Sequence Analysis of Novel Staphylococcus aureus Lineages from Wild and Captive Macaques
Abstract
:1. Introduction
2. Results
2.1. MLST and Phylogeny Based on 154 Core Genomic Markers
2.2. Description of the Clonal Complexes and Their Genomic Islands
- GI between SCC integration site (orfX) and dusC around position 38,000 in the genome. This is the GI that harbours the enterotoxin homologue ORF CM14 in CC93, CC121, and CC772, or the enterotoxin gene seh in CC1, but these particular genes were absent from all study strains. There are about 40–45 genes or putative genes associated with this island, out of which zero to 15 can be found in any S. aureus sequence, present in CC-specific combinations and usually in a conserved sequential arrangement. In addition, there could be some transposase genes. All study strains but two carried a GI in this position, and twelve variants could be distinguished
- GI immediately downstream of dusC. There are about 25 genes or putative genes associated with this position, and different CCs of S. aureus carry 0 to 16 (in CC45) of them, again in CC-specific patterns and conserved order. All study strains harboured a GI in this position, and there were ten distinct variants consisting of one to twelve genes.
- GI with lpl genes (tandem lipoprotein genes), position 40–80,000. Strains harboured varying numbers of lpl gene copies, in some cases accompanied by lipC3 (putative lipase class 3) and hysA (hyaluronate lyase) genes.
- GI adjacent to the first opp-operon, approx. position 170,000. All strains carried a GI in this position, and there were five distinct variants. The most common one (consisting of 3 genes) can also be observed in the CC8 sequence of COL (CP000046.1). In three strains, only the first of these genes was present, being truncated as in the CC30 strain MRSA-252 (BX571856.1). In one strain, this gene alone was detected followed by 2 transposase genes. In two strains, a 10-genes ABC transporter operon was found as in CC705 RF122 (AJ938182.1), although in one of them, this was followed by yet another gene (Table 2/Supplemental File S4).
- GI around position 280,000. In all strains, this position was occupied by a GI. Discounting the variability of the copy number of the DUF600 gene for a “putative protein”, sixteen different variants were identified. Four variants, in eight strains, included the esxC/esxB/esaE/esxD/essD gene cluster apparently associated with virulence [41]. Note that the adjacent and related genes around esxA were, contrary to the esxB cluster, always present and thus considered as a core genome. In one strain, ST3268-MRSA-VT, this island served as an integration site for a transposon carrying the beta-lactamase operon (blaZ/I/R).
- GI with ssl (staphylococcal superantigen like protein) and lpl genes around position 400,000, consisting of ssl01 to ssl10, a restriction–modification system hsdM/S-ssl, ssl11, and slap, followed by a variable number of lpl genes and lipC3 (putative lipase class 3). It was always present, although several strains lacked the ssl06 gene (by array as well as by sequencing, ruling out annotation artefacts) or lpl/lipC3 genes.
- GI adjacent to the second opp-operon, approx. position 900,000. This position is occupied by genes encoding oligopeptide ABC transporter systems. One variant, oppB/C/D/F/A-GI, is related to sequences from CC93, CC398, and CC705. It was present in two of the lineages (ST4168 and ST7748). The other variant is appA/D/F/B/C, being related to the corresponding GI in CC1, CC5, CC8, or CC22. This one was present in the other twenty strains.
- GI carrying ABC transporter/bacteriocin genes, position 1,500,000. Six lineages (Table 2) harboured a GI with sagC/D genes encoding a bacteriocin biosynthesis operon, an ABC transporter system (Q2YYD5, D9RHF8) and stsA, encoding a stapholysin-like polypeptide (AJ938182.1 (1,504,962 to 1,505,114)). Four had an apparently truncated variant thereof that lacked sagC/D. Two carried only Q931R4 (major facilitator superfamily transporter as in CC5, CC15, CC30, CC97, and CC188) instead, and in ten strains, this position was not occupied by any GIs.
- GI around position 1,800,000. This is a large GI consisting of a variable cast of genes, including a restriction–modification system hsdM/S-spl, several serine proteases (spl genes), the enterotoxin gene cluster egc (seg, sei, selm, seln, selo, selu), the leukocidin genes lukD/E, a lantibiotic epidermin biosynthesis cluster (epi genes), a putative bacteriocin (bsaX), and several genes encoding “putative proteins”. All strains harboured a GI in this position. All of them included lukD/E, and the egc enterotoxin gene cluster was present in six (see below).
- GI carrying sspP/sspS, staphopain A/staphostatin A genes, position 1,950,000 to 2,000,000. This island appears to be present in all S. aureus strains and in at least some S. schweitzeri but is absent from S. argenteus and S. roterodami. It was detected in all study strains.
- GI with lpl genes, position 2,500,000. This island usually consists of a non-coding RNA (as in N315, BA000018.3 (2,544,997 to 2,545,070); “SAU-19”, see [42]), a variable number of lpl genes, lipC3, some genes encoding “putative proteins”, and a type II restriction–modification system (TII-RM; endonuclease plus methyltransferase). For the latter, five alleles that strictly correlate with CC affiliation are distinguished (sau3AI; M32470.1 as in CC9/15/121/188; sau96I; X53096.1 as in CC25; sauRF122; AJ938182.1 as in CC705; sauS0385; AM990992.1 as in CC398 and sauUSI; CP000046.1 as in most other CCs, including CC1/5/8/30). All these five variants were found among the study strains (Table 2/Supplemental File S4).
- GI carrying sasG, around position 2,530,000. Eighteen out of 22 strains carried a GI in this position, but only eleven were positive for the sasG gene. This gene is discussed separately (see below).
- Staphyloxanthin gene cluster, around position 2,650,000, consisting of crtN, crtM, crtQ, crtP, and crtO. It is known to be absent from S. argenteus and S. aureus CC152, whereas deviant alleles can be observed in S. roterodami, S. schweitzeri, and S. aureus CC93. This cluster was present in all isolates, and none of the known deviant alleles were identified.
- Cobalt transporter GI, around position 2,770,000. This GI invariably consists of cbiQ/O (putative cobalt ABC transporter, transmembrane permease, and ATP-binding protein) and genes encoding a transmembrane protein and an adenosyltransferase. It was present in twenty strains.
- GI carrying the collagen adhesin gene cna, around position 2,780,000. This gene was detected by array hybridisation as well as by sequence analyses in ten out of 22 strains.
