The Influence of the Severity of Early Chronic Kidney Disease on Oxidative Stress in Patients with and without Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Results
3. Discussion
4. Patients and Methods
4.1. Blood Samples
4.2. Inflammation Markers
IL-6 and TNF-α
4.3. Oxidants
4.3.1. Nitric Oxide
4.3.2. Lipoperoxides
4.4. Antioxidants
4.4.1. Superoxide Dismutase
4.4.2. Glutathione Peroxidase
4.4.3. Total Antioxidant Capacity
4.4.4. Human Fibroblast Growth Factor 23
4.4.5. Parathyroid Hormone Intact (PTH)
4.4.6. 25 (OH)-Vitamin D Direct
4.5. Statistical Analysis
4.6. Ethical Considerations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsushita, K.; Mahmoodi, B.K.; Woodward, M.; Emberson, J.; Jafar, T.H.; Jee, S.H.; Polkinghorne, K.; Shankar, A.; Smith, D.H.; Tonelli, M.; et al. Chronic Kidney Disease Prognosis Consortium. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 2012, 307, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.T.; Xu, Y.; Zhang, W.; Bundy, J.D.; Chen, C.-S.; Kelly, T.N.; Chen, J.; He, J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015, 88, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.M.; Yang, C.-W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef]
- O'Seaghdha, C.M.; Parekh, R.S.; Hwang, S.J.; Li, M.; Köttgen, A.; Coresh, J.; Yang, Q.; Fox, C.S.; Kao, W.H.L. The MYH9/APOL1 region and chronic kidney disease in European-Americans. Hum. Mol. Genet. 2011, 20, 2450–2456. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.R. Global revalence of chronic kidney disease-A systematic review and meta-analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed]
- National Kidney Foundation. KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am. J. Kidney Dis. 2012, 60, 850–886. [Google Scholar] [CrossRef] [PubMed]
- Grabias, B.M.; Konstantopoulos, K. The physical basis of renal fibrosis: Effects of altered hydrodynamic forces on kidney homeostasis. Am. J. Physiol. Ren. Physiol. 2014, 306, F473–F485. [Google Scholar] [CrossRef]
- Premaratne, E.; Verma, S.; Ekinci, E.I.; Theverkalam, G.; Jerums, G.; MacIsaac, R.J. The impact of hyperfiltration on the diabetic kidney. Diabetes Metab. 2015, 41, 5–17. [Google Scholar] [CrossRef]
- Akchurin, O.M.; Kaskel, F. Update on inflammation in chronic kidney disease. Blood Purif. 2015, 39, 84–92. [Google Scholar] [CrossRef]
- Jha, J.C.; Banal, C.; Chow, B.S.; Cooper, M.E.; Jandeleit-Dahm, K. Diabetes and kidney disease: Role of oxidative stress. Antioxid Redox Signal. 2016, 25, 657–684. [Google Scholar] [CrossRef] [Green Version]
- Rysz, J.; Gluba-Brzózka, A.; Franczyk, B.; Jabłonowski, Z.; Ciałkowska-Rysz, A. Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome. Int. J. Mol. Sci. 2017, 18, 1702. [Google Scholar] [CrossRef]
- Mihai, S.; Codrici, E.; Popescu, I.D.; Enciu, A.-M.; Albulescu, L.; Necula, L.G.; Mambet, C.; Anton, G.; Tanase, C. Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. J. Immunol. Res. 2018, 2018, 2180373. [Google Scholar] [CrossRef] [PubMed]
