebola virus glycoprotein | 5JQ3 | Bacteriocin glycocin F | 2KUY | −1208.2 | GLY 13, TYR 16, SER 38 | −1158.3 | VAL 13, PRO 16, VAL 38 |
Zika virus protein E | 5JHM | Bacteriocin plantaricin ASM1 | 2MVI | −1167.4 | TRP 6, LEU 9, ALA 10, ASP 17 | −1066.3 | CYS 6, VAL 9, PRO 10, PRO 17 |
A42R Profilin-like protein of monkeypox virus | 4QWO | Bacteriocin glycocin F | 2KUY | −1144.7 | ASP 22, LYS 32, SER 36, HIS 33, ASP 17, SER 38, SER 40, TYR 41 | −1054.6 | TYR 22, PRO 32, TYR 36, PRO 33, PHE 17, VAL 38, SER 40, VAL 41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dassanayake, M.K.; Khoo, T.-J.; Chong, C.H.; Di Martino, P. Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, SARS-CoV-2 Variants of Concern and Monkeypox Virus. Int. J. Mol. Sci. 2022, 23, 11131. https://doi.org/10.3390/ijms231911131
Dassanayake MK, Khoo T-J, Chong CH, Di Martino P. Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, SARS-CoV-2 Variants of Concern and Monkeypox Virus. International Journal of Molecular Sciences. 2022; 23(19):11131. https://doi.org/10.3390/ijms231911131
Chicago/Turabian StyleDassanayake, Mackingsley Kushan, Teng-Jin Khoo, Chien Hwa Chong, and Patrick Di Martino. 2022. "Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, SARS-CoV-2 Variants of Concern and Monkeypox Virus" International Journal of Molecular Sciences 23, no. 19: 11131. https://doi.org/10.3390/ijms231911131
APA StyleDassanayake, M. K., Khoo, T. -J., Chong, C. H., & Di Martino, P. (2022). Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, SARS-CoV-2 Variants of Concern and Monkeypox Virus. International Journal of Molecular Sciences, 23(19), 11131. https://doi.org/10.3390/ijms231911131