Sequence Type, (Isolate ID) | GI No. 1 Upstream dusC, Approx. Pos. 38,000 | GI No. 2 Downstream dusC, Approx. Pos. 38,000 | GI No. 3, Approx. Pos. 40–80,000 | GI No. 4, Approx. Pos. 170,000 | GI No. 5, Approx. Pos. 280,000 | GI No. 6 (ssl/lpl), Approx. Pos. 400,000 | GI No. 7, Approx. Pos. 900,000 | GI No. 8, Pos. 1,500,000 | GI No. 9 (egc and lukD/E) Approx. Pos. 1,800,000 | GI No. 10 (sspP/sspS), Approx. Pos. 2,000,000 | GI No. 11, Approx. Pos. 2,500,000 | GI No. 12, Approx. Pos. 2,530,000 | GI No. 13 (staphyloxanthin), Approx. Pos. 2,650,000 | GI No. 14, Approx. Pos. 2,770,000 | GI No. 15 (cna), Approx. Pos. 2,780,000 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ST2990 (27-G-H) | As in CC5, CC8, CC9 | Q6GKK6, Q7A890 | lpl, hysA, 5 copies of lpl | As in COL (CC8) | Present, includes a 2nd copy of essC | Present, but lacks lpl/lipC3 genes | app-operon | Absent | Present, includes hsdS/M-spl, splF/E/D1/D2-1/D2-2/C/A, epiG, lukD/E | sspP/sspS | ncRNA, 3 copies of lpl, sauUSI | Present, includes sasG (CC1-like allele with 8 ½ repeats) | Present | Present | Present |
ST3268 (Ma2/A14043) | Unique Pattern | Q6GKK6, ycjY, G7ZTC1, Q2YUT3 | 3 copies of lpl | Truncated as in MRSA252 (CC30) | Transposon with the penicillinase operon | Present, but lipC3 replaced by transposase gene | app-operon | Present, includes sagD/C and stsA | Present, includes hsdS/M-spl, epiG, lukD/E, seg/n/u/i/m/o | sspP/sspS | ncRNA, sau96I, | Present, includes sasG (CC5/8-like allele with 7 ½ repeats) | Present | Present | Absent |
ST4168 (16CS0209) | Unique Pattern | As in ST2990 | lpl | Truncated as in MRSA252 (CC30) | Present | Present, but lacks ssl06 | opp-GI-operon | Q931R4 | Present, includes hsdS/M-spl, splF/E/D2/C/B/A, epiG/F/D/C/B/A, lukD/E, seg/n/u/i/m/o | sspP/sspS | ncRNA, followed by approx. 3000 nt insert | Present, includes sasG (CC5/8-like allele with 9 ½ repeats) | Present | Present | Present |
ST7687 (01-RR-86) | As in CC5, CC8, CC9 | As in ST2990 | 3 copies of lpl | As in COL (CC8) | Present | Present | app-operon | Present, includes sagD/C and stsA | Present, includes hsdS/M-spl, splF/C/B/A, epiG, lukD/E | sspP/sspS | ncRNA, 2 putative proteins, lipC3, 3 copies of lpl, sauS0385 | Present, includes sasG (CC5/8-like allele with 12 ½ repeats) | Present | Present | Absent |
ST7688 (05-RR-90) | As in CC5, CC8, CC9 | 10-gene pattern | 3 copies of lpl | As in COL (CC8) | Present | Present, but lacks ssl06 | app-operon | Present, includes stsA | Present, includes hsdS/M-spl, splF/E/D1/C/B/A, epiG, lukD/E | sspP/sspS | ncRNA, 4 copies of lpl, 2 putative proteins, lipC3, sau3AI | Present, includes sasG (CC1-like allele with 9 ½ repeats) | Present | Present | Absent |
ST7689 (08-G-E) | 1 gene only (Q6GD44) | As in ST2990 | 2 copies of lpl, lipC3 | As in COL (CC8) | Present, includes esxC, esxB, esaE, esxD, essD | Present, but lacks ssl06 | app-operon | Absent | Present, includes hsdS/M-spl, splF/D1/C/B/A, lukD/E, seg/n/u/i/m/o | sspP/sspS | ncRNA, 5 copies of lpl, 2 putative proteins, lipC3, sauUSI | Present, includes sasG (CC5/8-like allele with 6 ½ repeats) | Present | Present | Absent |
ST7690 (09-G-F) | As in CC5, CC8, CC9 | 10-gene pattern as in ST7688 plus 2 tnp copies | 3 copies of lpl, hysA, 3 copies of lpl | Q5HJH7 + 2 tnp | Present | Present, but lacks ssl06 | app-operon | Absent | Present, includes hsdS/M-spl, splF/E/C/B/A, epiG, lukD/E | sspP/sspS | ncRNA, 5 copies of lpl tnp, 2 putative proteins, lipC3, sauS0385 | Present, includes sasG (CC5/8-like allele with 8 ½ repeats) | Present | Present | Present |
ST7691 (13-G-52) | As in ST7689 | As in ST2990 | 2 copies of lpl, lipC3 | As in COL (CC8) | Present, includes esxC, esxB, esaE, esxD, essD | Present | app-operon | Absent | Present, includes hsdS/M-spl, splF/D1/C/B/A, lukD/E, seg/n/u/i/m/o | sspP/sspS | ncRNA, 4 copies of lpl, 2 putative proteins, lipC3, sauUSI | Present, includes sasG (CC5/8-like allele with 10 ½ repeats) | Present | Present | Present |
ST7692 (17-H-61) | As in ST7689 | 10-gene pattern as in ST7688 | 4 copies of lpl | As in COL (CC8) | Present | Present, but lacks ssl06 | app-operon | Present, includes sagD/C and stsA | Present, includes hsdS/M-spl, splF/E/D1/C/B/A, epiG, lukD/E | sspP/sspS | ncRNA, 6 copies of lpl, 2 putative proteins, lipC3, sau3AI | Present, includes sasG (CC5/8-like allele with 12 ½ repeats) | Present | Present | Absent |
ST7693 (29-P-01) | Absent | 5-gene pattern | lpl | As in COL (CC8) | Present, includes esxC, esxB, esaE, esxD, essD | Present, but lacks ssl06 | app-operon | Absent | Present, includes hsdS/M-spl, splF/E/D1/C/B/A, lukD/E | sspP/sspS sspP/sspS | ncRNA, 2 putative proteins, lipC3, lpl, sauRF122 | Present, without sasG | Present | Present | Absent |
ST7694 (40-B-50) | Absent | 5-gene pattern as in ST7693 | 5 copies of lpl | Truncated as in MRSA252 (CC30) | Present, includes esxC, esxB, esaE, esxD, essD | Present, but lacks ssl06 and lpl/lipC3 genes | app-operon | Present, includes stsA | Present, includes hsdS/M-spl, splF/D1/C/B/A, epiG, lukD/E | sspP/sspS | ncRNA, 4 copies of lpl, sauUSI, | Present, includes sasG (CC1-like allele with 14 ½ repeats) | Present | Present | Absent |
ST7695 (16CS0212) | 1 gene only (Q6GKL6) | 10-gene pattern as in ST7688 | lpl | As in COL (CC8) | Present, includes esxC, esxB, esaE, esxD, essD | Present, but lacks ssl06 | app-operon | Absent | Present, includes hsdS/M-spl, splF/D2/E/C/B/A, epiG/E/F/P/D/C/B/A, bsaX, lukD/E | sspP/sspS | ncRNA, 3 copies of lpl, 2 putative proteins, lipC3, sau3AI | Absent | Present | Absent | Absent |
ST7745 (03-RR-88) | Unique Pattern | As in ST2990 | 5 copies of lpl | As in COL (CC8) | Present | Present | app-operon | Present, includes sagD/C and stsA | Present, includes hsdS/M-spl, splF/E/C/B/A, epiG, lukD/E | sspP/sspS | ncRNA, 2 putative proteins, lipC3, lpl, sauRF122 | Absent | Present | Present | Present |
ST7746 (07-G-D) | As in CC5, CC8, CC9 | As in ST7695 plus Q7A890 | 6 copies of lpl | As in RF122 (CC705) plus A6QDI2 | Present | Present, but lacks lpl/lipC3 genes | app-operon | Absent | Present, includes hsdS/M-spl, splF/E/D1/C/B/A, epiG, lukD/E | sspP/sspS | ncRNA, 6 copies of lpl, 3 putative proteins, 2 copies of lipC3, tnp, sauS0385 | Absent | Present | Present | Present |
