Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells
Abstract
:1. Introduction
2. Markers for Hyaline Cartilage Chondrocytes, Hypertrophic Chondrocytes and Fibrocartilage
3. Autologous Chondrocytes from Different Sources
3.1. Chondrons, the Functional Units of Cartilage Tissue
3.2. Chondroprogenitors from Superficial Zone of Articular Cartilage
3.3. Non-Articular Autologous Chondrocytes
3.3.1. Nasal Chondrocytes
3.3.2. Costal Chondrocytes
3.3.3. Growth Plate Chondrocytes
3.3.4. Chondrocytes from the Auricle of an Ear
4. Bone-Marrow-Derived Mesenchymal Stem Cells
4.1. Fundamental Growth Factors for BM-MSC Chondrogenic Differentiation
4.2. External Stimuli Supporting Chondrogenic Differentiation of BM-MSCs
4.3. BM-MSC Transplantation Clinical Trials for Cartilage Defect Treatment
5. Synovial Membrane-Derived MSCs
5.1. Factors for Chondrogenic Differentiation in SM-MSCs
5.2. Different Cell Subpopulations Labeled in Synovium
5.3. Clinical Trials of Autologous SM-MSC Transplantation into Cartilage Defects
6. Adipose-Derived Stem Cells
6.1. Clinical Trials of ADSC Intra-Articular Injections for Cartilage Damage Treatment
6.2. Practices to Improve the Chondrogenic Potential of ADSCs
6.3. Alternative Strategies for Treating Joint Defects with ADSCs
7. Periosteum- and Perichondrium-Derived Stem Cells
7.1. Periosteum
7.1.1. Periosteal Adult Stem Cell Populations
7.1.2. Periosteal Graft Transplantation
7.2. Perichondrium
7.2.1. Perichondrium Transplantation
7.2.2. Perichondrium-Derived Adult Stem Cells
8. Dental Pulp Stem Cells
8.1. Conversion of DPSCs to Chondrocytes
8.2. TGFβ3 as Chondrogenic Initiator for DPSC Cultures
9. Extracellular Vesicles (EVs) as a Tool for Cell Fate Manipulation
9.1. Chondroprotective Effects Mediated by EVs
9.2. EV-Mediated Chondrogenesis
9.3. Exosomal microRNAs as Therapeutics
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gahunia, H.K.; Pritzker, K.P.H. Structure and Function of Articular Cartilage. In Articular Cartilage of the Knee; Springer: New York, NY, USA, 2020; pp. 3–70. ISBN 9781493975877. [Google Scholar]
- Felson, D.T.; Neogi, T. Osteoarthritis: Is It a Disease of Cartilage or of Bone? Arthritis Rheum. 2004, 50, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.A.; Michaelis, M.; Ladel, C.; Siebuhr, A.S.; Bihlet, A.R.; Andersen, J.R.; Guehring, H.; Christiansen, C.; Bay-Jensen, A.C.; Kraus, V.B. Disease-Modifying Treatments for Osteoarthritis (DMOADs) of the Knee and Hip: Lessons Learned from Failures and Opportunities for the Future. Osteoarthr. Cartil. 2016, 24, 2013–2021. [Google Scholar] [CrossRef] [PubMed]
- Ashford, S.; Williard, J. Osteoarthritis. Nurse Pract. 2014, 39, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Armiento, A.R.; Alini, M.; Stoddart, M.J. Articular Fibrocartilage—Why Does Hyaline Cartilage Fail to Repair? Adv. Drug Deliv. Rev. 2019, 146, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Medvedeva, E.; Grebenik, E.; Gornostaeva, S.; Telpuhov, V.; Lychagin, A.; Timashev, P.; Chagin, A. Repair of Damaged Articular Cartilage: Current Approaches and Future Directions. Int. J. Mol. Sci. 2018, 19, 2366. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Brown, W.E.; Lee, C.A.; Wang, D.; Paschos, N.; Hu, J.C.; Athanasiou, K.A. Surgical and Tissue Engineering Strategies for Articular Cartilage and Meniscus Repair. Nat. Rev. Rheumatol. 2019, 15, 550–570. [Google Scholar] [CrossRef]
- Solheim, E.; Hegna, J.; Inderhaug, E. Long-Term Survival after Microfracture and Mosaicplasty for Knee Articular Cartilage Repair: A Comparative Study Between Two Treatments Cohorts. Cartilage 2020, 11, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Kreuz, P.C.; Kalkreuth, R.H.; Niemeyer, P.; Uhl, M.; Erggelet, C. Long-Term Clinical and MRI Results of Matrix-Assisted Autologous Chondrocyte Implantation for Articular Cartilage Defects of the Knee. Cartilage 2019, 10, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, Y.; Sekiya, I.; Yagishita, K.; Muneta, T. Comparison of Human Stem Cells Derived from Various Mesenchymal Tissues: Superiority of Synovium as a Cell Source. Arthritis Rheum. 2005, 52, 2521–2529. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Zheng, Y.; Zhang, G.; Hu, Y.; Fan, X.; Hou, Y.; Wen, L.; Li, L.; Xu, Y.; Wang, Y.; et al. Single-Cell RNA-Seq Analysis Reveals the Progression of Human Osteoarthritis. Ann. Rheum. Dis. 2019, 78, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Guan, G.; Mei, L.; Jiao, K.; Li, H. Pathological Mechanism of Chondrocytes and the Surrounding Environment during Osteoarthritis of Temporomandibular Joint. J. Cell. Mol. Med. 2021, 25, 4902–4911. [Google Scholar] [CrossRef] [PubMed]
- Eames, B.F.; De La Fuente, L.; Helms, J.A. Molecular Ontogeny of the Skeleton. Birth Defects Res. Part C Embryo Today Rev. 2003, 69, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.; Lu, Y.; Liang, S.; Mori-Akiyama, Y.; Chen, D.; de Crombrugghe, B.; Yasuda, H. SOX9 Regulates Multiple Genes in Chondrocytes, Including Genes Encoding ECM Proteins, ECM Modification Enzymes, Receptors, and Transporters. PLoS ONE 2014, 9, e107577. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.; Hata, K.; Takahata, Y.; Murakami, T.; Nakamura, E.; Yagi, H. Regulation of Cartilage Development and Diseases by Transcription Factors. J. Bone Metab. 2017, 24, 147–153. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, G.; Morello, R.; Chen, Y.; Garcia-Rojas, X.; Lee, B. Type X Collagen Gene Regulation by Runx2 Contributes Directly to Its Hypertrophic Chondrocyte-Specific Expression in Vivo. J. Cell Biol. 2003, 162, 833–842. [Google Scholar] [CrossRef]
- Arnold, M.A.; Kim, Y.; Czubryt, M.P.; Phan, D.; McAnally, J.; Qi, X.; Shelton, J.M.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. MEF2C Transcription Factor Controls Chondrocyte Hypertrophy and Bone Development. Dev. Cell 2007, 12, 377–389. [Google Scholar] [CrossRef]
- Yoshida, C.A.; Yamamoto, H.; Fujita, T.; Furuichi, T.; Ito, K.; Inoue, K.; Yamana, K.; Zanma, A.; Takada, K.; Ito, Y.; et al. Runx2 and Runx3 Are Essential for Chondrocyte Maturation, and Runx2 Regulates Limb Growth through Induction of Indian Hedgehog. Genes Dev. 2004, 18, 952–963. [Google Scholar] [CrossRef]
- Inada, M.; Yasui, T.; Nomura, S.; Miyake, S.; Deguchi, K.; Himeno, M.; Sato, M.; Yamagiwa, H.; Kimura, T.; Yasui, N.; et al. Maturational Disturbance of Chondrocytes InCbfa1-Deficient Mice. Dev. Dyn. 1999, 214, 279–290. [Google Scholar] [CrossRef]
- Yano, F.; Ohba, S.; Murahashi, Y.; Tanaka, S.; Saito, T.; Chung, U.-I. Runx1 Contributes to Articular Cartilage Maintenance by Enhancement of Cartilage Matrix Production and Suppression of Hypertrophic Differentiation. Sci. Rep. 2019, 9, 7666. [Google Scholar] [CrossRef]
- Liu, C.-F.; Lefebvre, V. The Transcription Factors SOX9 and SOX5/SOX6 Cooperate Genome-Wide through Super-Enhancers to Drive Chondrogenesis. Nucleic Acids Res. 2015, 43, 8183–8203. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.-L.; Miller, C.T.; Nissen, R.; Singer, A.; Liu, D.; Kirn, A.; Draper, B.; Willoughby, J.; Morcos, P.A.; Amsterdam, A.; et al. A Zebrafish Sox9 Gene Required for Cartilage Morphogenesis. Development 2002, 129, 5065–5079. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, V.; Bhattaram, P. Vertebrate Skeletogenesis. Curr. Top. Dev. Biol. 2010, 90, 291–317. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, J.; Taipaleenmäki, H.; Roering, P.; Takatalo, M.; Harkness, L.; Sandholm, J.; Uusitalo-Järvinen, H.; Kassem, M.; Kiviranta, I.; Laitala-Leinonen, T.; et al. Snorc Is a Novel Cartilage Specific Small Membrane Proteoglycan Expressed in Differentiating and Articular Chondrocytes. Osteoarthr. Cartil. 2011, 19, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.K.; Aljebali, L.; Gaumond, M.-H.; Oh, C.; Yasuda, H.; Moffatt, P. Biochemical Characteristics of the Chondrocyte-Enriched SNORC Protein and Its Transcriptional Regulation by SOX9. Sci. Rep. 2020, 10, 7790. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Yamamoto, K.; He, X.; Otsuki, B.; Kim, Y.; Murao, H.; Soeda, T.; Tsumaki, N.; Deng, J.M.; Zhang, Z.; et al. Wwp2 Is Essential for Palatogenesis Mediated by the Interaction between Sox9 and Mediator Subunit 25. Nat. Commun. 2011, 2, 251. [Google Scholar] [CrossRef]