- Luczak, M.; Formanowicz, D.; Pawliczak, E.; Wanic-Kossowska, M.; Wykretowicz, A.; Figlerowicz, M. Chronic kidney disease-related atherosclerosis-proteomic studies of blood plasma. Proteome Sci. 2011, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Poulianiti, K.P.; Kaltsatou, A.; Mitrou, G.I.; Jamurtas, A.Z.; Koutedakis, Y.; Maridaki, M.; Stefanidis, I.; Sakkas, G.K.; Karatzaferi, C. Systemic redox imbalance in chronic kidney disease. Oxid. Med. Cell Longev. 2016, 2016, 8598253. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [Google Scholar] [CrossRef]
- Gorin, Y.; Block, K.; Hernandez, J.; Bhandari, B.; Wagner, B.; Barnes, J.L.; Abboud, H.E. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J. Biol. Chem. 2005, 280, 39616–39626. [Google Scholar] [CrossRef]
- Perez-Gomez, M.V.; Bartsch, L.-A.; Castillo-Rodriguez, E.; Fernandez-Prado, R.; Fernandez-Fernandez, B.; Martin-Cleary, C.; Gracia-Iguacel, C.; Ortiz, A. Clarifying the concept of chronic kidney disease for non-nephrologists. Clin. Kidney J. 2019, 12, 258–261. [Google Scholar] [CrossRef]
- Perkovic, V.; Craig, J.C.; Chailimpamontree, W.; Fox, C.S.; Garcia-Garcia, G.; Gharbi, M.B.; Jardine, M.J.; Okpechi, I.G.; Pannu, N.; Stengel, B.; et al. Action plan for optimizing the design of clinical trials in chronic kidney disease. Kidney Int. Suppl. 2017, 2, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Naber, T.; Purohit, S. Chronic kidney disease: Role of diet for a reduction in the severity of the disease. Nutrients 2021, 13, 3277. [Google Scholar] [CrossRef]
- Hansrivijit, P.; Oli, S.; Khanal, R.; Ghahramani, N.; Thongprayoon, C.; Cheungpasitporn, W. Mediterranean diet and the risk of chronic kidney disease: A systematic review and meta-analysis. Nephrology 2020, 25, 913–918. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Matsushita, K.; Sang, Y.; Brunskill, N.J.; Carrero, J.J.; Chodick, G.; Hasegawa, T.; Heerspink, H.L.; Hirayama, A.; Landman, G.W.D.; et al. Serum potassium and adverse outcomes across the range of kidney function: A CKD Prognosis Consortium meta-analysis. Eur. Heart J. 2018, 39, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.; Kalantar-Zadeh, K.; Lu, J.L.; Turban, S.; Anderson, J.E.; Kovesdy, C.P. Association of hypo- and hyperkalemia with disease progression and mortality in males with chronic kidney disease: The role of race. Nephron. Clin. Pract. 2012, 120, c8–c16. [Google Scholar] [CrossRef] [PubMed]
- Einhorn, L.M.; Zhan, M.; Hsu, V.D.; Walker, L.D.; Moen, M.F.; Seliger, S.L.; Weir, M.R.; Fink, J.C. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch. Intern. Med. 2009, 169, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Baum, N.; Dichoso, C.C.; Carlton, C.E. Blood urea nitrogen and serum creatinine. Physiology and interpretations. Urology 1975, 5, 583–588. [Google Scholar] [PubMed]
- Delanaye, P.; Cavalier, E.; Pottel, H. Serum creatinine: Not so simple! Nephron 2017, 136, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, R.; Eknoyan, G. Acute interstitial nephritis-a reappraisal and update. Clin. Nephrol. 2014, 82, 149–162. [Google Scholar] [CrossRef]