ST7747 (12-G-51) | As in CC398 | As in ST2990 | lpl, hysA, 2 copies of lpl, istB2_IS232, tnp, lpl | As in COL (CC8) | Present | Present, but lacks ssl06 | app-operon | Present, includes sagD/C and stsA | Present, includes hsdS/M-spl, splF/E/D1/C/B/A, epiG/E/F/P/D/C/B/A, bsaX, epiA, lukD/E | sspP/sspS | ncRNA, 2 copies of lpl, 2 putative proteins, lipC3, sauS0385 | Present, without sasG | Present | Absent | Absent |
ST7748 (15-G-54) | As in ST7689 | As in ST2990 | 2 copies of lpl, lipC3 | As in COL (CC8) | Present, includes esxC, esxB, esaE, esxD, essD | Present, but lacks ssl06 | opp-GI-operon | Absent | Present, includes hsdS/M-spl, splF/E/D1/C/B/A, lukD/E, seg/n/u/i/m/o | sspP/sspS | ncRNA, 3 copies of lpl, 2 putative proteins, lipC3, sau3AI | Present, without sasG | Present | Present | Present |
ST7749 (18-H-62) | Unique Pattern | As in ST2990 | 3 copies of lpl, hysA, 3 copies of lpl | As in COL (CC8) | Present | Present, but lacks ssl06 | app-operon | Present, includes stsA | Present, includes hsdS/M-spl, splF, splC/B/A, epiG/E/F/P/D/C/B/A, lukD/E | sspP/sspS | ncRNA, 4 copies of lpl 2 putative proteins, lipC3, sau3AI | Present, without sasG | Present | Present | Absent |
ST7750 (26-G-G) | Unique Pattern | Q6GKK6 | 3 copies of lpl, lipC3 | As in RF122 (CC705) | Present | Present, but lacks ssl06 | app-operon | Present, includes sagD/C and stsA | Present, includes hsdS/M-spl, splF/E/C/B/A, epiG, lukD/E | sspP/sspS | ncRNA, 4 copies of lpl 2 putative proteins, lipC3sau3AI | Present, includes sasG (CC1-like allele with 9 ½ repeats) | Present | Present | Present |
ST7751 (28-G-I) | Unique Pattern | 4 genes as in CC1153 | lpl, hysA, 4 copies of lpl | As in COL (CC8) | Present, includes esxC, esxB, esaE, esxD, essD | Present, but lacks ssl06 and lipC3 | app-operon | Absent | Present, includes hsdS/M-spl, splF/E/D1/C/B/A, epiG, lukD/E | sspP/sspS | ncRNA, 4 copies of lpl, 2 putative proteins, lipC3, sau3AI | Present, without sasG | Present | Present | Absent |
ST7752 (30-P-10) | As in CC5, CC8, CC9 | As in ST7695 | 5 copies of lpl | As in COL (CC8) | Present | Present | app-operon | Absent | Present, includes hsdS/M-spl, splF/E/D1/C/B/A, epiG, lukD, lukE | sspP/sspS | ncRNA, lpl, sau3AI | Present, without sasG | Present | Present | Absent |
ST7753 (32-T-13) | Unique Pattern | As in ST2990 | 6 copies of lpl | As in COL (CC8) | Present, includes esxC, esxB, esaE, esxD, essD | Present, but lacks ssl06 and lipC3 | app-operon | Present, includes stsA | Present, includes hsdS/M-spl, splF/D1/C/B/A, lukD/E, seg/n/u/i/m/o | sspP/sspS | ncRNA, 2 putative proteins, lipC3, lpl, sauRF122 | Present, without sasG | Present | Present | Present |
ST7754 (39-B-49) | Unique Pattern | As in ST2990 | lpl, lipC3 | As in COL (CC8) | Present | Present, but lacks ssl06 | app-operon | Q931R4 | Present, includes hsdS/M-spl, splF/E/D1/C/B/A, epiG, lukD/E | sspP/sspS | 2 putative proteins, lipC3, 2 copies of lpl, sauUSI, | Absent | Present | Present | Present |
2.3. The sasG Gene
2.4. Toxin Genes
2.5. The Pathogenicity Island Carrying edinB and etD2/etE
2.6. Carriage of Prophages
2.7. Carriage of SCC Elements and Associated Genes
2.8. Carriage of Plasmids
2.9. Carriage of Other Resistance Genes
3. Discussion
4. Materials and Methods
4.1. Sampling of Wild Primates in Nepal
4.2. Sampling of ST3268
4.3. Sampling of Primates in a German Zoo
4.4. Array Experiments
4.5. Illumina Sequencing
4.6. Nanopore Sequencing
4.7. Core Genome Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monecke, S.; Gavier-Widén, D.; Hotzel, H.; Peters, M.; Guenther, S.; Lazaris, A.; Loncaric, I.; Müller, E.; Reissig, A.; Ruppelt-Lorz, A.; et al. Diversity of Staphylococcus aureus isolates in European wildlife. PLoS ONE 2016, 11, e0168433. [Google Scholar] [CrossRef]
- Mrochen, D.M.; Schulz, D.; Fischer, S.; Jeske, K.; El Gohary, H.; Reil, D.; Imholt, C.; Trübe, P.; Suchomel, J.; Tricaud, E.; et al. Wild rodents and shrews are natural hosts of Staphylococcus aureus. Int. J. Med. Microbiol. 2018, 308, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Olatimehin, A.; Shittu, A.O.; Onwugamba, F.C.; Mellmann, A.; Becker, K.; Schaumburg, F. Staphylococcus aureus complex in the Straw-colored fruit bat (Eidolon helvum) in Nigeria. Front. Microbiol. 2018, 9, 162. [Google Scholar] [CrossRef] [PubMed]
- Porrero, M.C.; Mentaberre, G.; Sánchez, S.; Fernández-Llario, P.; Casas-Díaz, E.; Mateos, A.; Vidal, D.; Lavín, S.; Fernández-Garayzábal, J.-F.; Domínguez, L. Carriage of Staphylococcus aureus by free-living wild animals in Spain. Appl. Environ. Microbiol. 2014, 80, 4865–4870. [Google Scholar] [CrossRef] [PubMed]
- Porrero, M.C.; Mentaberre, G.; Sanchez, S.; Fernandez-Llario, P.; Gomez-Barrero, S.; Navarro-Gonzalez, N.; Serrano, E.; Casas-Diaz, E.; Marco, I.; Fernandez-Garayzabal, J.F.; et al. Methicillin resistant Staphylococcus aureus (MRSA) carriage in different free-living wild animal species in Spain. Vet. J. 2013, 198, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Schaumburg, F.; Pauly, M.; Anoh, E.; Mossoun, A.; Wiersma, L.; Schubert, G.; Flammen, A.; Alabi, A.S.; Muyembe-Tamfum, J.J.; Grobusch, M.P.; et al. Staphylococcus aureus complex from animals and humans in three remote African regions. Clin. Microbiol. Infect. 2015, 21, 345.e1–345.e8. [Google Scholar] [CrossRef] [PubMed]
- Thornton, S.M.; Nolan, S.; Gulland, F.M. Bacterial isolates from California sea lions (Zalophus californianus), harbor seals (Phoca vitulina), and northern elephant seals (Mirounga angustirostris) admitted to a rehabilitation center along the central California coast, 1994–1995. J. Zoo Wildl. Med. 1998, 29, 171–176. [Google Scholar]
- Traversa, A.; Gariano, G.R.; Gallina, S.; Bianchi, D.M.; Orusa, R.; Domenis, L.; Cavallerio, P.; Fossati, L.; Serra, R.; Decastelli, L. Methicillin resistance in Staphylococcus aureus strains isolated from food and wild animal carcasses in Italy. Food Microbiol. 2015, 52, 154–158. [Google Scholar] [CrossRef]