- Tuddenham, L.; Wheeler, G.; Ntounia-Fousara, S.; Waters, J.; Hajihosseini, M.K.; Clark, I.; Dalmay, T. The Cartilage Specific MicroRNA-140 Targets Histone Deacetylase 4 in Mouse Cells. FEBS Lett. 2006, 580, 4214–4217. [Google Scholar] [CrossRef]
- Mokuda, S.; Nakamichi, R.; Matsuzaki, T.; Ito, Y.; Sato, T.; Miyata, K.; Inui, M.; Olmer, M.; Sugiyama, E.; Lotz, M.; et al. Wwp2 Maintains Cartilage Homeostasis through Regulation of Adamts5. Nat. Commun. 2019, 10, 2429. [Google Scholar] [CrossRef]
- Ripmeester, E.G.J.; Caron, M.M.J.; van den Akker, G.G.H.; Steijns, J.; Surtel, D.A.M.; Cremers, A.; Peeters, L.C.W.; van Rhijn, L.W.; Welting, T.J.M. BMP7 Reduces the Fibrocartilage Chondrocyte Phenotype. Sci. Rep. 2021, 11, 19663. [Google Scholar] [CrossRef]
- Caron, M.M.J.; Emans, P.J.; Coolsen, M.M.E.; Voss, L.; Surtel, D.A.M.; Cremers, A.; van Rhijn, L.W.; Welting, T.J.M. Redifferentiation of Dedifferentiated Human Articular Chondrocytes: Comparison of 2D and 3D Cultures. Osteoarthr. Cartil. 2012, 20, 1170–1178. [Google Scholar] [CrossRef]
- Shah, S.S.; Mithoefer, K. Scientific Developments and Clinical Applications Utilizing Chondrons and Chondrocytes with Matrix for Cartilage Repair. Cartilage 2021, 13, 1195S–1205S. [Google Scholar] [CrossRef]
- Duan, W.; Zhao, Y.; Ren, X.; Zhao, R.; Li, Q.; Sun, Z.; Song, W.; Yang, Y.; Li, P.; Wei, X. Combination of Chondrocytes and Chondrons Improves Extracellular Matrix Production to Promote the Repairs of Defective Knee Cartilage in Rabbits. J. Orthop. Transl. 2021, 28, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Uzieliene, I.; Denkovskij, J.; Bernotiene, E.; Kalvaityte, U.; Vaiciuleviciute, R.; Ramos, Y.F.M.; Mobasheri, A. Protocol for the Isolation of Intact Chondrons from Healthy and Osteoarthritic Human Articular Cartilage. In Chondrocytes. Method and Protocols; Haqqi, T.M., Lefebvre, V., Eds.; Methods in Molecular Biology Series; Springer: New York, NY, USA, 2021; Volume 2245, pp. 13–22. ISBN 978-1-0716-1118-0. [Google Scholar]
- Kestilä, I.; Thevenot, J.; Finnilä, M.A.; Karhula, S.S.; Hadjab, I.; Kauppinen, S.; Garon, M.; Quenneville, E.; Haapea, M.; Rieppo, L.; et al. In Vitro Method for 3D Morphometry of Human Articular Cartilage Chondrons Based on Micro-Computed Tomography. Osteoarthr. Cartil. 2018, 26, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Dowthwaite, G.P.; Bishop, J.C.; Redman, S.N.; Khan, I.M.; Rooney, P.; Evans, D.J.R.; Haughton, L.; Bayram, Z.; Boyer, S.; Thomson, B.; et al. The Surface of Articular Cartilage Contains a Progenitor Cell Population. J. Cell Sci. 2004, 117, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Kozhemyakina, E.; Zhang, M.; Ionescu, A.; Ayturk, U.M.; Ono, N.; Kobayashi, A.; Kronenberg, H.; Warman, M.L.; Lassar, A.B. Identification of a Prg4-Expressing Articular Cartilage Progenitor Cell Population in Mice. Arthritis Rheumatol. 2015, 67, 1261–1273. [Google Scholar] [CrossRef]
- Li, L.; Newton, P.T.; Bouderlique, T.; Sejnohova, M.; Zikmund, T.; Kozhemyakina, E.; Xie, M.; Krivanek, J.; Kaiser, J.; Qian, H.; et al. Superficial Cells Are Self-Renewing Chondrocyte Progenitors, Which Form the Articular Cartilage in Juvenile Mice. FASEB J. 2017, 31, 1067–1084. [Google Scholar] [CrossRef]
- Rikkers, M.; Korpershoek, J.V.; Levato, R.; Malda, J.; Vonk, L.A. The Clinical Potential of Articular Cartilage-Derived Progenitor Cells: A Systematic Review. NPJ Regen. Med. 2022, 7, 2. [Google Scholar] [CrossRef]
- Zieba, J.T.; Chen, Y.-T.; Lee, B.H.; Bae, Y. Notch Signaling in Skeletal Development, Homeostasis and Pathogenesis. Biomolecules 2020, 10, 332. [Google Scholar] [CrossRef]
- Morgan, B.J.; Bauza-Mayol, G.; Gardner, O.F.W.; Zhang, Y.; Levato, R.; Archer, C.W.; van Weeren, R.; Malda, J.; Conlan, R.S.; Francis, L.W.; et al. Bone Morphogenetic Protein-9 Is a Potent Chondrogenic and Morphogenic Factor for Articular Cartilage Chondroprogenitors. Stem Cells Dev. 2020, 29, 882–894. [Google Scholar] [CrossRef]
- Kachroo, U.; Zachariah, S.M.; Thambaiah, A.; Tabasum, A.; Livingston, A.; Rebekah, G.; Srivastava, A.; Vinod, E. Comparison of Human Platelet Lysate versus Fetal Bovine Serum for Expansion of Human Articular Cartilage-Derived Chondroprogenitors. Cartilage 2021, 13, 107S–116S. [Google Scholar] [CrossRef]
- Melero-Martin, J.M.; Dowling, M.-A.; Smith, M.; Al-Rubeai, M. Expansion of Chondroprogenitor Cells on Macroporous Microcarriers as an Alternative to Conventional Monolayer Systems. Biomaterials 2006, 27, 2970–2979. [Google Scholar] [CrossRef]
- Santos, S.; Richard, K.; Fisher, M.C.; Dealy, C.N.; Pierce, D.M. Chondrocytes Respond Both Anabolically and Catabolically to Impact Loading Generally Considered Non-Injurious. J. Mech. Behav. Biomed. Mater. 2021, 115, 104252. [Google Scholar] [CrossRef] [PubMed]
- Neumann, A.J.; Gardner, O.F.W.; Williams, R.; Alini, M.; Archer, C.W.; Stoddart, M.J. Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2. PLoS ONE 2015, 10, e0136229. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, J.; Yang, X.; Jiang, Y.; Gui, J. Intermittent Hydrostatic Pressure Maintains and Enhances the Chondrogenic Differentiation of Cartilage Progenitor Cells Cultivated in Alginate Beads. Dev. Growth Differ. 2016, 58, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.; Khan, I.M.; Richardson, K.; Nelson, L.; McCarthy, H.E.; Analbelsi, T.; Singhrao, S.K.; Dowthwaite, G.P.; Jones, R.E.; Baird, D.M.; et al. Identification and Clonal Characterisation of a Progenitor Cell Sub-Population in Normal Human Articular Cartilage. PLoS ONE 2010, 5, e13246. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Cai, Y.; Zhang, W.; Yin, Z.; Hu, C.; Tong, T.; Lu, P.; Zhang, S.; Neculai, D.; Tuan, R.S.; et al. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration. Stem Cells Transl. Med. 2016, 5, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, S.; Pei, M. Contribution of Neural Crest-Derived Stem Cells and Nasal Chondrocytes to Articular Cartilage Regeneration. Cell. Mol. Life Sci. 2020, 77, 4847–4859. [Google Scholar] [CrossRef]
- Kafienah, W.; Jakob, M.; Démarteau, O.; Frazer, A.; Barker, M.D.; Martin, I.; Hollander, A.P. Three-Dimensional Tissue Engineering of Hyaline Cartilage: Comparison of Adult Nasal and Articular Chondrocytes. Tissue Eng. 2002, 8, 817–826. [Google Scholar] [CrossRef]
- Mumme, M.; Steinitz, A.; Nuss, K.M.; Klein, K.; Feliciano, S.; Kronen, P.; Jakob, M.; Von Rechenberg, B.; Martin, I.; Barbero, A.; et al. Regenerative Potential of Tissue-Engineered Nasal Chondrocytes in Goat Articular Cartilage Defects. Tissue Eng. Part A 2016, 22, 1286–1295. [Google Scholar] [CrossRef]
- Mumme, M.; Barbero, A.; Miot, S.; Wixmerten, A.; Feliciano, S.; Wolf, F.; Asnaghi, A.M.; Baumhoer, D.; Bieri, O.; Kretzschmar, M.; et al. Nasal Chondrocyte-Based Engineered Autologous Cartilage Tissue for Repair of Articular Cartilage Defects: An Observational First-in-Human Trial. Lancet 2016, 388, 1985–1994. [Google Scholar] [CrossRef]