- Pasala, S.; Carmody, J.B. How to use… serum creatinine, cystatin C and GFR. Arch. Dis. Child. Educ. Pract. Ed. 2017, 102, 37–43. [Google Scholar]
- Ramos, L.F.; Shintani, A.; Ikizler, T.A. Oxidative stress and inflammation are associated with adiposity in moderate to severe CKD. J. Am. Soc. Nephrol. 2008, 19, 593–599. [Google Scholar]
- Oberg, B.P.; McMenamin, E.; Lucas, F.L.; McMonagle, E.; Morrow, J.; Ikizler, T.A.; Himmelfarb, J. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004, 65, 1009–1016. [Google Scholar]
- Balmukhanova, A.; Kabulbayev, K.; Alpay, H.; Kanatbayeva, A.; Balmukhanova, A. FGF-23 and phosphate in children with chronic kidney disease: A cross-sectional study in Kazakhstan. Medicina 2020, 57, 15. [Google Scholar] [CrossRef]
- Pazianas, M.; Miller, P.D. Current understanding of mineral and bone disorders of chronic kidney disease and the scientific grounds on the use of exogenous parathyroid hormone in its management. J. Bone Metab. 2020, 27, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fraser, W.D. Hyperparathyroidism. Lancet 2009, 374, 145–158. [Google Scholar] [CrossRef]
- Pontoriero, G.; Cozzolino, M.; Locatelli, F.; Brancaccio, D. CKD patients: The dilemma of serum PTH levels. Nephron Clin. Pract. 2010, 116, c263–c268. [Google Scholar] [CrossRef] [PubMed]
- Hofman-Bang, J.; Martuseviciene, G.; Santini, M.A.; Olgaard, K.; Lewin, E. Increased parathyroid expression of klotho in uremic rats. Kidney Int. 2010, 78, 1119–1127. [Google Scholar] [CrossRef]
- Hocher, B.; Armbruster, F.P.; Stoeva, S.; Reichetzeder, C.; Grön, H.J.; Lieker, I.; Khadzhynov, D.; Slowinski, T.; Roth, H.J. Measuring parathyroid hormone (PTH) in patients with oxidative stress--do we need a fourth generation parathyroid hormone assay? PLoS ONE 2012, 7, e40242. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, J.; De Rosa, M.; Sorriento, D.; Prevete, N.; Fiordelisi, A.; Ciccarelli, M.; Trimarco, B.; De Luca, N.; Iaccarino, G. Parathyroid hormone causes endothelial dysfunction by inducing mitochondrial ROS and specific oxidative signal transduction modifications. Oxid. Med. Cell Longev. 2018, 2018, 9582319. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Ni, Z.; Wang, X.Q.; Oveisi, F.; Zhou, X.J. Downregulation of nitric oxide synthase in chronic renal insufficiency: Role of excess PTH. Am. J. Physiol. 1998, 274, F642–F649. [Google Scholar] [CrossRef]
- Berdanier, C.D.; Berdanier, L.A. Advanced Nutrition Macronutrients, Micronutrients, and Metabolism, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Garofalo, C.; Provenzano, M.; Andreucci, M.; Pisani, A.; De Nicola, L.; Conte, G.; Borrelli, S. Predictive effect of salt intake on patient and kidney survival in non-dialysis CKD: Competing risk analysis in older versus younger patients under nephrology care. Nephrol. Dial. Transplant. 2020, 36, 2232–2240. [Google Scholar] [CrossRef]