- van den Berg, S.; van Wamel, W.J.; Snijders, S.V.; Ouwerling, B.; de Vogel, C.P.; Boelens, H.A.; Willems, R.J.; Huijsdens, X.W.; Verreck, F.A.; Kondova, I.; et al. Rhesus macaques (Macaca mulatta) are natural hosts of specific Staphylococcus aureus lineages. PLoS ONE 2011, 6, e26170. [Google Scholar] [CrossRef]
- Walther, B.; Wieler, L.H.; Friedrich, A.W.; Hanssen, A.M.; Kohn, B.; Brunnberg, L.; Lubke-Becker, A. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from small and exotic animals at a university hospital during routine microbiological examinations. Vet. Microbiol. 2008, 127, 171–178. [Google Scholar] [CrossRef]
- Weese, J.S. Methicillin-resistant Staphylococcus aureus in animals. ILAR J. 2010, 51, 233–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Schaumburg, F.; Alabi, A.S.; Kock, R.; Mellmann, A.; Kremsner, P.G.; Boesch, C.; Becker, K.; Leendertz, F.H.; Peters, G. Highly divergent Staphylococcus aureus isolates from African non-human primates. Environ. Microbiol. Rep. 2012, 4, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Nagel, M.; Dischinger, J.; Turck, M.; Verrier, D.; Oedenkoven, M.; Ngoubangoye, B.; Le Flohic, G.; Drexler, J.F.; Bierbaum, G.; Gonzalez, J.P. Human-associated Staphylococcus aureus strains within great ape populations in Central Africa (Gabon). Clin. Microbiol. Infect. 2013, 19, 1072–1077. [Google Scholar] [CrossRef]
- Hanley, P.W.; Barnhart, K.F.; Abee, C.R.; Lambeth, S.P.; Weese, J.S. Methicillin-resistant Staphylococcus aureus prevalence among captive chimpanzees, Texas, USA, 2012. Emerg. Infect. Dis. 2015, 21, 2158–2160. [Google Scholar] [CrossRef]
- Hsu, L.Y.; Holden, M.T.G.; Koh, T.H.; Pettigrew, K.A.; Cao, D.; Hon, P.Y.; Sergio, D.M.; Pena, E.; Ogden, B.E. ST3268: A geographically widespread primate MRSA clone. J. Antimicrob. Chemother. 2017, 72, 2401–2403. [Google Scholar] [CrossRef]
- Roberts, M.C.; Feßler, A.T.; Monecke, S.; Ehricht, R.; No, D.; Schwarz, S. Molecular analysis of two different MRSA clones ST188 and ST3268 from primates (Macaca spp.) in a United States Primate Center. Front. Microbiol. 2018, 9, 2199. [Google Scholar] [CrossRef]
- Roberts, M.C.; Joshi, P.R.; Monecke, S.; Ehricht, R.; Müller, E.; Gawlik, D.; Paudel, S.; Acharya, M.; Bhattarai, S.; Pokharel, S.; et al. MRSA strains in Nepalese Rhesus macaques (Macaca mulatta) and their environment. Front. Microbiol. 2019, 10, 2505. [Google Scholar] [CrossRef]
- Roberts, M.C.; Joshi, P.R.; Monecke, S.; Ehricht, R.; Müller, E.; Gawlik, D.; Diezel, C.; Braun, S.D.; Paudel, S.; Acharya, M.; et al. Staphylococcus aureus and methicillin resistant S. aureus in Nepalese primates: Resistance to antimicrobials, virulence, and genetic lineages. Antibiotics 2020, 9, 689. [Google Scholar] [CrossRef]
- Soge, O.O.; No, D.; Michael, K.E.; Dankoff, J.; Lane, J.; Vogel, K.; Smedley, J.; Roberts, M.C. Transmission of MDR MRSA between primates, their environment and personnel at a United States primate centre. J. Antimicrob. Chemother. 2016, 71, 2798–2803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Tang, Y.; Ren, J.; Huang, J.; Li, Q.; Ingmer, H.; Jiao, X. Identification and molecular characterization of Staphylococcus aureus and multi-drug resistant MRSA from monkey faeces in China. Transbound. Emerg. Dis. 2020, 67, 1382–1387. [Google Scholar] [CrossRef] [PubMed]
- Senok, A.; Somily, A.; Raji, A.; Gawlik, D.; Al-Shahrani, F.; Baqi, S.; Boswihi, S.; Skakni, L.; Udo, E.E.; Weber, S.; et al. Diversity of methicillin-resistant Staphylococcus aureus CC22-MRSA-IV from Saudi Arabia and the Gulf region. Int. J. Infect. Dis. 2016, 51, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C.; Joshi, P.R.; Greninger, A.L.; Melendez, D.; Paudel, S.; Acharya, M.; Bimali, N.K.; Koju, N.P.; No, D.; Chalise, M.; et al. The human clone ST22 SCCmec IV methicillin-resistant Staphylococcus aureus isolated from swine herds and wild primates in Nepal: Is man the common source? FEMS Microbiol. Ecol. 2018, 94, fiy052. [Google Scholar] [CrossRef]
- Donker, G.A.; Deurenberg, R.H.; Driessen, C.; Sebastian, S.; Nys, S.; Stobberingh, E.E. The population structure of Staphylococcus aureus among general practice patients from The Netherlands. Clin. Microbiol. Infect. 2009, 15, 137–143. [Google Scholar] [CrossRef]
- Luedicke, C.; Slickers, P.; Ehricht, R.; Monecke, S. Molecular fingerprinting of Staphylococcus aureus from bone and joint infections. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 457–463. [Google Scholar] [CrossRef]
- Okuda, K.V.; Toepfner, N.; Alabi, A.S.; Arnold, B.; Belard, S.; Falke, U.; Menschner, L.; Monecke, S.; Ruppelt-Lorz, A.; Berner, R. Molecular epidemiology of Staphylococcus aureus from Lambarene, Gabon. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1963–1973. [Google Scholar] [CrossRef]
- Udo, E.E.; Boswihi, S.S.; Mathew, B.; Noronha, B.; Verghese, T.; Al-Jemaz, A.; Al Saqer, F. Emergence of methicillin-resistant Staphylococcus aureus belonging to Clonal Complex 15 (CC15-MRSA) in Kuwait hospitals. Infect. Drug Resist. 2020, 13, 617–626. [Google Scholar] [CrossRef]
- Rossney, A.S.; Shore, A.C.; Morgan, P.M.; Fitzgibbon, M.M.; O’Connell, B.; Coleman, D.C. The emergence and importation of diverse genotypes of methicillin-resistant Staphylococcus aureus (MRSA) harboring the Panton-Valentine leukocidin gene (pvl) reveal that pvl is a poor marker for community-acquired MRSA strains in Ireland. J. Clin. Microbiol. 2007, 45, 2554–2563. [Google Scholar] [CrossRef]
- Aung, M.S.; San, T.; Urushibara, N.; San, N.; Hlaing, M.S.; Soe, P.E.; Htut, W.H.W.; Moe, I.; Mon, W.L.Y.; Chan, Z.C.N.; et al. Clonal diversity and molecular characteristics of methicillin-susceptible and -resistant Staphylococcus aureus from Pediatric Patients in Myanmar. Microb. Drug Resist. 2022, 28, 191–198. [Google Scholar] [CrossRef]
- Ngoi, S.T.; Niek, W.K.; Lee, Y.W.; AbuBakar, S.; Teh, C.S.J. Genomic analysis revealed a novel genotype of methicillin-susceptible Staphylococcus aureus isolated from a fatal sepsis case in dengue patient. Sci. Rep. 2021, 11, 4228. [Google Scholar] [CrossRef] [PubMed]