- Acevedo Rua, L.; Mumme, M.; Manferdini, C.; Darwiche, S.; Khalil, A.; Hilpert, M.; Buchner, D.A.; Lisignoli, G.; Occhetta, P.; von Rechenberg, B.; et al. Engineered Nasal Cartilage for the Repair of Osteoarthritic Knee Cartilage Defects. Sci. Transl. Med. 2021, 13, eaaz4499. [Google Scholar] [CrossRef]
- Lee, J.; Lee, E.; Kim, H.; Son, Y. Comparison of Articular Cartilage with Costal Cartilage in Initial Cell Yield, Degree of Dedifferentiation during Expansion and Redifferentiation Capacity. Biotechnol. Appl. Biochem. 2007, 48, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, J.-Y.; Chae, B.-C.; Jang, J.; Lee, E.; Son, Y. Fully Dedifferentiated Chondrocytes Expanded in Specific Mesenchymal Stem Cell Growth Medium with FGF2 Obtains Mesenchymal Stem Cell Phenotype In Vitro but Retains Chondrocyte Phenotype In Vivo. Cell Transplant. 2017, 26, 1673–1687. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.-H.; Park, J.-Y.; Lee, J.-Y.; Lee, E.; Lee, J.; Kim, S.-G. Costal Chondrocyte-Derived Pellet-Type Autologous Chondrocyte Implantation for Treatment of Articular Cartilage Defect. Am. J. Sport. Med. 2020, 48, 1236–1245. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.-H.; Yoo, J.D.; Choi, C.-H.; Lee, J.; Lee, J.-Y.; Kim, S.-G.; Park, J.-Y. Costal Chondrocyte-Derived Pellet-Type Autologous Chondrocyte Implantation versus Microfracture for Repair of Articular Cartilage Defects: A Prospective Randomized Trial. Cartilage 2021, 13, 1092S–1104S. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zheng, K.; Pang, Y.; Xiang, F.; Gao, J.; Zhang, C.; Du, D. Anti-Hypertrophic Effect of Synovium-Derived Stromal Cells on Costal Chondrocytes Promotes Cartilage Repairs. J. Orthop. Transl. 2022, 32, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Kilborn, S.H.; Trudel, G.; Uhthoff, H. Review of Growth Plate Closure Compared with Age at Sexual Maturity and Lifespan in Laboratory Animals. J. Am. Assoc. Lab. Anim. Sci. 2002, 41, 21–26. [Google Scholar]
- Shim, K.S. Pubertal Growth and Epiphyseal Fusion. Ann. Pediatr. Endocrinol. Metab. 2015, 20, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-M.; Shen, P.-C.; Lu, C.-C.; Chou, S.-H.; Tien, Y.-C. Characterization of the Proliferating Layer Chondrocytes of Growth Plate for Cartilage Regeneration. Tissue Eng. Part A 2019, 25, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Arzi, B.; DuRaine, G.D.; Lee, C.A.; Huey, D.J.; Borjesson, D.L.; Murphy, B.G.; Hu, J.C.Y.; Baumgarth, N.; Athanasiou, K.A. Cartilage Immunoprivilege Depends on Donor Source and Lesion Location. Acta Biomater. 2015, 23, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Malicev, E.; Kregar-Velikonja, N.; Barlic, A.; Alibegović, A.; Drobnic, M. Comparison of Articular and Auricular Cartilage as a Cell Source for the Autologous Chondrocyte Implantation. J. Orthop. Res. 2009, 27, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Bai, B.; Tian, B.; Ci, Z.; Liu, Y.; Zhou, G.; Cao, Y. Cartilage Regeneration Characteristics of Human and Goat Auricular Chondrocytes. Front. Bioeng. Biotechnol. 2021, 9, 766363. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.-C.; Chen, C.-H.; Chiu, L.-H.; Tsuang, Y.-H.; Bai, M.-Y.; Chung, R.-J.; Lin, Y.-H.; Hsieh, F.-J.; Chen, Y.-T.; Yang, T.-L. Facilitating In Vivo Articular Cartilage Repair by Tissue-Engineered Cartilage Grafts Produced From Auricular Chondrocytes. Am. J. Sport. Med. 2018, 46, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Z.; Li, Z.; Wu, B.; Liu, Y.; Wu, W. Cartilaginous Extracellular Matrix Derived from Decellularized Chondrocyte Sheets for the Reconstruction of Osteochondral Defects in Rabbits. Acta Biomater. 2018, 81, 129–145. [Google Scholar] [CrossRef]
- Takahashi, T.; Ogasawara, T.; Kishimoto, J.; Liu, G.; Asato, H.; Nakatsuka, T.; Uchinuma, E.; Nakamura, K.; Kawaguchi, H.; Takato, T.; et al. Synergistic Effects of FGF-2 with Insulin or IGF-I on the Proliferation of Human Auricular Chondrocytes. Cell Transplant. 2005, 14, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Okubo, R.; Asawa, Y.; Watanabe, M.; Nagata, S.; Nio, M.; Takato, T.; Hikita, A.; Hoshi, K. Proliferation Medium in Three-Dimensional Culture of Auricular Chondrocytes Promotes Effective Cartilage Regeneration in Vivo. Regen. Ther. 2019, 11, 306–315. [Google Scholar] [CrossRef]
- Owen, M.; Friedenstein, A.J. Stromal Stem Cells: Marrow-Derived Osteogenic Precursors. In Ciba Foundation Symposium 136—Cell and Molecular Biology of Vertebrate Hard Tissues: Cell and Molecular Biology of Vertebrate Hard Tissues; Novartis Foundation Symposia Series; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1988; pp. 42–60. [Google Scholar] [CrossRef]
- Friedenstein, A. Osteogenic Stem Cells in Bone Marrow. In Bone and Mineral Research; Heersche, J., Kanis, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; pp. 243–272. [Google Scholar]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Shi, Y.; Galipeau, J.; Krampera, M.; Leblanc, K.; Martin, I.; Nolta, J.; Phinney, D.G.; Sensebe, L. Mesenchymal Stem versus Stromal Cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell Committee Position Statement on Nomenclature. Cytotherapy 2019, 21, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.J.; Tuan, R.S.; Cheung, K.M.C.; Leung, V.Y.L. Concise Review: The Surface Markers and Identity of Human Mesenchymal Stem Cells. Stem Cells 2014, 32, 1408–1419. [Google Scholar] [CrossRef]
- Krampera, M.; Galipeau, J.; Shi, Y.; Tarte, K.; Sensebe, L. Immunological Characterization of Multipotent Mesenchymal Stromal Cells—The International Society for Cellular Therapy (ISCT) Working Proposal. Cytotherapy 2013, 15, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Choudhery, M.S.; Mahmood, R.; Harris, D.T.; Ahmad, F.J. Minimum Criteria for Defining Induced Mesenchymal Stem Cells. Cell Biol. Int. 2022, 46, 986–989. [Google Scholar] [CrossRef]
- Huang, S.; Xu, L.; Sun, Y.; Wu, T.; Wang, K.; Li, G. An Improved Protocol for Isolation and Culture of Mesenchymal Stem Cells from Mouse Bone Marrow. J. Orthop. Transl. 2015, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Tondreau, T.; Lagneaux, L.; Dejeneffe, M.; Delforge, A.; Massy, M.; Mortier, C.; Bron, D. Isolation of BM Mesenchymal Stem Cells by Plastic Adhesion or Negative Selection: Phenotype, Proliferation Kinetics and Differentiation Potential. Cytotherapy 2004, 6, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Poloni, A.; Maurizi, G.; Rosini, V.; Mondini, E.; Mancini, S.; Discepoli, G.; Biasio, S.; Battaglini, G.; Felicetti, S.; Berardinelli, E.; et al. Selection of CD271+ Cells and Human AB Serum Allows a Large Expansion of Mesenchymal Stromal Cells from Human Bone Marrow. Cytotherapy 2009, 11, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Yang, J.; Gong, Y.; Zhang, H.; Qiu, X.; Liu, Y.; Zhou, C.; Chen, Y.; Greenbaum, J.; et al. Single-Cell RNA Sequencing Deconvolutes the in Vivo Heterogeneity of Human Bone Marrow-Derived Mesenchymal Stem Cells. Int. J. Biol. Sci. 2021, 17, 4192–4206. [Google Scholar] [CrossRef]
- ten Berge, D.; Brugmann, S.A.; Helms, J.A.; Nusse, R. Wnt and FGF Signals Interact to Coordinate Growth with Cell Fate Specification during Limb Development. Development 2008, 135, 3247–3257. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Lassar, A.B. Fibroblast Growth Factor Maintains Chondrogenic Potential of Limb Bud Mesenchymal Cells by Modulating DNMT3A Recruitment. Cell Rep. 2014, 8, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Narcisi, R.; Cleary, M.A.; Brama, P.A.J.; Hoogduijn, M.J.; Tüysüz, N.; ten Berge, D.; van Osch, G.J.V.M. Long-Term Expansion, Enhanced Chondrogenic Potential, and Suppression of Endochondral Ossification of Adult Human MSCs via WNT Signaling Modulation. Stem Cell Rep. 2015, 4, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guan, Y.; Xiang, S.; Clark, K.L.; Alexander, P.G.; Simonian, L.E.; Deng, Y.; Lin, H. Role of Canonical Wnt/β-Catenin Pathway in Regulating Chondrocytic Hypertrophy in Mesenchymal Stem Cell-Based Cartilage Tissue Engineering. Front. Cell Dev. Biol. 2022, 10, 812081. [Google Scholar] [CrossRef]