- Kaysen, G.A.; Eiserich, J.P. The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. J. Am. Soc. Nephrol. 2004, 15, 538–548. [Google Scholar] [CrossRef]
- Ruiz-Andres, O.; Sanchez-Niño, M.D.; Moreno, J.A.; Ruiz-Ortega, M.; Ramos, A.M.; Sanz, A.B.; Ortiz, A. Downregulation of kidney protective factors by inflammation: Role of transcription factors and epigenetic mechanisms. Am. J. Physiol. Ren. Physiol. 2016, 311, F1329–F1340. [Google Scholar] [CrossRef]
- Jacobson, M.H.; Liu, M.; Wu, Y.; Furth, S.; Warady, B.; Trachtman, H.; Trasande, L. Oxidant stress and renal function among children with chronic kidney disease: A repeated measures study. Sci. Rep. 2020, 10, 3129. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P. The role of inflammation in the anaemia of end-stage renal disease. Nephrol. Dial. Transplant. 2001, 16, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Gafter-Gvili, A.; Schechter, A.; Rozen-Zvi, B. Iron deficiency anemia in chronic kidney disease. Acta Haematol. 2019, 142, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Podkowińska, A.; Formanowicz, D. Chronic kidney disease as oxidative stress- and inflammatory-mediated cardiovascular disease. Antioxidants 2020, 9, 752. [Google Scholar] [CrossRef]
- Vestergaard, S.V.; Heide-Jørgensen, U.; van Haalen, H.; James, G.; Hedman, K.; Birn, H.; Thomsen, R.W.; Christiansen, C.F. Risk of anemia in patients with newly identified chronic kidney disease-A population-based cohort study. Clin. Epidemiol. 2020, 12, 953–962. [Google Scholar] [CrossRef]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef]
- Moncada, S.; Higgs, E.A. The discovery of nitric oxide and its role in vascular biology. Br. J. Pharmacol. 2006, 147, S193–S201. [Google Scholar] [CrossRef]
- Tatematsu, S.; Wakino, S.; Kanda, T.; Homma, K.; Yoshioka, K.; Hasegawa, K.; Sugano, N.; Kimoto, M.; Saruta, T.; Hayashi, K. Role of nitric oxide-producing and -degrading pathways in coronary endothelial dysfunction in chronic kidney disease. J. Am. Soc. Nephrol. 2007, 18, 741–749. [Google Scholar] [CrossRef]
- Amador-Martínez, I.; Pérez-Villalva, R.; Uribe, N.; Cortés-González, C.; Bobadilla, N.A.; Barrera-Chimal, J. Reduced endothelial nitric oxide synthase activation contributes to cardiovascular injury during chronic kidney disease progression. Am. J. Physiol Ren. Physiol. 2019, 317, F275–F285. [Google Scholar] [CrossRef]
- Han, T.H.; Hyduke, D.R.; Vaughn, M.W.; Fukuto, J.M.; Liao, J.C. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions. Proc. Natl. Acad. Sci. USA 2002, 99, 7763–7768. [Google Scholar] [CrossRef]
- Allen, B.W.; Stamler, J.S.; Piantadosi, C.A. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol. Med. 2009, 15, 452–460. [Google Scholar] [CrossRef]
- Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wang, R.; Liu, D.; Zuo, M.; Zhao, C.; Zhang, T.; Li, W. Protective effects of kaempferitrin on advanced glycation end products induce mesangial cell apoptosis and oxidative stress. Int. J. Mol. Sci. 2018, 19, 3334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, T.; Sano, K.; Takakura, K.; Saito, I.; Shinohara, Y.; Asano, T.; Yasuhara, H. Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Stroke 1998, 29, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Crawford, A.; Fassett, R.G.; Coombes, J.; Kunde, D.; Ahuja, K.; Robertson, I.K.; Ball, M.J.; Geraghty, D. Glutathione peroxidase, superoxide dismutase and catalase genotypes and activities and the progression of chronic kidney disease. Nephrol. Dial. Transplant. 2011, 26, 2806–2813. [Google Scholar] [CrossRef] [PubMed]
- Earle, K.A.; Zitouni, K.; Pepe, J.; Karaflou, M.; Godbold, J., Jr. Modulation of endogenous antioxidant defense and the progression of kidney disease in multi-heritage groups of patients with type 2 diabetes: PRospective EValuation of Early Nephropathy and its Treatment (PREVENT). J. Transl. Med. 2016, 14, 234. [Google Scholar] [CrossRef]
- Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radic. Biol. Med. 2000, 29, 1106–1111. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Wang, S.; Yin, W.; Wang, Z. Ibrolipim attenuates early-stage nephropathy in diet-induced diabetic minipigs: Focus on oxidative stress and fibrogenesis. Biomed. Pharmacother. 2020, 129, 110321. [Google Scholar] [CrossRef]
- Levey, A.S.; Eckardt, K.U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; Zeeuw, D.D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from kidney disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef]
- Thipsawat, S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab. Vasc. Dis. Res. 2021, 18, 14791641211058856. [Google Scholar] [CrossRef] [PubMed]
- Earle, K.; Viberti, G.C. Familial, hemodynamic and metabolic factors in the predisposition to diabetic kidney disease. Kidney Int. 1994, 45, 434–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No DM | DM | ||||||||
---|---|---|---|---|---|---|---|---|---|
Stage 1 N = 8 | Stage 2 N = 34 | Stage 3 N = 46 | K-W p | Stage 1 N = 10 | Stage 2 N = 37 | Stage 3 N = 53 | K-W p | M-W p | |
Body Mass Index (Kg/m2) | 25.64 ± 4.1 | 28.97 ± 5.82 | 28.17 ± 6.72 | 0.4 | 29.9 ± 5.1 | 29.2 ± 5.4 | 28.94 ± 7.19 | 0.7 | 0.3 |
SBP (mmHg) | 130 ± 8.4 | 126.1 ± 21.9 | 129 ± 23 | 0.8 | 128.5 ± 17.7 | 120.5 ± 36.6 | 129.36 ±3 1.42 | 0.6 | 0.6 |
DBP (mmHg) | 78 ± 13.3 | 76.2 ± 12.6 | 82 ± 16 | 0.2 | 73.9 ± 3.2 | 72.8 ± 22.3 | 75.96 ± 18.5 | 0.8 | 0.4 |
Hemoglobin (mg/dL) | 14.61 ± 0.61 | 14 ± 1.4 | 13.02 ± 2.13 | 0.04 * | 13.9 ± 1.2 | 13.48 ± 2.1 | 12.39 ± 1.69 | <0.01 ** | <0.01 ** |
Hematocrit (%) | 43.17 ± 1.77 | 41 ± 8.2 | 40 ± 6 | 0.1 | 41.6 ± 3.7 | 39.9 ± 6.5 | 37.26 ± 4.98 | <0.01 ** | <0.01 ** |
Glucose (mg/dL) | 90.5 ± 3.1 | 94.02 ± 16.1 | 93.4 ± 23.4 | 0.8 | 149.5 ± 62 | 158.86 ± 62.6 | 144.18 ± 70.46 | 0.3 | <0.01 ** |
Creatinine (mg/dL) | 0.77 ± 0.07 | 1.02 ± 0.19 a,b | 1.65 ± 0.4 | <0.01 * | 0.7 ± 0.15 | 0.96 ± 0.17 | 1.43 ± 0.31 | <0.01 ** | 0.04 ** |
Total cholesterol (mg/dL) | 173.4 ± 31 | 186 ± 55.1 | 179.3 ± 36.1 | 0.9 | 169.6 ± 83.3 | 177.5 ± 39.9 | 176.55 ± 47.09 | 0.2 | 0.2 |