- Senok, A.; Monecke, S.; Nassar, R.; Celiloglu, H.; Thyagarajan, S.; Müller, E.; Ehricht, R. Lateral flow immunoassay for the detection of Panton-Valentine Leukocidin in Staphylococcus aureus from skin and soft tissue infections in the United Arab Emirates. Front. Microbiol. 2021, 11, 754523. [Google Scholar] [CrossRef] [PubMed]
- Schuster, D.; Rickmeyer, J.; Gajdiss, M.; Thye, T.; Lorenzen, S.; Reif, M.; Josten, M.; Szekat, C.; Melo, L.D.R.; Schmithausen, R.M.; et al. Differentiation of Staphylococcus argenteus (formerly: Staphylococcus aureus clonal complex 75) by mass spectrometry from S. aureus using the first strain isolated from a wild African great ape. Int. J. Med. Microbiol. 2017, 307, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.E.; Feil, E.J. The phylogeny of Staphylococcus aureus—which genes make the best intra-species markers? Microbiology 2006, 152, 1297–1305. [Google Scholar] [CrossRef]
- Monecke, S.; Slickers, P.; Ehricht, R. Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol. Med. Microbiol. 2008, 53, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Monecke, S.; Schaumburg, F.; Shittu, A.O.; Schwarz, S.; Mühldorfer, K.; Brandt, C.; Braun, S.D.; Collatz, M.; Diezel, C.; Gawlik, D.; et al. Description of staphylococcal strains from Straw-coloured fruit bat (Eidolon helvum) and Diamond firetail (Stagonopleura guttata) and a review of their phylogenetic relationships to other staphylococci. Front. Cell. Infect. Microbiol. 2022, 12, 878137. [Google Scholar] [CrossRef]
- Snel, G.G.; Monecke, S.; Ehricht, R.; Piccinini, R. Molecular characteristics of bap-positive Staphylococcus aureus strains from dairy cow mastitis. J. Dairy Res. 2015, 82, 312–316. [Google Scholar] [CrossRef]
- Monecke, S.; Müller, E.; Braun, S.D.; Armengol-Porta, M.; Bes, M.; Boswihi, S.; El-Ashker, M.; Engelmann, I.; Gawlik, D.; Gwida, M.; et al. Characterisation of S. aureus/MRSA CC1153 and review of mobile genetic elements carrying the fusidic acid resistance gene fusC. Sci. Rep. 2021, 11, 8128. [Google Scholar] [CrossRef]
- Langille, M.G.; Hsiao, W.W.; Brinkman, F.S. Detecting genomic islands using bioinformatics approaches. Nat. Rev. Microbiol. 2010, 8, 373–382. [Google Scholar] [CrossRef]
- Burts, M.L.; Williams, W.A.; DeBord, K.; Missiakas, D.M. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc. Natl. Acad. Sci. USA 2005, 102, 1169–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Qatouseh, L.F.; Chinni, S.V.; Seggewiss, J.; Proctor, R.A.; Brosius, J.; Rozhdestvensky, T.S.; Peters, G.; von Eiff, C.; Becker, K. Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J. Mol. Med. 2010, 88, 565–575. [Google Scholar] [CrossRef]
- Carrera-Salinas, A.; González-Díaz, A.; Vázquez-Sánchez, D.A.; Camoez, M.; Niubó, J.; Càmara, J.; Ardanuy, C.; Martí, S.; Domínguez, M. Staphylococcus aureus surface protein G (sasG) allelic variants: Correlation between biofilm formation and their prevalence in methicillin-resistant S. aureus (MRSA) clones. Res. Microbiol. 2022, 173, 103921. [Google Scholar] [CrossRef] [PubMed]
- DuMont, A.L.; Yoong, P.; Liu, X.; Day, C.J.; Chumbler, N.M.; James, D.B.; Alonzo, F., 3rd; Bode, N.J.; Lacy, D.B.; Jennings, M.P.; et al. Identification of a crucial residue required for Staphylococcus aureus LukAB cytotoxicity and receptor recognition. Infect. Immun. 2014, 82, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Ventura, C.L.; Malachowa, N.; Hammer, C.H.; Nardone, G.A.; Robinson, M.A.; Kobayashi, S.D.; DeLeo, F.R. Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS ONE 2010, 5, e11634. [Google Scholar] [CrossRef]
- Monecke, S.; Coombs, G.; Shore, A.C.; Coleman, D.C.; Akpaka, P.; Borg, M.; Chow, H.; Ip, M.; Jatzwauk, L.; Jonas, D.; et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS ONE 2011, 6, e17936. [Google Scholar] [CrossRef]
- Koop, G.; Vrieling, M.; Storisteanu, D.M.; Lok, L.S.; Monie, T.; van Wigcheren, G.; Raisen, C.; Ba, X.; Gleadall, N.; Hadjirin, N.; et al. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci. Rep. 2017, 7, 40660. [Google Scholar] [CrossRef]
- Monecke, S.; Feßler, A.T.; Burgold-Voigt, S.; Krüger, H.; Mühldorfer, K.; Wibbelt, G.; Liebler-Tenorio, E.M.; Reinicke, M.; Braun, S.D.; Hanke, D.; et al. Staphylococcus aureus isolates from Eurasian Beavers (Castor fiber) carry a novel phage-borne bicomponent leukocidin related to the Panton-Valentine leukocidin. Sci. Rep. 2021, 11, 24394. [Google Scholar] [CrossRef]
- Coleman, D.C.; Sullivan, D.J.; Russell, R.J.; Arbuthnott, J.P.; Carey, B.F.; Pomeroy, H.M. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: Molecular mechanism of triple conversion. J. Gen. Microbiol. 1989, 135, 1679–1697. [Google Scholar] [CrossRef]
- Löffler, B.; Hussain, M.; Grundmeier, M.; Bruck, M.; Holzinger, D.; Varga, G.; Roth, J.; Kahl, B.C.; Proctor, R.A.; Peters, G. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog. 2010, 6, e1000715. [Google Scholar] [CrossRef]
- Smith, J.M.; Marples, M.J. Dermatophyte lesions in the hedgehog as a reservoir of penicillin-resistant staphylococci. Epidemiol. Infect. 1965, 63, 293–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monecke, S.; Gavier-Widen, D.; Mattsson, R.; Rangstrup-Christensen, L.; Lazaris, A.; Coleman, D.C.; Shore, A.C.; Ehricht, R. Detection of mecC-positive Staphylococcus aureus (CC130-MRSA-XI) in diseased European hedgehogs (Erinaceus europaeus) in Sweden. PLoS ONE 2013, 8, e66166. [Google Scholar] [CrossRef]
- Bengtsson, B.; Persson, L.; Ekström, K.; Unnerstad, H.E.; Uhlhorn, H.; Börjesson, S. High occurrence of mecC-MRSA in wild hedgehogs (Erinaceus europaeus) in Sweden. Vet. Microbiol. 2017, 207, 103–107. [Google Scholar] [CrossRef]
- Larsen, J.; Raisen, C.L.; Ba, X.; Sadgrove, N.J.; Padilla-González, G.F.; Simmonds, M.S.J.; Loncaric, I.; Kerschner, H.; Apfalter, P.; Hartl, R.; et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022, 602, 135–141. [Google Scholar] [CrossRef]
- Rasmussen, S.L.; Larsen, J.; van Wijk, R.E.; Jones, O.R.; Berg, T.B.; Angen, Ø.; Larsen, A.R. European hedgehogs (Erinaceus europaeus) as a natural reservoir of methicillin-resistant Staphylococcus aureus carrying mecC in Denmark. PLoS ONE 2019, 14, e0222031. [Google Scholar] [CrossRef]