- Francis-West, P.H.; Abdelfattah, A.; Chen, P.; Allen, C.; Parish, J.; Ladher, R.; Allen, S.; MacPherson, S.; Luyten, F.P.; Archer, C.W. Mechanisms of GDF-5 Action during Skeletal Development. Development 1999, 126, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Shwartz, Y.; Viukov, S.; Krief, S.; Zelzer, E. Joint Development Involves a Continuous Influx of Gdf5-Positive Cells. Cell Rep. 2016, 15, 2577–2587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chijimatsu, R.; Saito, T. Mechanisms of Synovial Joint and Articular Cartilage Development. Cell. Mol. Life Sci. CMLS 2019, 76, 3939–3952. [Google Scholar] [CrossRef]
- Sun, Y.; You, Y.; Jiang, W.; Zhai, Z.; Dai, K. 3D-Bioprinting a Genetically Inspired Cartilage Scaffold with GDF5-Conjugated BMSC-Laden Hydrogel and Polymer for Cartilage Repair. Theranostics 2019, 9, 6949–6961. [Google Scholar] [CrossRef] [PubMed]
- Katayama, R.; Wakitani, S.; Tsumaki, N.; Morita, Y.; Matsushita, I.; Gejo, R.; Kimura, T. Repair of Articular Cartilage Defects in Rabbits Using CDMP1 Gene-Transfected Autologous Mesenchymal Cells Derived from Bone Marrow. Rheumatology 2004, 43, 980–985. [Google Scholar] [CrossRef]
- Tan, S.-L.; Ahmad, R.E.; Ahmad, T.S.; Merican, A.M.; Abbas, A.A.; Ng, W.M.; Kamarul, T. Effect of Growth Differentiation Factor 5 on the Proliferation and Tenogenic Differentiation Potential of Human Mesenchymal Stem Cells in Vitro. Cells Tissues Organs 2012, 196, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Chijimatsu, R.; Kobayashi, M.; Ebina, K.; Iwahashi, T.; Okuno, Y.; Hirao, M.; Fukuhara, A.; Nakamura, N.; Yoshikawa, H. Impact of Dexamethasone Concentration on Cartilage Tissue Formation from Human Synovial Derived Stem Cells in Vitro. Cytotechnology 2018, 70, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Furumatsu, T.; Tsuda, M.; Taniguchi, N.; Tajima, Y.; Asahara, H. Smad3 Induces Chondrogenesis through the Activation of SOX9 via CREB-Binding Protein/P300 Recruitment. J. Biol. Chem. 2005, 280, 8343–8350. [Google Scholar] [CrossRef]
- Hara, E.S.; Ono, M.; Pham, H.T.; Sonoyama, W.; Kubota, S.; Takigawa, M.; Matsumoto, T.; Young, M.F.; Olsen, B.R.; Kuboki, T. Fluocinolone Acetonide Is a Potent Synergistic Factor of TGF-Β3-Associated Chondrogenesis of Bone Marrow-Derived Mesenchymal Stem Cells for Articular Surface Regeneration. J. Bone Miner. Res. JBMR 2015, 30, 1585–1596. [Google Scholar] [CrossRef]
- He, A.; Liu, L.; Luo, X.; Liu, Y.; Liu, Y.; Liu, F.; Wang, X.; Zhang, Z.; Zhang, W.; Liu, W.; et al. Repair of Osteochondral Defects with in Vitro Engineered Cartilage Based on Autologous Bone Marrow Stromal Cells in a Swine Model. Sci. Rep. 2017, 7, 40489. [Google Scholar] [CrossRef]
- Cameron, A.D.; Even, K.M.; Linardi, R.L.; Berglund, A.K.; Schnabel, L.V.; Engiles, J.B.; Ortved, K.F. Adeno-Associated Virus-Mediated Overexpression of Interleukin-10 Affects the Immunomodulatory Properties of Equine Bone Marrow-Derived Mesenchymal Stem Cells. Hum. Gene Ther. 2021, 32, 907–918. [Google Scholar] [CrossRef]
- Bornes, T.D.; Adesida, A.B.; Jomha, N.M. Articular Cartilage Repair with Mesenchymal Stem Cells After Chondrogenic Priming: A Pilot Study. Tissue Eng. Part A 2018, 24, 761–774. [Google Scholar] [CrossRef]
- Futrega, K.; Music, E.; Robey, P.G.; Gronthos, S.; Crawford, R.; Saifzadeh, S.; Klein, T.J.; Doran, M.R. Characterisation of Ovine Bone Marrow-Derived Stromal Cells (OBMSC) and Evaluation of Chondrogenically Induced Micro-Pellets for Cartilage Tissue Repair in Vivo. Stem Cell Res. Ther. 2021, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Pattappa, G.; Johnstone, B.; Zellner, J.; Docheva, D.; Angele, P. The Importance of Physioxia in Mesenchymal Stem Cell Chondrogenesis and the Mechanisms Controlling Its Response. Int. J. Mol. Sci. 2019, 20, 484. [Google Scholar] [CrossRef] [PubMed]
- Pattappa, G.; Zellner, J.; Johnstone, B.; Docheva, D.; Angele, P. Cells under Pressure—The Relationship between Hydrostatic Pressure and Mesenchymal Stem Cell Chondrogenesis. Eur. Cells Mater. 2019, 36, 360–381. [Google Scholar] [CrossRef] [PubMed]
- Aprile, P.; Kelly, D.J. Hydrostatic Pressure Regulates the Volume, Aggregation and Chondrogenic Differentiation of Bone Marrow Derived Stromal Cells. Front. Bioeng. Biotechnol. 2021, 8, 619914. [Google Scholar] [CrossRef]
- Hosseini, M.-S.; Tafazzoli-Shadpour, M.; Haghighipour, N.; Aghdami, N.; Goodarzi, A. The Synergistic Effects of Shear Stress and Cyclic Hydrostatic Pressure Modulate Chondrogenic Induction of Human Mesenchymal Stem Cells. Int. J. Artif. Organs 2015, 38, 557–564. [Google Scholar] [CrossRef]
- Chahal, J.; Gómez-Aristizábal, A.; Shestopaloff, K.; Bhatt, S.; Chaboureau, A.; Fazio, A.; Chisholm, J.; Weston, A.; Chiovitti, J.; Keating, A.; et al. Bone Marrow Mesenchymal Stromal Cell Treatment in Patients with Osteoarthritis Results in Overall Improvement in Pain and Symptoms and Reduces Synovial Inflammation. Stem Cells Transl. Med. 2019, 8, 746–757. [Google Scholar] [CrossRef]
- Teo, A.Q.A.; Wong, K.L.; Shen, L.; Lim, J.Y.; Toh, W.S.; Lee, E.H.; Hui, J.H.P. Equivalent 10-Year Outcomes After Implantation of Autologous Bone Marrow–Derived Mesenchymal Stem Cells Versus Autologous Chondrocyte Implantation for Chondral Defects of the Knee. Am. J. Sport. Med. 2019, 47, 2881–2887. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Nishida, Y.; Takahashi, S.; Nakamura, H.; Mera, H.; Kashiwa, K.; Yoshiya, S.; Inagaki, Y.; Uematsu, K.; Tanaka, Y.; et al. Transplantation of Autologous Bone Marrow-Derived Mesenchymal Stem Cells under Arthroscopic Surgery with Microfracture versus Microfracture Alone for Articular Cartilage Lesions in the Knee: A Multicenter Prospective Randomized Control Clinical Trial. Regen. Ther. 2019, 11, 106–113. [Google Scholar] [CrossRef]
- De Bari, C.; Dell’accio, F.; Tylzanowski, P.; Luyten, F.P. Multipotent Mesenchymal Stem Cells From Adult Human Synovial Membrane. Arthritis Rheum. 2001, 44, 1928–1942. [Google Scholar] [CrossRef]
- Ferro, T.; Santhagunam, A.; Madeira, C.; Salgueiro, J.B.; da Silva, C.L.; Cabral, J.M.S. Successful Isolation and Ex Vivo Expansion of Human Mesenchymal Stem/Stromal Cells Obtained from Different Synovial Tissue-Derived (Biopsy) Samples. J. Cell. Physiol. 2019, 234, 3973–3984. [Google Scholar] [CrossRef]
- Hermida-Gómez, T.; Fuentes-Boquete, I.; Gimeno-Longas, M.J.; Muiños-López, E.; Díaz-Prado, S.; de Toro, F.J.; Blanco, F.J. Quantification of Cells Expressing Mesenchymal Stem Cell Markers in Healthy and Osteoarthritic Synovial Membranes. J. Rheumatol. 2011, 38, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Kohno, Y.; Mizuno, M.; Ozeki, N.; Katano, H.; Komori, K.; Fujii, S.; Otabe, K.; Horie, M.; Koga, H.; Tsuji, K.; et al. Yields and Chondrogenic Potential of Primary Synovial Mesenchymal Stem Cells Are Comparable between Rheumatoid Arthritis and Osteoarthritis Patients. Stem Cell Res. Ther. 2017, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Li, Q.; Lin, X.; Hu, N.; Liao, J.-Y.; Lin, L.-B.; Zhao, C.; Hu, Z.-M.; Liang, X.; Xu, W.; et al. BMP2 Induces Chondrogenic Differentiation, Osteogenic Differentiation and Endochondral Ossification in Stem Cells. Cell Tissue Res. 2016, 366, 101–111. [Google Scholar] [CrossRef]