HDL (mg/dL) | 38.7 ± 2.2 | 41 ± 11.7 | 44.6 ± 14.2 | 0.6 | 47.4 ± 15.2 | 38.6 ± 8.6 | 42.08 ± 11.21 | 0.2 | 0.8 |
LDL (mg/dL) | 35.3 ± 21 | 31.3 ± 14.2 | 30.4 ± 12.4 | 0.9 | 37.5 ± 25.04 | 36.4 ± 15.3 | 39.09 ± 22.35 | 0.9 | 0.04 ** |
VLDL | 97.6 ± 28.7 | 109.5 ± 49.2 | 103.1 ± 27.4 | 0.8 | 86.3 ± 53.1 | 103.3 ± 37.6 | 91.98 ± 36.9 | 0.2 | 0.04 ** |
Triglycerides (mg/dL) | 158 ± 100.4 | 161.03 ± 76 | 153 ± 65.14 | 0.9 | 188.1 ± 41.6 | 178.52 ± 13.21 | 193.08 ± 15.45 | 0.9 | 0.051 |
Albumin (mg/dL) | 2.95 ± 2.3 | 3.6 ± 0.45 | 3.6 ± 0.62 | 0.9 | 2.6 ± 0.94 | 3.9 ± 0.43 | 3.76 ± 1.1 | 0.3 | 0.7 |
Sodium (mmol/L) | 138.4 ± 5.9 | 138.3 ± 7.7 | 138 ± 4.7 | 0.2 | 138.1 ± 2.8 | 136.03 ± 4.8 | 136.88 ± 5.21 | 0.7 | <0.01 ** |
Potassium (mmol/L) | 4.01 ± 0.28 b | 4.4 ± 0.63 | 4.6 ± 0.52 | <0.01 * | 4.23 ± 0.61 | 4.52 ± 0.67 | 4.71 ± 0.83 | 0.5 | 0.4 |
Chlorine (mmol/L) | 105.3 ± 5.02 | 107.3 ± 4.12 | 106 ± 5.5 | 0.6 | 105.2 ± 3.8 | 102.2 ± 6.2 | 104.56 ± 6.01 | 0.3 | <0.01 ** |
Calcium (mmol/L) | 8.9 ± 1.2 | 8.9 ± 1.3 | 8.9 ± 0.52 | 0.3 | 9.2 ± 1.3 | 9.1 ± 0.52 | 8.92 ± 0.53 | 0.3 | 0.9 |
Phosphorus (mmol/L) | 3.9 ± 0.52 | 3.6 ± 0.9 | 3.6 ± 0.7 | 0.5 | 3.5 ± 0.31 | 3.42 ± 0.67 | 3.68 ± 0.62 | 0.3 | 0.8 |
Magnesium (mmol/L) | 1.9 ± 0.6 | 2.04 ± 0.61 | 1.9 ± 0.3 | 0.4 | 1.8 ± 0.16 | 1.83 ± 0.24 | 1.92 ± 0.33 | 0.3 | 0.3 |
FGF 23 (ng/mL) | 97.1 ± 80.8 | 169.3 ± 82.2 | 89.04 ± 26.5 | 0.1 | 269.78 ± 110.9 | 118.14 ± 59.68 | 103.59 ± 22.83 | 0.05 | 0.7 |
Vitamin D (nmol/L) | 52.5 ± 31.9 | 48 ± 25 | 46.7 ± 29.1 | 0.6 | 26.8 ± 19.8 | 32.28 ± 4.39 | 26.89 ± 18.97 | 0.6 | <0.01 ** |
Parathyroid hormone (pg/mL) | 31.6 ± 17.5 | 35.4 ± 26.3 | 56.9 ± 8.7 | 0.03 * | 56 ± 13.51 | 59.9 ± 5.9 | 76.76 ± 6.41 | 0.1 | <0.01 ** |
GFR (mL/min/1.73 m2) | 115.1 ± 14.4 | 74.3 ± 8.7 a,b | 41.8 ± 8.5 | <0.01 * | 100.4 ± 10.9 | 74.92 ± 8.45 | 45.45 ± 8.9 | <0.01 ** | 0.7 |
24 h urine protein | 116.1 ± 62 | 73 ± 26.3 | 97.6 ± 25.4 | 0.9 | 154.7 ± 145.2 | 82.5 ± 69.85 | 103.66 ± 61.54 | 0.7 | 0.4 |
No DM | DM | |||||||
---|---|---|---|---|---|---|---|---|
Stage 1 N = 8 | Stage 2 N = 34 | Stage 3 N = 46 | K-W p | Stage 1 N = 8 | Stage 2 N = 34 | Stage 3 N = 46 | K-W p | |
Oxidants | ||||||||
Lipoperoxides (mM) | 46.7 ± 44 | 24.6 ± 12.03 | 30.2 ± 23 | 0.5 | 35.44 ± 18.32 | 24.24 ± 3.06 | 26.54 ± 16.68 | 0.1 |
Nitric oxide (µg/mL) | 2337.5 ± 1979.7 c | 2230.9 ± 1680.9 | 1591.7 ± 630.6 a | <0.01 * | 2300.43 ± 1279.29 | 2258.58 ± 566.12 | 2658.18 ± 575.11 | 0.9 |
Antioxidants | ||||||||
Superoxide dismutase (U/L) | 14.5 ± 3.9 | 15.1 ± 4.1 c | 19.4 ± 8.5 b | 0.04 * | 12.71 ± 3.74 | 13.4 ± 4.64 | 15.83 ± 7.06 | 0.1 |
Glutathione peroxidase (nmol/min/mL) | 10.62 ± 0.21 | 10.8 ± 2.28 | 10.8 ± 0.5 | 0.1 | 10.77 ± 0.13 | 10.87 ± 0.35 | 10.87 ± 0.28 | 0.5 |
Total Antioxidant Capacity (µM) | 1.64 ± 0.51 | 1.6 ± 0.64 | 1.53 ± 0.7 | 0.7 | 1.42 ± 0.54 | 1.24 ± 0.39 | 1.21 ± 0.46 | 0.4 |
Pro-inflammatory cytokines | ||||||||
Interleukine 6 (pg/mL) | 47.5 ± 12.02 | 46.32 ± 12.5 | 45.1 ± 10.2 | 0.9 | 60.32 ± 32.75 | 55.12 ± 23.32 | 58.09 ± 21.73 | 0.8 |