- Dube, F.; Söderlund, R.; Lampinen Salomonsson, M.; Troell, K.; Börjesson, S. Benzylpenicillin-producing Trichophyton erinacei and methicillin resistant Staphylococcus aureus carrying the mecC gene on European hedgehogs—A pilot-study. BMC Microbiol. 2021, 21, 212. [Google Scholar] [CrossRef]
- Smiley Evans, T.; Barry, P.A.; Gilardi, K.V.; Goldstein, T.; Deere, J.D.; Fike, J.; Yee, J.; Ssebide, B.J.; Karmacharya, D.; Cranfield, M.R.; et al. Optimization of a novel non-invasive oral smpling technique for zoonotic pathogen surveillance in nonhuman primates. PLoS Negl. Trop. Dis. 2015, 9, e0003813. [Google Scholar] [CrossRef] [PubMed]
- Simpson, V.R.; Davison, N.J.; Kearns, A.M.; Pichon, B.; Hudson, L.O.; Koylass, M.; Blackett, T.; Butler, H.; Rasigade, J.P.; Whatmore, A.M. Association of a lukM-positive clone of Staphylococcus aureus with fatal exudative dermatitis in red squirrels (Sciurus vulgaris). Vet. Microbiol. 2013, 162, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Overesch, G.; Buttner, S.; Rossano, A.; Perreten, V. The increase of methicillin-resistant Staphylococcus aureus (MRSA) and the presence of an unusual sequence type ST49 in slaughter pigs in Switzerland. BMC Vet. Res. 2011, 7, 30. [Google Scholar] [CrossRef]
- Davis, R.; Hossain, M.J.; Liles, M.R.; Panizzi, P. Complete Genome Sequence of Staphylococcus aureus Tager 104, a sequence type 49 ancestor. Genome Announc. 2013, 1, e00706-13. [Google Scholar] [CrossRef]
- Monecke, S.; Jatzwauk, L.; Müller, E.; Nitschke, H.; Pfohl, K.; Slickers, P.; Reissig, A.; Ruppelt-Lorz, A.; Ehricht, R. Diversity of SCCmec elements in Staphylococcus aureus as observed in South-Eastern Germany. PLoS ONE 2016, 11, e0162654. [Google Scholar] [CrossRef]
- Scholtzek, A.D.; Hanke, D.; Walther, B.; Eichhorn, I.; Stöckle, S.D.; Klein, K.S.; Gehlen, H.; Lübke-Becker, A.; Schwarz, S.; Feßler, A.T. Molecular characterization of equine Staphylococcus aureus isolates exhibiting reduced oxacillin susceptibility. Toxins 2019, 11, 535. [Google Scholar] [CrossRef] [PubMed]
- Spoor, L.E.; Richardson, E.; Richards, A.C.; Wilson, G.J.; Mendonca, C.; Gupta, R.K.; McAdam, P.R.; Nutbeam-Tuffs, S.; Black, N.S.; O’Gara, J.P.; et al. Recombination-mediated remodelling of host–pathogen interactions during Staphylococcus aureus niche adaptation. Microbial. Genom. 2015, 1, e000036. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, G.R.; Steen, J.A.; Monecke, S.; Ehricht, R.; Slickers, P.; Thomas, J.C.; Appleton, S.; Goering, R.V.; Robinson, D.A.; Coombs, G.W. ST2249-MRSA-III: A second major recombinant methicillin-resistant Staphylococcus aureus clone causing healthcare infection in the 1970s. Clin. Microbiol. Infect. 2015, 21, 444–450. [Google Scholar] [CrossRef]
- Gawlik, D.; Ruppelt-Lorz, A.; Müller, E.; Reissig, A.; Hotzel, H.; Braun, S.D.; Soderquist, B.; Ziegler-Cordts, A.; Stein, C.; Pletz, M.W.; et al. Molecular investigations on a chimeric strain of Staphylococcus aureus sequence type 80. PLoS ONE 2020, 15, e0232071. [Google Scholar] [CrossRef]
- Robinson, D.A.; Enright, M.C. Evolution of Staphylococcus aureus by large chromosomal replacements. J. Bacteriol. 2004, 186, 1060–1064. [Google Scholar] [CrossRef]
- Burgold-Voigt, S.; Monecke, S.; Simbeck, A.; Holzmann, T.; Kieninger, B.; Liebler-Tenorio, E.M.; Braun, S.D.; Collatz, M.; Diezel, C.; Müller, E.; et al. Characterisation and molecular analysis of an unusual chimeric methicillin resistant Staphylococcus aureus strain and its bacteriophages. Front. Genet. 2021, 12, 723958. [Google Scholar] [CrossRef]
Sequence Type | Isolate ID | GenBank Accession No. | Ref. | Origin | Host | Genome Length (nt) | Coverage (Nanopore) | MLST Profile (arcC-aroE-glpF-gmk-pta-tpi-yqiL) | agr Group | Capsule Type |
---|---|---|---|---|---|---|---|---|---|---|
ST2990 | 27-G-H | CP102977 | [20] | Guheswori, Nepal, 2019 | Rhesus macaque | 2,734,401 | 249 | 1-1-1-1-330-1-10 | II | 8 |
ST3268 | Ma2/A14043 | CP102976 | [18] | USA, 2015 | Rhesus macaque | 2,858,627 | 646 | 1-14-430-214-10-303-329 | IV | 5 |
ST4168 | 16CS0209 | CP102975 | N/A | Erfurt, Germany, 2016 | Barbary macaque | 2,769,978 | 181 | 102-176-6-2-6-440-419 | III | 5 |
ST7687 | 01-RR-86 | CP102974 | [20] | Ralpa-Ramdi, Nepal, 2019 | Assam macaque | 2,761,089 | 143 | 4-13-1-105-11-5-850 | I | 5 |
ST7688 | 05-RR-90 | CP102972-973 | [20] | Ralpa-Ramdi, Nepal, 2019 | Assam macaque | 2,822,476 | 189 | 3-1-1-66-28-1-850 | III | 5 |
ST7689 | 08-G-E | CP102971 | [20] | Gokarna, Nepal, 2019 | Rhesus macaque | 2,752,591 | 85 | 1-421-1-1-12-1-11 | IV | 5 |
ST7690 | 09-G-F | CP102970 | [20] | Gokarna, Nepal, 2019 | Rhesus macaque | 2,815,864 | 102 | 1-1-1-1-28-4-11 | I | 8 |
ST7691 | 13-G-52 | CP102968-969 | [20] | Gokarna, Nepal, 2019 | Rhesus macaque | 2,738,477 | 136 | 1-421-1-1-12-238-11 | I | 5 |
ST7692 | 17-H-61 | CP102967 | [20] | Hetauda, Nepal, 2019 | Rhesus macaque | 2,748,100 | 192 | 4-421-1-105-1-5-854 | IV | 5 |
ST7693 | 29-P-01 | CP102966 | [20] | Pashupati, Nepal, 2019 | Rhesus macaque | 2,771,670 | 52 | 100-1-1-15-1-4-11 | I | 8 |
ST7694 | 40-B-50 | CP102963-965 | [20] | Bajrayogini, Nepal, 2019 | Rhesus macaque | 2,818,795 | 252 | 100-1-1-1-28-1-11 | III | 8 |
ST7695 | 16CS0212 | CP102962 | N/A | Erfurt, Germany, 2016 | Barbary macaque | 2,822,504 | 164 | 6-79-12-2-13-50-172 | I | 8 |
ST7745 | 03-RR-88 | CP102961 | [20] | Ralpa-Ramdi, Nepal, 2019 | Assam macaque | 2,800,466 | 201 | 1-38-1-1-1-238-1013 * | II | 8 |
ST7746 | 07-G-D | CP102960 | [20] | Gokarna, Nepal, 2019 | Rhesus macaque | 2,773,903 | 51 | 1-3-1-15-28-840-1 | I | 8 |
ST7747 | 12-G-51 | CP102959 | [20] | Gokarna, Nepal, 2019 | Rhesus macaque | 2,743,617 | 197 | 12-1087-1-66-11-839-850 | II | 8 |
ST7748 | 15-G-54 | CP102958 | [20] | Gokarna, Nepal, 2019 | Rhesus macaque | 2,715,191 | 161 | 1-421-1-598-916-1-11 | I | 8 |
ST7749 | 18-H-62 | CP102957 | [20] | Hetauda, Nepal, 2019 | Rhesus macaque | 2,719,389 | 109 | 1-3-1-598-1-1-11 | IV | 5 |
ST7750 | 26-G-G | CP102956 | [20] | Guheswori, Nepal, 2019 | Rhesus macaque | 2,791,132 | 138 | 3-38-1-15-1-841-40 | IV | 5 |