- Xiao, P.; Zhu, Z.; Du, C.; Zeng, Y.; Liao, J.; Cheng, Q.; Chen, H.; Zhao, C.; Huang, W. Silencing Smad7 Potentiates BMP2-Induced Chondrogenic Differentiation and Inhibits Endochondral Ossification in Human Synovial-Derived Mesenchymal Stromal Cells. Stem Cell Res. Ther. 2021, 12, 132. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, W.; Zhou, N.; Liao, J.; Yang, M.; Hu, N.; Liang, X.; Xu, W.; Chen, H.; Liu, W.; et al. Sox9 Augments BMP2-Induced Chondrogenic Differentiation by Downregulating Smad7 in Mesenchymal Stem Cells (MSCs). Genes Dis. 2017, 4, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Estrada, K.D.; Wang, W.; Retting, K.N.; Chien, C.T.; Elkhoury, F.F.; Heuchel, R.; Lyons, K.M. Smad7 Regulates Terminal Maturation of Chondrocytes in the Growth Plate. Dev. Biol. 2013, 382, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Han, M.A.; Shin, J.Y.; Jeon, J.H.; Lee, S.J.; Yoon, M.Y.; Kim, H.-J.; Choi, E.-J.; Do, S.H.; Yang, V.C.; et al. Intra-Articular Delivery of Synovium-Resident Mesenchymal Stem Cells via BMP-7-Loaded Fibrous PLGA Scaffolds for Cartilage Repair. J. Control. Release 2019, 302, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Li, P.; Zhu, J.; Liao, Z.; Gao, C.; Li, H.; Yang, Z.; Zhao, T.; Chen, W.; Peng, Y.; et al. Tetrahedral Framework Nucleic Acids Promote the Biological Functions and Related Mechanism of Synovium-Derived Mesenchymal Stem Cells and Show Improved Articular Cartilage Regeneration Activity in Situ. Bioact. Mater. 2022, 9, 411–427. [Google Scholar] [CrossRef]
- Chou, C.-H.; Jain, V.; Gibson, J.; Attarian, D.E.; Haraden, C.A.; Yohn, C.B.; Laberge, R.-M.; Gregory, S.; Kraus, V.B. Synovial Cell Cross-Talk with Cartilage Plays a Major Role in the Pathogenesis of Osteoarthritis. Sci. Rep. 2020, 10, 10868. [Google Scholar] [CrossRef]
- Mizuno, M.; Katano, H.; Mabuchi, Y.; Ogata, Y.; Ichinose, S.; Fujii, S.; Otabe, K.; Komori, K.; Ozeki, N.; Koga, H.; et al. Specific Markers and Properties of Synovial Mesenchymal Stem Cells in the Surface, Stromal, and Perivascular Regions. Stem Cell Res. Ther. 2018, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.Y.; Karpus, O.N.; Turner, J.D.; Hardie, D.; Marshall, J.L.; de Hair, M.J.H.; Maijer, K.I.; Tak, P.P.; Raza, K.; Hamann, J.; et al. Stromal Cell Markers Are Differentially Expressed in the Synovial Tissue of Patients with Early Arthritis. PLoS ONE 2017, 12, e0182751. [Google Scholar] [CrossRef] [PubMed]
- Croft, A.P.; Campos, J.; Jansen, K.; Turner, J.D.; Marshall, J.; Attar, M.; Savary, L.; Wehmeyer, C.; Naylor, A.J.; Kemble, S.; et al. Distinct Fibroblast Subsets Drive Inflammation and Damage in Arthritis. Nature 2019, 570, 246–251. [Google Scholar] [CrossRef] [PubMed]
- To, K.; Zhang, B.; Romain, K.; Mak, C.; Khan, W. Synovium-Derived Mesenchymal Stem Cell Transplantation in Cartilage Regeneration: A PRISMA Review of in Vivo Studies. Front. Bioeng. Biotechnol. 2019, 7, 314. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, I.; Muneta, T.; Horie, M.; Koga, H. Arthroscopic Transplantation of Synovial Stem Cells Improves Clinical Outcomes in Knees with Cartilage Defects. Clin. Orthop. Relat. Res. 2015, 473, 2316–2326. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, K.; Yasui, Y.; Koizumi, K.; Chijimatsu, R.; Hart, D.A.; Yonetani, Y.; Ando, W.; Nishii, T.; Kanamoto, T.; Horibe, S.; et al. First-in-Human Pilot Study of Implantation of a Scaffold-Free Tissue-Engineered Construct Generated From Autologous Synovial Mesenchymal Stem Cells for Repair of Knee Chondral Lesions. Am. J. Sport. Med. 2018, 46, 2384–2393. [Google Scholar] [CrossRef]
- Ando, W.; Tateishi, K.; Katakai, D.; Hart, D.A.; Higuchi, C.; Nakata, K.; Hashimoto, J.; Fujie, H.; Shino, K.; Yoshikawa, H.; et al. In Vitro Generation of a Scaffold-Free Tissue-Engineered Construct (TEC) Derived from Human Synovial Mesenchymal Stem Cells: Biological and Mechanical Properties and Further Chondrogenic Potential. Tissue Eng. Part A 2008, 14, 2041–2049. [Google Scholar] [CrossRef]
- Fraser, J.K.; Wulur, I.; Alfonso, Z.; Hedrick, M.H. Fat Tissue: An Underappreciated Source of Stem Cells for Biotechnology. Trends Biotechnol. 2006, 24, 150–154. [Google Scholar] [CrossRef]
- Wickham, M.Q.; Erickson, G.R.; Gimble, J.M.; Vail, T.P.; Guilak, F. Multipotent Stromal Cells Derived From the Infrapatellar Fat Pad of the Knee. Clin. Orthop. Relat. Res. 2003, 412, 196–212. [Google Scholar] [CrossRef]
- Guilak, F.; Lott, K.E.; Awad, H.A.; Cao, Q.; Hicok, K.C.; Fermor, B.; Gimble, J.M. Clonal Analysis of the Differentiation Potential of Human Adipose-Derived Adult Stem Cells. J. Cell. Physiol. 2006, 206, 229–237. [Google Scholar] [CrossRef]
- Beane, O.S.; Fonseca, V.C.; Cooper, L.L.; Koren, G.; Darling, E.M. Impact of Aging on the Regenerative Properties of Bone Marrow-, Muscle-, and Adipose-Derived Mesenchymal Stem/Stromal Cells. PLoS ONE 2014, 9, e115963. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, N.; Mak, C.; Bojanic, C.; To, K.; Khan, W. Meta-Analysis of Adipose Tissue Derived Cell-Based Therapy for the Treatment of Knee Osteoarthritis. Cells 2021, 10, 1365. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Dai, C.; Zhang, Z.; Du, H.; Li, S.; Ye, P.; Fu, Q.; Zhang, L.; Wu, X.; Dong, Y.; et al. Treatment of Knee Osteoarthritis with Intra-Articular Injection of Autologous Adipose-Derived Mesenchymal Progenitor Cells: A Prospective, Randomized, Double-Blind, Active-Controlled, Phase IIb Clinical Trial. Stem Cell Res. Ther. 2019, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Tang, J.; Yue, B.; Wang, J.; Zhang, J.; Xuan, L.; Dai, C.; Li, S.; Li, M.; Xu, C.; et al. Human Adipose-Derived Mesenchymal Progenitor Cells plus Microfracture and Hyaluronic Acid for Cartilage Repair: A Phase IIa Trial. Regen. Med. 2020, 15, 1193–1214. [Google Scholar] [CrossRef]
- Kim, S.A.; Sur, Y.J.; Cho, M.-L.; Go, E.J.; Kim, Y.H.; Shetty, A.A.; Kim, S.J. Atelocollagen Promotes Chondrogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Sci. Rep. 2020, 10, 10678. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-P.; Liao, Y.-T.; Wu, S.-H.; Huang, H.-K.; Chou, P.-H.; Chiang, E.-R. Adipose Derived Mesenchymal Stem Cells from a Hypoxic Culture Reduce Cartilage Damage. Stem Cell Rev. Rep. 2021, 17, 1796–1809. [Google Scholar] [CrossRef]
- Yang, K.-C.; Chen, I.-H.; Yang, Y.-T.; Hsiao, J.-K.; Wang, C.-C. Effects of Scaffold Geometry on Chondrogenic Differentiation of Adipose-Derived Stem Cells. Mater. Sci. Eng. C 2020, 110, 110733. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, Q.; Nakamoto, T.; Kawazoe, N.; Chen, G. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering. Tissue Eng. Part C Methods 2016, 22, 189–198. [Google Scholar] [CrossRef]
- Muttigi, M.S.; Kim, B.J.; Choi, B.; Han, I.; Park, H.; Lee, S.-H. Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids Prevent Mesenchymal Stromal-Cell-Derived Chondrocyte Hypertrophy. Int. J. Mol. Sci. 2020, 21, 8911. [Google Scholar] [CrossRef]
- Yang, X.; Trehan, S.K.; Guan, Y.; Sun, C.; Moore, D.C.; Jayasuriya, C.T.; Chen, Q. Matrilin-3 Inhibits Chondrocyte Hypertrophy as a Bone Morphogenetic Protein-2 Antagonist. J. Biol. Chem. 2014, 289, 34768–34779. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, F.; Li, Z.; Duan, X.; Cheng, J.; Zhang, J.; Fu, X.; Zhang, J.; Shao, Z.; Guo, Q.; et al. Autologous Fractionated Adipose Tissue as a Natural Biomaterial and Novel One-Step Stem Cell Therapy for Repairing Articular Cartilage Defects. Front. Cell Dev. Biol. 2020, 8, 694. [Google Scholar] [CrossRef]