Tumor Necrosis Factor α (pg/mL) | 6.32 ± 0.93 | 6.3 ± 1.6 | 6.3 ± 2.5 | 0.5 | 8.16 ± 2.6 | 6.62 ± 1.49 | 6.92 ± 2.3 | 0.3 |
No DM | DM | p | |
---|---|---|---|
Oxidants | |||
Lipoperoxides (mM) | 29.3 ± 22.40 | 26.58 ± 24.25 | 0.1 |
Nitric oxide (µg/mL) | 1921.99 ± 1328.03 | 2470.63 ± 422.83 | <0.01 * |
Antioxidants | |||
Superoxide dismutase (U/L) | 17.24 ± 7.02 | 14.64 ± 6.10 | <0.01 * |
Glutathione peroxidase (nmol/min/mL) | 10.79 ± 0.38 | 10.86 ± 0.30 | <0.01 * |
Total Antioxidant Capacity (µM) | 1.57 ± 0.63 | 1.24 ± 0.44 | <0.01 * |
Pro-inflammatory cytokines | |||
Interleukine 6 (pg/mL) | 45.81 ± 11.25 | 57.23 ± 23.37 | <0.01 * |
Tumor Necrosis Factor α (pg/mL) | 6.31 ± 2.01 | 6.932.09 | <0.01 * |
No DM | T2DM | p | |
---|---|---|---|
Age | 50 ± 22 | 62 ± 14 | <0.01 * |
Gender | |||
Male (n) | 39 | 42 | 0.431 |
Female (n) | 49 | 58 | |
Stage | |||
1 (n) | 8 | 10 | 0.962 |
2 (n) | 34 | 37 | |
3 (n) | 46 | 53 | |
Hypertension | |||
Hypertensive (n) | 71 | 65 | <0.01 ** |
Not hypertensive (n) | 17 | 35 | |
Alcohol | |||
Alcohol consumption (n) | 13 | 7 | 0.068 |
No alcohol consumption (n) | 75 | 93 | |
Tobacco consumption | |||
Smoker (n) | 38 | 55 | 0.917 |
Nonsmoker (n) | 50 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Sierra, J.; Pazarín-Villaseñor, L.; Yanowsky-Escatell, F.G.; Díaz-de la Cruz, E.N.; García-Sánchez, A.; Cardona-Muñoz, E.G.; Munguía-Galaviz, F.J.; de Alba-Razo, A.; Miranda-Díaz, A.G. The Influence of the Severity of Early Chronic Kidney Disease on Oxidative Stress in Patients with and without Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2022, 23, 11196. https://doi.org/10.3390/ijms231911196
Andrade-Sierra J, Pazarín-Villaseñor L, Yanowsky-Escatell FG, Díaz-de la Cruz EN, García-Sánchez A, Cardona-Muñoz EG, Munguía-Galaviz FJ, de Alba-Razo A, Miranda-Díaz AG. The Influence of the Severity of Early Chronic Kidney Disease on Oxidative Stress in Patients with and without Type 2 Diabetes Mellitus. International Journal of Molecular Sciences. 2022; 23(19):11196. https://doi.org/10.3390/ijms231911196
Chicago/Turabian StyleAndrade-Sierra, Jorge, Leonardo Pazarín-Villaseñor, Francisco Gerardo Yanowsky-Escatell, Elodia Nataly Díaz-de la Cruz, Andrés García-Sánchez, Ernesto Germán Cardona-Muñoz, Francisco Javier Munguía-Galaviz, Alejandra de Alba-Razo, and Alejandra Guillermina Miranda-Díaz. 2022. "The Influence of the Severity of Early Chronic Kidney Disease on Oxidative Stress in Patients with and without Type 2 Diabetes Mellitus" International Journal of Molecular Sciences 23, no. 19: 11196. https://doi.org/10.3390/ijms231911196
APA StyleAndrade-Sierra, J., Pazarín-Villaseñor, L., Yanowsky-Escatell, F. G., Díaz-de la Cruz, E. N., García-Sánchez, A., Cardona-Muñoz, E. G., Munguía-Galaviz, F. J., de Alba-Razo, A., & Miranda-Díaz, A. G. (2022). The Influence of the Severity of Early Chronic Kidney Disease on Oxidative Stress in Patients with and without Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 23(19), 11196. https://doi.org/10.3390/ijms231911196