ST7751 | 28-G-I | CP102955 | [20] | Guheswori, Nepal, 2019 | Rhesus macaque | 2,749,231 | 128 | 3-3-1-66-4-1-1014 | IV | 8 |
ST7752 | 30-P-10 | CP102954 | [20] | Pashupati, Nepal, 2019 | Rhesus macaque | 2,787,121 | 129 | 3-3-1-66-28-842-850 | II | 8 |
ST7753 | 32-T-13 | CP102953 | [20] | Thapthali, Nepal, 2019 | Rhesus macaque | 2,773,149 | 167 | 4-3-1-598-12-1-11 | IV | 8 |
ST7754 | 39-B-49 | CP102952 | [20] | Bajrayogini, Nepal, 2019 | Rhesus macaque | 2,760,481 | 258 | 3-1088-943-105-12-10-13 | IV | 8 |
Gene ID | Description | Length | Direction | Coordinates in the Reference Sequence, CC130 Strain O11, CP024649.1 | Locus Tag in the Reference Sequence, CC130 Strain O11 |
---|---|---|---|---|---|
Q5HE01 | peptidase, M23/M37 domain family | 855 | Reverse | (2,247,871 to 2,248,725) | SaO11_02006 |
hsdS_etd | type I restriction–modification system site-specificity determinate associated with etD and etD2/etE | 1221 | Reverse | (2,248,976 to 2,250,196) | SaO11_02007 |
hsdM | type I restriction–modification system DNA methylase | 1557 | Reverse | (2,250,189 to 2,251,748) | SaO11_02008 |
F3TKB7 | glutamyl-endopeptidase | 699 | Forward | (2,252,060 to 2,252,758) | SaO11_02009 |
edinB | epidermal cell differentiation inhibitor precursor | 756 | Forward | (2,252,804 to 2,253,547) | SaO11_02010 |
etD2/etE | exfoliative toxin D2 or E | 842 | Reverse | (2,253,775 to 2,254,616) | SaO11_02011 |
istB2 | transposase IS712G helper protein | 768 | Reverse | N/A; ST7690 (09-G-F) only | N/A |
tnp_IS712G | transposase for IS712G | 1235 | Reverse | N/A; ST7690 (09-G-F) only | N/A |
F0D4L5 | putative DNA helicase | 1086 | Reverse | (2,254,979 to 2,256,064) | SaO11_02012 |
F0D4L4 | putative DNA binding protein | 1545 | Reverse | (2,256,049 to 2,257,593) | SaO11_02013 |
Q5HE00 | HAD-superfamily hydrolase | 816 | Reverse | (2,257,721 to 2,258,536) | SaO11_02014 |
Sequence Type (Isolate ID) | Between trfA and trfB, around Pos. 950,000 | Between per and psmB1, around Pos. 1,100,000 | Between glnA and A6U1C8, around Pos. 1,300,000 | Between Q2YXQ4 and A6QGL8, around Pos. 1,300,000 | Within A5IT17, around Pos. 1,550,000 | Within A5IU43 = yfkAB, around Pos. 1,950,000 | Within hlb, around Pos. 1,970,000 | Between alsD-L1 and rpsI, around Pos. 2,200,000 | Between rsr and iraC, Replacing iraD, around Pos. 2,300,000 |
---|---|---|---|---|---|---|---|---|---|
ST2990 (27-G-H) | - | - | - | Fragment | - | - | Sipho, carrying sak/chp/scn | - | - |
ST3268 (Ma2/A14043) | - | - | Unident./fragm. | Fragment | Sipho | - | - | - | - |
ST4168 (16CS0209) | - | - | Unident./fragm. | Fragment | - | - | - | - | - |
ST7687 (01-RR-86) | - | - | - | Fragment | - | - | - | - | - |
ST7688 (05-RR-90) | - | - | - | - | - | Sipho | - | - | Sipho |
ST7689 (08-G-E) | - | - | Unident./fragm. | - | - | - | - | - | - |
ST7690 (09-G-F) | - | - | Unident./fragm. | - | - | - | - | - | Sipho |
ST7691 (13-G-52) | - | - | - | Fragment | - | - | - | - | - |
ST7692 (17-H-61) | Sipho | - | - | Fragment | - | - | - | - | - |
ST7693 (29-P-01) | - | Sipho | - | Fragment | - | - | - | - | - |
ST7694 (40-B-50) | - | Sipho | Unident./fragm. | Fragment | - | - | - | - | Sipho |
ST7695 (16CS0212) | - | Sipho | Unident./fragm. | Fragment | - | - | - | - | - |
ST7745 (03-RR-88) | - | - | Unident./fragm. | Fragment | Sipho | - | - | - | - |
ST7746 (07-G-D) | - | - | - | - | - | - | - | - | Sipho |
ST7747 (12-G-51) | - | - | - | - | - | - | - | - | - |
ST7748 (15-G-54) | - | - | - | Fragment | - | - | - | - | - |
ST7749 (18-H-62) | - | - | - | - | - | - | - | - | - |
ST7750 (26-G-G) | - | - | - | Fragment | - | - | - | - | - |
ST7751 (28-G-I) | - | - | Unident./fragm. | - | - | - | - | - | - |
ST7752 (30-P-10) | - | - | - | - | - | - | - | - | Sipho |
ST7753 (32-T-13) | - | - | - | Fragment | - | - | - | - | Sipho |
ST7754 (39-B-49) | - | - | - | Fragment | - | - | - | - | Sipho |
Gene ID | Gene Product/Description | Orientation | Start Pos. in ST3268 | End Pos. in ST3268 | Length in ST3268 | Start Pos. in AM990992 | End Pos. in AM990992 | Length in AM990992 | Locus Tag in AM990992 |
---|---|---|---|---|---|---|---|---|---|
orfX | 23S rRNA methyltransferase | Forward | 36,094 | 36,571 | 478 | 33,806 | 34,285 | 480 | SAPIG0027 |
DR-SCC | direct repeat of SCC | 36,553 | 36,571 | 19 | 34,267 | 34,285 | 19 | N/A | |
sccterm02 | terminus of SCC towards orfX | 36,572 | 36,888 | 317 | 34,286 | 34,602 | 317 | N/A | |
Q2FKL3 | HNH endonuclease family protein | Truncated | 36,889 | 37,255 | 367 | 34,603 | 34,970 | 368 | SAPIG0028 |
D1GU38 | putative protein | Forward | 37,320 | 38,183 | 864 | 35,035 | 35,898 | 864 | SAPIG0029 |
D2N370 | putative protein | Forward | 38,291 | 39,766 | 1476 | 36,006 | 37,481 | 1476 | SAPIG0030 |
Q4LAG3 | putative protein | Forward | 39,992 | 41,092 | 1101 | 37,706 | 38,806 | 1101 | SAPIG0031 |
Q3T2M7 | putative protein | Forward | 41,085 | 41,456 | 372 | 38,799 | 39170 | 372 | SAPIG0032 |
ccrAA | cassette chromosome recombinase homologue, associated with ccrC | Forward | 41,453 | 43,096 | 1644 | 39,167 | 40,810 | 1644 | SAPIG0033 |
ccrC | cassette chromosome recombinase C | Forward | 43,322 | 44,998 | 1677 | 41,036 | 42,712 | 1677 | SAPIG0035 |
Q93IE0 | putative protein | Forward | 45,104 | 45,443 | 340 | 42,818 | 43,156 | 339 | N/A |
Q0P7G0 | putative protein | Forward | 45,539 | 45,850 | 312 | 43,252 | 43,563 | 312 | SAPIG0036 |
Q9KX75 | putative protein | Forward | 45,866 | 46,372 | 507 | 43,579 | 44,085 | 507 | SAPIG0037 |
IR_IS431 | inverted repeat of IS431 | - | 46,462 | 46,477 | 16 | 44,175 | 44,190 | 16 | N/A |
tnp_IS431 | transposase for IS431 | Reverse | 46,521 | 47,195 | 675 | 44,234 | 44,908 | 675 | SAPIG0038 |
Teg143 | trans-encoded RNA associated with tnpIS431 | - | 47,226 | 47,259 | 34 | 44,939 | 44,972 | 34 | N/A |
IR_IS431 | inverted repeat of IS431 | - | 47,236 | 47,251 | 16 | 44,949 | 44,964 | 16 | N/A |
mvaS-SCC | truncated 3-hydroxy-3-methylglutaryl CoA synthase | Forward (frameshift) | 47,268 | 47,620 | 353 | 44,981 | 45,333 | 353 | SAPIG0039 |
Q5HJW6 | putative protein | Forward | 47,718 | 47,948 | 231 | 45,431 | 45,661 | 231 | N/A |
dru | SCC direct repeat units | - | 47,858 | 48,335 | 478 | 45,571 | 46,008 | 438 | N/A |