- Blumer, M.J.F. Bone Tissue and Histological and Molecular Events during Development of the Long Bones. Ann. Anat. Anat. Anz. 2021, 235, 151704. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, M.; Muthu, S.; Gangadaran, P.; Ranjan, R.; Jeyaraman, N.; Prajwal, G.S.; Mishra, P.C.; Rajendran, R.L.; Ahn, B.-C. Osteogenic and Chondrogenic Potential of Periosteum-Derived Mesenchymal Stromal Cells: Do They Hold the Key to the Future? Pharmaceuticals 2021, 14, 1133. [Google Scholar] [CrossRef] [PubMed]
- Arai, F.; Ohneda, O.; Miyamoto, T.; Zhang, X.Q.; Suda, T. Mesenchymal Stem Cells in Perichondrium Express Activated Leukocyte Cell Adhesion Molecule and Participate in Bone Marrow Formation. J. Exp. Med. 2002, 195, 1549–1563. [Google Scholar] [CrossRef]
- Foolen, J.; van Donkelaar, C.; Nowlan, N.; Murphy, P.; Huiskes, R.; Ito, K. Collagen Orientation in Periosteum and Perichondrium Is Aligned with Preferential Directions of Tissue Growth. J. Orthop. Res. 2008, 26, 1263–1268. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Kubilus, J.K.; Crochiere, M.L.; Linsenmayer, T.F.; Tabin, C.J. Identification of Unique Molecular Subdomains in the Perichondrium and Periosteum and Their Role in Regulating Gene Expression in the Underlying Chondrocytes. Dev. Biol. 2008, 321, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Di Nino, D.L.; Long, F.; Linsenmayer, T.F. Regulation of Endochondral Cartilage Growth in the Developing Avian Limb: Cooperative Involvement of Perichondrium and Periosteum. Dev. Biol. 2001, 240, 433–442. [Google Scholar] [CrossRef]
- Li, C.; Fennessy, P. The Periosteum: A Simple Tissue with Many Faces, with Special Reference to the Antler-Lineage Periostea. Biol. Direct 2021, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Dwek, J.R. The Periosteum: What Is It, Where Is It, and What Mimics It in Its Absence? Skelet. Radiol. 2010, 39, 319–323. [Google Scholar] [CrossRef]
- Ortinau, L.C.; Wang, H.; Lei, K.; Deveza, L.; Jeong, Y.; Hara, Y.; Grafe, I.; Rosenfeld, S.B.; Lee, D.; Lee, B.; et al. Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells. Cell Stem Cell 2019, 25, 784–796. [Google Scholar] [CrossRef]
- Debnath, S.; Yallowitz, A.R.; McCormick, J.; Lalani, S.; Zhang, T.; Xu, R.; Li, N.; Liu, Y.; Yang, Y.S.; Eiseman, M.; et al. Discovery of a Periosteal Stem Cell Mediating Intramembranous Bone Formation. Nature 2018, 562, 133–139. [Google Scholar] [CrossRef]
- Bolander, J.; Herpelinck, T.; Luyten, F.P. Periosteum Derived Cells in Skeletal Tissue Regeneration. In Cell Engineering and Regeneration; Springer International Publishing: Cham, Switzerland, 2020; pp. 101–137. [Google Scholar]
- Pineault, K.M.; Song, J.Y.; Kozloff, K.M.; Lucas, D.; Wellik, D.M. Hox11 Expressing Regional Skeletal Stem Cells Are Progenitors for Osteoblasts, Chondrocytes and Adipocytes throughout Life. Nat. Commun. 2019, 10, 3168. [Google Scholar] [CrossRef]
- Duchamp de Lageneste, O.; Julien, A.; Abou-Khalil, R.; Frangi, G.; Carvalho, C.; Cagnard, N.; Cordier, C.; Conway, S.J.; Colnot, C. Periosteum Contains Skeletal Stem Cells with High Bone Regenerative Potential Controlled by Periostin. Nat. Commun. 2018, 9, 773. [Google Scholar] [CrossRef]
- Blaisdell, F.E. The Osteogenetic Function of the Periosteum. Arch. Surg. 1925, 11, 933. [Google Scholar] [CrossRef]
- Matthews, B.G.; Novak, S.; Sbrana, F.V.; Funnell, J.L.; Cao, Y.; Buckels, E.J.; Grcevic, D.; Kalajzic, I. Heterogeneity of Murine Periosteum Progenitors Involved in Fracture Healing. eLife 2021, 10, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Iuchi, T.; Kusuhara, H.; Ueda, Y.; Morotomi, T.; Isogai, N. Influence of Periosteum Location on the Bone and Cartilage in Tissue-Engineered Phalanx. J. Hand Surg. 2020, 45, 62.e1–62.e10. [Google Scholar] [CrossRef]
- Bilkay, U.; Tokat, C.; Helvaci, E.; Ozek, C.; Zekioglu, O.; Onat, T.; Songur, E. Osteogenic Capacities of Tibial and Cranial Periosteum: A Biochemical and Histologic Study. J. Craniofacial Surg. 2008, 19, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.R.; Zhu, Y.X.; Ryu, H.S.; Jacobs, C.R. Periosteal Progenitors Contribute to Load-Induced Bone Formation in Adult Mice and Require Primary Cilia to Sense Mechanical Stimulation. Stem Cell Res. Ther. 2018, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.Y.C.; O’Brien, C.A.; Slapetova, I.; Whan, R.M.; Knothe Tate, M.L. Live Tissue Imaging to Elucidate Mechanical Modulation of Stem Cell Niche Quiescence. Stem Cells Transl. Med. 2017, 6, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Rubak, J.M. Reconstruction of Articular Cartilage Defects with Free Periosteal Grafts. An Experimental Study. Acta Orthop. Scand. 1982, 53, 175–180. [Google Scholar] [CrossRef]
- Niedermann, B.; Boe, S.; Lauritzen, J.; Rubak, J.M. Glued Periosteal Grafts in the Knee. Acta Orthop. Scand. 1985, 56, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Angermann, P.; Riegels-Nielsen, P.; Pedersen, H. Osteochondritis Dissecans of the Femoral Condyle Treated with Periosteal Transplantation: Poor Outcome in 14 Patients Followed for 6–9 Years. Acta Orthop. Scand. 1998, 69, 595–597. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, S.W.; Keeley, F.W.; Salter, R.B. The Chondrogenic Potential of Free Autogenous Periosteal Grafts for Biological Resurfacing of Major Full-Thickness Defects in Joint Surfaces under the Influence of Continuous Passive Motion. An Experimental Investigation in the Rabbit. J. Bone Jt. Surg. Am. Vol. 1986, 68, 1017–1035. [Google Scholar] [CrossRef]
- Brittberg, M.; Lindahl, A.; Nilsson, A.; Ohlsson, C.; Isaksson, O.; Peterson, L. Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. N. Engl. J. Med. 1994, 331, 889–895. [Google Scholar] [CrossRef]
- Brittberg, M. Autologous Chondrocyte Implantation—Technique and Long-Term Follow-Up. Injury 2008, 39, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, P.; Pestka, J.M.; Kreuz, P.C.; Erggelet, C.; Schmal, H.; Suedkamp, N.P.; Steinwachs, M. Characteristic Complications after Autologous Chondrocyte Implantation for Cartilage Defects of the Knee Joint. Am. J. Sport. Med. 2008, 36, 2091–2099. [Google Scholar] [CrossRef]
- He, X.; Bougioukli, S.; Ortega, B.; Arevalo, E.; Lieberman, J.R.; McMahon, A.P. Sox9 Positive Periosteal Cells in Fracture Repair of the Adult Mammalian Long Bone. Bone 2017, 103, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Yoon, T.; Bae, H.-S.; Kang, M.-S.; Kim, B.J. Does Periosteum Promote Chondrogenesis? A Comparison of Free Periosteal and Perichondrial Grafts in the Regeneration of Ear Cartilage. Arch. Craniofacial Surg. 2021, 22, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.-Y.; Cheng, C.-M.; Kao, S.-W.; Liu, J.-W.; Chang, C.-S.; Harhaus, L.; Huang, J.-J. The Effect of Bone Inhibitors on Periosteum-Guided Cartilage Regeneration. Sci. Rep. 2020, 10, 8372. [Google Scholar] [CrossRef] [PubMed]
- De Bari, C.; Dell’accio, F.; Luyten, F.P. Human Periosteum-Derived Cells Maintain Phenotypic Stability and Chondrogenic Potential throughout Expansion Regardless of Donor Age. Arthritis Rheum. 2001, 44, 85–95. [Google Scholar] [CrossRef]
- Upton, J.; Sohn, S.A.; Glowacki, J. Neocartilage Derived from Transplanted Perichondrium. Plast. Reconstr. Surg. 1981, 68, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Wasteson, Å.; Ohlsén, L. Biosynthesis of Chondroitin Sulphate in Cartilage Regenerated from Perichondrium. Scand. J. Plast. Reconstr. Surg. 1977, 11, 17–22. [Google Scholar] [CrossRef]
- Skoog, T.; Olsen, L.; Sohn, S. Perichondrial Potential for Cartilaginous Regeneration. Scand. J. Plast. Reconstr. Surg. 1972, 6, 123. [Google Scholar] [PubMed]
- Sohn, S.; Ohlsen, L. Growth of Cartilage from a Free Perichondrial Graft Placed across a Defect in a Rabbit’s Trachea. Plast. Reconstr. Surg. 1974, 53, 55. [Google Scholar] [CrossRef] [PubMed]
- Muder, D.; Nilsson, O.; Vedung, T. Reconstruction of Finger Joints Using Autologous Rib Perichondrium—An Observational Study at a Single Centre with a Median Follow-up of 37 Years. BMC Musculoskelet. Disord. 2020, 21, 278. [Google Scholar] [CrossRef]
- Skoog, V.; Widenfalk, B.; Ohlsén, L.; Wasteson, A. The Effect of Growth Factors and Synovial Fluid on Chondrogenesis in Perichondrium. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1990, 24, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Srour, M.K.; Fogel, J.L.; Yamaguchi, K.T.; Montgomery, A.P.; Izuhara, A.K.; Misakian, A.L.; Lam, S.; Lakeland, D.L.; Urata, M.M.; Lee, J.S.; et al. Natural Large-Scale Regeneration of Rib Cartilage in a Mouse Model. J. Bone Miner. Res. 2015, 30, 297–308. [Google Scholar] [CrossRef]
- Dou, Z.; Muder, D.; Baroncelli, M.; Bendre, A.; Gkourogianni, A.; Ottosson, L.; Vedung, T.; Nilsson, O. Rat Perichondrium Transplanted to Articular Cartilage Defects Forms Articular-like, Hyaline Cartilage. Bone 2021, 151, 116035. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, P.S.J.M.; Kuijer, R.; Homminga, G.N.; Bulstra, S.K.; Geesink, R.G.T. A Retrospective Analysis of Two Independent Prospective Cartilage Repair Studies: Autogenous Perichondrial Grafting versus Subchondral Drilling 10 Years Post-Surgery. J. Orthop. Res. 2002, 20, 267–273. [Google Scholar] [CrossRef]
- Xue, K.; Zhang, X.; Qi, L.; Zhou, J.; Liu, K. Isolation, Identification, and Comparison of Cartilage Stem Progenitor/Cells from Auricular Cartilage and Perichondrium. Am. J. Transl. Res. 2016, 8, 732–741. [Google Scholar]
- Derks, M.; Sturm, T.; Haverich, A.; Hilfiker, A. Isolation and Chondrogenic Differentiation of Porcine Perichondrial Progenitor Cells for the Purpose of Cartilage Tissue Engineering. Cells Tissues Organs 2013, 198, 179–189. [Google Scholar] [CrossRef]
- Dounchis, J.S.; Goomer, R.S.; Harwood, F.L.; Khatod, M.; Coutts, R.D.; Amiel, D. Chondrogenic Phenotype of Perichondrium-Derived Chondroprogenitor Cells Is Influenced by Transforming Growth Factor-Beta 1. J. Orthop. Res. 1997, 15, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.; Goomer, R.S.; Takahashi, K.; Harwood, F.L.; Amiel, M.; Amiel, D. Transforming Growth Factor Beta One (TGF-Beta 1) Enhancement of the Chondrocytic Phenotype in Aged Perichondrial Cells: An in Vitro Study. Iowa Orthop. J. 2000, 20, 11–16. [Google Scholar] [PubMed]
- Gelse, K.; von der Mark, K.; Aigner, T.; Park, J.; Schneider, H. Articular Cartilage Repair by Gene Therapy Using Growth Factor-Producing Mesenchymal Cells. Arthritis Rheum. 2003, 48, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Nanci, A. Ten Cate’s Oral Histology: Development, Structure, and Function, 9th ed.; Elsevier Health: St. Louis, MO, USA, 2014; ISBN 9780323485241. [Google Scholar]
- Martens, W.; Bronckaers, A.; Politis, C.; Jacobs, R.; Lambrichts, I. Dental Stem Cells and Their Promising Role in Neural Regeneration: An Update. Clin. Oral Investig. 2013, 17, 1969–1983. [Google Scholar] [CrossRef]
- Longoni, A.; Utomo, L.; van Hooijdonk, I.; Bittermann, G.; Vetter, V.; Kruijt Spanjer, E.; Ross, J.; Rosenberg, A.; Gawlitta, D. The Chondrogenic Differentiation Potential of Dental Pulp Stem Cells. Eur. Cells Mater. 2020, 39, 121–135. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, Y.; Mohabatpour, F.; Zheng, L.; Papagerakis, S.; Chen, D.; Papagerakis, P. Dental Pulp Stem Cells: Isolation, Characterization, Expansion, and Odontoblast Differentiation for Tissue Engineering. In Methods in Molecular Biology; Humana Press Inc.: Clifton, NJ, USA, 2019; Volume 1922, pp. 91–101. [Google Scholar]
- Al Madhoun, A.; Sindhu, S.; Haddad, D.; Atari, M.; Ahmad, R.; Al-Mulla, F. Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief Review. Front. Cell Dev. Biol. 2021, 9, 2780. [Google Scholar] [CrossRef]
- Staniowski, T.; Zawadzka-Knefel, A.; Skośkiewicz-Malinowska, K. Therapeutic Potential of Dental Pulp Stem Cells According to Different Transplant Types. Molecules 2021, 26, 7423. [Google Scholar] [CrossRef]
- Fernandes, T.L.; Cortez de SantAnna, J.P.; Frisene, I.; Gazarini, J.P.; Gomes Pinheiro, C.C.; Gomoll, A.H.; Lattermann, C.; Hernandez, A.J.; Franco Bueno, D. Systematic Review of Human Dental Pulp Stem Cells for Cartilage Regeneration. Tissue Eng. Part B Rev. 2020, 26, 1–12. [Google Scholar] [CrossRef]
- Lo Monaco, M.; Gervois, P.; Beaumont, J.; Clegg, P.; Bronckaers, A.; Vandeweerd, J.-M.; Lambrichts, I. Therapeutic Potential of Dental Pulp Stem Cells and Leukocyte- and Platelet-Rich Fibrin for Osteoarthritis. Cells 2020, 9, 980. [Google Scholar] [CrossRef]
- Hilkens, P.; Gervois, P.; Fanton, Y.; Vanormelingen, J.; Martens, W.; Struys, T.; Politis, C.; Lambrichts, I.; Bronckaers, A. Effect of Isolation Methodology on Stem Cell Properties and Multilineage Differentiation Potential of Human Dental Pulp Stem Cells. Cell Tissue Res. 2013, 353, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Pilbauerova, N.; Schmidt, J.; Soukup, T.; Koberova Ivancakova, R.; Suchanek, J. The Effects of Cryogenic Storage on Human Dental Pulp Stem Cells. Int. J. Mol. Sci. 2021, 22, 4432. [Google Scholar] [CrossRef] [PubMed]
- Santanna, J.; Fernandez, T.L.; Bueno, D.F.; Pinheiro, C.C.; Hernandez, A.J. Cartilage Regeneration with Human Dental Pulp Stem Cells—A Systematic Review. Cytotherapy 2020, 22, S175–S178. [Google Scholar] [CrossRef]
- Li, P.-L.; Wang, Y.-X.; Zhao, Z.-D.; Li, Z.-L.; Liang, J.-W.; Wang, Q.; Yin, B.-F.; Hao, R.-C.; Han, M.-Y.; Ding, L.; et al. Clinical-Grade Human Dental Pulp Stem Cells Suppressed the Activation of Osteoarthritic Macrophages and Attenuated Cartilaginous Damage in a Rabbit Osteoarthritis Model. Stem Cell Res. Ther. 2021, 12, 260. [Google Scholar] [CrossRef]
- Cui, S.J.; Zhang, T.; Fu, Y.; Liu, Y.; Gan, Y.H.; Zhou, Y.H.; Yang, R.L.; Wang, X.D. DPSCs Attenuate Experimental Progressive TMJ Arthritis by Inhibiting the STAT1 Pathway. J. Dent. Res. 2020, 99, 446–455. [Google Scholar] [CrossRef]
- Mata, M.; Milian, L.; Oliver, M.; Zurriaga, J.; Sancho-Tello, M.; de Llano, J.J.M.; Carda, C. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study. Stem Cells Int. 2017, 2017, 8309256. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Clavell, R.; Martín de Llano, J.J.; Milián, L.; Oliver, M.; Mata, M.; Carda, C.; Sancho-Tello, M. Chondrogenic Potential of Human Dental Pulp Stem Cells Cultured as Microtissues. Stem Cells Int. 2021, 2021, 7843798. [Google Scholar] [CrossRef] [PubMed]
- Mashyakhy, M.; Alkahtani, A.; Abumelha, A.S.; Sharroufna, R.J.; Alkahtany, M.F.; Jamal, M.; Robaian, A.; Binalrimal, S.; Chohan, H.; Patil, V.R.; et al. Taurine Augments Telomerase Activity and Promotes Chondrogenesis in Dental Pulp Stem Cells. J. Pers. Med. 2021, 11, 491. [Google Scholar] [CrossRef]
- Kim, H.; Park, S.; Kim, K.; Ku, S.; Seo, J.; Roh, S. Enterococcus Faecium L-15 Cell-Free Extract Improves the Chondrogenic Differentiation of Human Dental Pulp Stem Cells. Int. J. Mol. Sci. 2019, 20, 624. [Google Scholar] [CrossRef]
- Dai, J.; Wang, J.; Lu, J.; Zou, D.; Sun, H.; Dong, Y.; Yu, H.; Zhang, L.; Yang, T.; Zhang, X.; et al. The Effect of Co-Culturing Costal Chondrocytes and Dental Pulp Stem Cells Combined with Exogenous FGF9 Protein on Chondrogenesis and Ossification in Engineered Cartilage. Biomaterials 2012, 33, 7699–7711. [Google Scholar] [CrossRef]