ugpQ | glycerophosphoryl diester phosphodiesterase | Forward | 48,537 | 49,280 | 744 | 46,210 | 46,953 | 744 | SAPIG0040 |
ydeM | putative dehydratase | Forward | 49,377 | 49,805 | 429 | 47,050 | 47,478 | 429 | SAPIG0041 |
txbi_mecA | bidirectional rho-independent terminator of mecA | - | 49,796 | 49,860 | 65 | 47,469 | 47,533 | 65 | N/A |
mecA | penicillin-binding protein 2a | Reverse | 49,851 | 51,857 | 2007 | 47,524 | 49,530 | 2007 | SAPIG0042 |
mecR1_trunc. (mec complex C) | methicillin resistance operon repressor, truncated in SCCmec V | Forward/truncated | 51,957 | 51,973 | 17 | 49,630 | 49,646 | 17 | N/A |
IR_IS431 | inverted repeat of IS431 | - | 52,049 | 52,064 | 16 | 49,722 | 49,737 | 16 | N/A |
tnp_IS431 | transposase for IS431 | Forward | 52,105 | 52,779 | 675 | 49,778 | 50,452 | 675 | SAPIG0043 |
Q4LAG7 | putative protein | Reverse | 52,839 | 53,267 | 429 | 50,512 | 50,940 | 429 | SAPIG0044 |
yobV | transcriptional regulator | Forward | 53,348 | 54,277 | 930 | 51,021 | 51,950 | 930 | SAPIG0045 |
Q4LAG4 | putative protein | Forward | 54,439 | 56,427 | 1989 | 52,112 | 54,100 | 1989 | SAPIG0046 |
Q4LAG3 | putative protein | Forward | 56,622 | 57,731 | 1110 | 54,295 | 55,404 | 1110 | SAPIG0047 |
Q3T2M7 | putative protein | Forward | 57,724 | 58,092 | 369 | 55,397 | 55,765 | 369 | SAPIG0048 |
ccrAA | cassette chromosome recombinase homologue associated with ccrC | Forward | 58,092 | 59,708 | 1617 | 55,765 | 57,381 | 1617 | SAPIG0049 |
ccrC | cassette chromosome recombinase C | Forward | 59,933 | 61,612 | 1680 | 57,606 | 59,285 | 1680 | SAPIG0050 |
Q4LAF9 | putative protein | Forward | 61,701 | 62,038 | 338 | 59,374 | 59,712 | 339 | SAPIG0051 |
Q7A206-delta | putative protein | Forward/truncated | 62,044 | 62,130 | 87 | 59,718 | 59,804 | 87 | N/A |
Q7A207 | putative protein | Forward | 62,132 | 62,443 | 312 | 59,806 | 60,117 | 312 | SAPIG0052 |
Q9KX75 | putative protein | Forward | 62,449 | 62,928 | 480 | 60,123 | 60,602 | 480 | SAPIG0053 |
IR_IS431 | inverted repeat of IS431 | - | 62,911 | 62,926 | 16 | 60,585 | 60,600 | 16 | N/A |
tnp_IS431 | transposase for IS431 | Reverse | 62,969 | 63,643 | 675 | 60,643 | 61,317 | 675 | SAPIG0054 |
IR_IS431 | inverted repeat of IS431 | - | 63,684 | 63,699 | 16 | 61,358 | 61,373 | 16 | N/A |
tet(K) | tetracycline efflux protein variant K | Forward | 63,840 | 65,219 | 1380 | N/A | N/A | N/A | N/A |
pre4_pT181 | plasmid replication protein | Forward | 65,405 | 66,646 | 1242 | N/A | N/A | N/A | N/A |
ctRNA_pT181 | counter-transcribed RNA | - | 66,984 | 67,078 | 95 | N/A | N/A | N/A | N/A |
tnp_IS1 | transposase for IS1 | Reverse | 67,188 | 68,174 | 987 | N/A | N/A | N/A | N/A |
repD_pT181 | plasmid replication initiation protein | Forward | 68,408 | 69,201 | 794 | N/A | N/A | N/A | N/A |
IR_IS431 | inverted repeat of IS431 | - | 69,231 | 69,246 | 16 | N/A | N/A | N/A | N/A |
tnp_IS431 | transposase for IS431 | Reverse | 69,289 | 69,963 | 675 | N/A | N/A | N/A | N/A |
IR_IS431 | inverted repeat of IS431 | - | 70,004 | 70,019 | 16 | N/A | N/A | N/A | N/A |
top3d (topB) | DNA topoisomerase III type IA | Forward | 70,109 | 70,636 | 528 | 61,475 | 62,002 | 528 | SAPIG0055 |
cch | cassette chromosome helicase | Truncated | 70,935 | 71,549 | 615 | 62,301 | 62,915 | 615 | SAPIG0056 |
D2N398 | putative protein | Reverse | 72,001 | 72,360 | 360 | 63,367 | 63,726 | 360 | SAPIG0058 |
yozA | HTH-type transcriptional repressor | Forward | 72,567 | 72,893 | 327 | 63,933 | 64,259 | 327 | N/A |
czrC | cadmium and zinc resistance gene C | Forward | 73,214 | 75,148 | 1935 | 64,580 | 66,514 | 1935 | SAPIG0059 |
cstB-SCC | CsoR-like sulfur transferase-regulated gene B | Reverse | 76,293 | 77,621 | 1329 | 67,660 | 68,985 | 1326 | SAPIG0061 |
cstA-SCC | CsoR-like sulfur transferase-regulated gene A | Reverse | 77,640 | 78,707 | 1068 | 69,004 | 70,071 | 1068 | SAPIG0062 |
cstR-SCC | copper-sensing transcriptional repressor | Forward | 78,846 | 79,102 | 257 | 70,210 | 70,466 | 257 | SAPIG0063 |
DUF81-SCC | putative sulfite/sulfonate efflux | Forward | 79,130 | 79,861 | 732 | 70,494 | 71,225 | 732 | SAPIG0064 |
copA2-SCC | copper-exporting ATPase | Forward/truncated | 80,031 | 80,240 | 210 | 71,395 | 71,604 | 210 | SAPIG0065 |
ydhK | putative lipoprotein | Forward | 80,258 | 80,803 | 546 | 71,622 | 72,167 | 546 | SAPIG0066 |
DR-SCC | direct repeat of SCC | - | 81,008 | 81,026 | 19 | 72,372 | 72,390 | 19 | N/A |
D2N3A7 | putative protein | Forward | 81,084 | 82,875 | 1792 | 72,448 | 74,238 | 1791 | SAPIG0067 |
F8WKF7 | putative protein | Forward, truncated in AM990992 | 82,916 | 84,073 | 1158 | 74,279 | 74,897 | 619 | SAPIG0068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monecke, S.; Roberts, M.C.; Braun, S.D.; Diezel, C.; Müller, E.; Reinicke, M.; Linde, J.; Joshi, P.R.; Paudel, S.; Acharya, M.; et al. Sequence Analysis of Novel Staphylococcus aureus Lineages from Wild and Captive Macaques. Int. J. Mol. Sci. 2022, 23, 11225. https://doi.org/10.3390/ijms231911225
Monecke S, Roberts MC, Braun SD, Diezel C, Müller E, Reinicke M, Linde J, Joshi PR, Paudel S, Acharya M, et al. Sequence Analysis of Novel Staphylococcus aureus Lineages from Wild and Captive Macaques. International Journal of Molecular Sciences. 2022; 23(19):11225. https://doi.org/10.3390/ijms231911225
Chicago/Turabian StyleMonecke, Stefan, Marilyn C. Roberts, Sascha D. Braun, Celia Diezel, Elke Müller, Martin Reinicke, Jörg Linde, Prabhu Raj Joshi, Saroj Paudel, Mahesh Acharya, and et al. 2022. "Sequence Analysis of Novel Staphylococcus aureus Lineages from Wild and Captive Macaques" International Journal of Molecular Sciences 23, no. 19: 11225. https://doi.org/10.3390/ijms231911225
APA StyleMonecke, S., Roberts, M. C., Braun, S. D., Diezel, C., Müller, E., Reinicke, M., Linde, J., Joshi, P. R., Paudel, S., Acharya, M., Chalise, M. K., Feßler, A. T., Hotzel, H., Khanal, L., Koju, N. P., Schwarz, S., Kyes, R. C., & Ehricht, R. (2022). Sequence Analysis of Novel Staphylococcus aureus Lineages from Wild and Captive Macaques. International Journal of Molecular Sciences, 23(19), 11225. https://doi.org/10.3390/ijms231911225