- Rizk, A.; Rabie, A.B.M. Human Dental Pulp Stem Cells Expressing Transforming Growth Factor Β3 Transgene for Cartilage-like Tissue Engineering. Cytotherapy 2013, 15, 712–725. [Google Scholar] [CrossRef]
- Fernandes, T.L.; Shimomura, K.; Asperti, A.; Pinheiro, C.C.G.; Caetano, H.V.A.; Oliveira, C.R.G.C.M.; Nakamura, N.; Hernandez, A.J.; Bueno, D.F. Development of a Novel Large Animal Model to Evaluate Human Dental Pulp Stem Cells for Articular Cartilage Treatment. Stem Cell Rev. Rep. 2018, 14, 734–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, B.-T.; Johnstone, R.M. Fate of the Transferrin Receptor during Maturation of Sheep Reticulocytes in Vitro: Selective Externalization of the Receptor. Cell 1983, 33, 967–978. [Google Scholar] [CrossRef]
- De Broe, M.E.; Wieme, R.J.; Logghe, G.N.; Roels, F. Spontaneous Shedding of Plasma Membrane Fragments by Human Cells In Vivo and In Vitro. Clin. Chim. Acta 1977, 81, 237–245. [Google Scholar] [CrossRef]
- Turturici, G.; Tinnirello, R.; Sconzo, G.; Geraci, F. Extracellular Membrane Vesicles as a Mechanism of Cell-to-Cell Communication: Advantages and Disadvantages. Am. J. Physiol.-Cell Physiol. 2014, 306, C621–C633. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Foster, N.C.; Man, K.L.; Brunet, M.; Hoey, D.A.; Cox, S.C.; Kimber, S.J.; El Haj, A.J. Hydrostatic Pressure Promotes Chondrogenic Differentiation and Microvesicle Release from Human Embryonic and Bone Marrow Stem Cells. Biotechnol. J. 2022, 17, 2100401. [Google Scholar] [CrossRef] [PubMed]
- Chiaradia, E.; Tancini, B.; Emiliani, C.; Delo, F.; Pellegrino, R.M.; Tognoloni, A.; Urbanelli, L.; Buratta, S. Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021, 10, 1763. [Google Scholar] [CrossRef]
- Muñiz-García, A.; Romero, M.; Falcόn-Perez, J.M.; Murray, P.; Zorzano, A.; Mora, S. Hypoxia-Induced HIF1α Activation Regulates Small Extracellular Vesicle Release in Human Embryonic Kidney Cells. Sci. Rep. 2022, 12, 1443. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of Secretion and Uptake of Exosomes and Other Extracellular Vesicles for Cell-to-Cell Communication. Nat. Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-Mediated Transfer of MRNAs and MicroRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- O’Brien, K.; Breyne, K.; Ughetto, S.; Laurent, L.C.; Breakefield, X.O. RNA Delivery by Extracellular Vesicles in Mammalian Cells and Its Applications. Nat. Rev. Mol. Cell Biol. 2020, 21, 585–606. [Google Scholar] [CrossRef]
- Latifkar, A.; Hur, Y.H.; Sanchez, J.C.; Cerione, R.A.; Antonyak, M.A. New Insights into Extracellular Vesicle Biogenesis and Function. J. Cell Sci. 2019, 132, jcs222406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, L.; Wang, M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, S.; Ruiz, M.; Toupet, K.; Jorgensen, C.; Noël, D. Mesenchymal Stem Cells Derived Exosomes and Microparticles Protect Cartilage and Bone from Degradation in Osteoarthritis. Sci. Rep. 2017, 7, 16214. [Google Scholar] [CrossRef] [PubMed]
- He, L.; He, T.; Xing, J.; Zhou, Q.; Fan, L.; Liu, C.; Chen, Y.; Wu, D.; Tian, Z.; Liu, B.; et al. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Protect Cartilage Damage and Relieve Knee Osteoarthritis Pain in a Rat Model of Osteoarthritis. Stem Cell Res. Ther. 2020, 11, 276. [Google Scholar] [CrossRef] [PubMed]
- Vonk, L.A.; van Dooremalen, S.F.J.; Liv, N.; Klumperman, J.; Coffer, P.J.; Saris, D.B.F.; Lorenowicz, M.J. Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Promote Human Cartilage Regeneration In Vitro. Theranostics 2018, 8, 906–920. [Google Scholar] [CrossRef] [PubMed]
- Tofiño-Vian, M.; Guillén, M.I.; Pérez Del Caz, M.D.; Silvestre, A.; Alcaraz, M.J. Microvesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells as a New Protective Strategy in Osteoarthritic Chondrocytes. Cell. Physiol. Biochem. 2018, 47, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, D.; Liu, Z.; Zhou, F.; Dai, J.; Wu, B.; Zhou, J.; Heng, B.C.; Zou, X.H.; Ouyang, H.; et al. Exosomes from Embryonic Mesenchymal Stem Cells Alleviate Osteoarthritis through Balancing Synthesis and Degradation of Cartilage Extracellular Matrix. Stem Cell Res. Ther. 2017, 8, 189. [Google Scholar] [CrossRef]
- Cavallo, C.; Merli, G.; Borzì, R.M.; Zini, N.; D’Adamo, S.; Guescini, M.; Grigolo, B.; Di Martino, A.; Santi, S.; Filardo, G. Small Extracellular Vesicles from Adipose Derived Stromal Cells Significantly Attenuate in Vitro the NF-ΚB Dependent Inflammatory/Catabolic Environment of Osteoarthritis. Sci. Rep. 2021, 11, 1053. [Google Scholar] [CrossRef]
- Ishikawa, J.; Takahashi, N.; Matsumoto, T.; Yoshioka, Y.; Yamamoto, N.; Nishikawa, M.; Hibi, H.; Ishigro, N.; Ueda, M.; Furukawa, K.; et al. Factors Secreted from Dental Pulp Stem Cells Show Multifaceted Benefits for Treating Experimental Rheumatoid Arthritis. Bone 2016, 83, 210–219. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M.; Li, W.; Yang, Y.; Zhang, Z.; Ma, R.; Wu, M. BMSC-Derived Small Extracellular Vesicles Induce Cartilage Reconstruction of Temporomandibular Joint Osteoarthritis via Autotaxin–YAP Signaling Axis. Front. Cell Dev. Biol. 2021, 9, 652. [Google Scholar] [CrossRef]
- Li, Q.; Yu, H.; Sun, M.; Yang, P.; Hu, X.; Ao, Y.; Cheng, J. The Tissue Origin Effect of Extracellular Vesicles on Cartilage and Bone Regeneration. Acta Biomater. 2021, 125, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering Exosomes for Targeted Drug Delivery. Theranostics 2021, 11, 3183–3195. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Xiang, S.; Zheng, Z.; Bian, Y.; Feng, B.; Weng, X. Chondrocytes-Derived Exosomal MiR-8485 Regulated the Wnt/β-Catenin Pathways to Promote Chondrogenic Differentiation of BMSCs. Biochem. Biophys. Res. Commun. 2020, 523, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xue, K.; Zhang, X.; Zheng, Z.; Liu, K. Exosomes Derived from Mature Chondrocytes Facilitate Subcutaneous Stable Ectopic Chondrogenesis of Cartilage Progenitor Cells. Stem Cell Res. Ther. 2018, 9, 318. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Hu, S.; Zhang, Z.; Wu, P.; Zhao, X.; Lin, R.; Liao, W.; Kang, Y. Exosomal MiR-95-5p Regulates Chondrogenesis and Cartilage Degradation via Histone Deacetylase 2/8. J. Cell. Mol. Med. 2018, 22, 5354–5366. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.-C.; Yuan, T.; Zhang, Y.-L.; Yin, W.-J.; Guo, S.-C.; Zhang, C.-Q. Exosomes Derived from MiR-140-5p-Overexpressing Human Synovial Mesenchymal Stem Cells Enhance Cartilage Tissue Regeneration and Prevent Osteoarthritis of the Knee in a Rat Model. Theranostics 2017, 7, 180–195. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurenkova, A.D.; Romanova, I.A.; Kibirskiy, P.D.; Timashev, P.; Medvedeva, E.V. Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells. Int. J. Mol. Sci. 2022, 23, 11169. https://doi.org/10.3390/ijms231911169
Kurenkova AD, Romanova IA, Kibirskiy PD, Timashev P, Medvedeva EV. Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells. International Journal of Molecular Sciences. 2022; 23(19):11169. https://doi.org/10.3390/ijms231911169
Chicago/Turabian StyleKurenkova, Anastasiia D., Irina A. Romanova, Pavel D. Kibirskiy, Peter Timashev, and Ekaterina V. Medvedeva. 2022. "Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells" International Journal of Molecular Sciences 23, no. 19: 11169. https://doi.org/10.3390/ijms231911169
APA StyleKurenkova, A. D., Romanova, I. A., Kibirskiy, P. D., Timashev, P., & Medvedeva, E. V. (2022). Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells. International Journal of Molecular Sciences, 23(19), 11169. https://doi.org/10.3390/ijms231911169