Structural Insights into the Binding Propensity of Human SHIP2 SH2 to Oncogenic CagA Isoforms from Helicobacter pylori
Abstract
:1. Introduction
2. Results
2.1. SHIP2-SH2 Binds with CagA EPIYA-C and EPIYA-D in a Similar Mode
2.2. The SHIP2-SH2 EF- and BG-Loops Are Different from Those of SHP2 N-SH2
2.3. SHIP2-SH2 Binds to EPIYA-A and EPIYA-B with Weaker Affinity Than to EPIYA-C and EPIYA-D
2.4. The Rule in the Binding Affinity and Interface of SHIP2-SH2 for Different Natural Ligands
3. Materials and Methods
3.1. Sample Preparation
3.2. NMR Titration
3.3. Chemical Shift Assignments
3.4. Fluorescence Polarization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schink, K.O.; Tan, K.W.; Stenmark, H. Phosphoinositides in Control of Membrane Dynamics. Annu. Rev. Cell Dev. Biol. 2016, 32, 143–171. [Google Scholar] [CrossRef] [PubMed]
- Seeds, A.M.; York, J.D. Inositol polyphosphate kinases: Regulators of nuclear function. Biochem. Soc. Symp. 2007, 74, 183–197. [Google Scholar]
- Dyson, J.M.; Fedele, C.G.; Davies, E.M.; Becanovic, J.; Mitchell, C.A. Phosphoinositide phosphatases: Just as important as the kinases. Subcell. Biochem. 2012, 58, 215–279. [Google Scholar] [PubMed]
- Thomas, M.P.; Erneux, C.; Potter, B.V. SHIP2: Structure, Function and Inhibition. ChemBioChem 2017, 18, 233–247. [Google Scholar] [CrossRef]
- Elong Edimo, W.; Schurmans, S.; Roger, P.P.; Erneux, C. SHIP2 signaling in normal and pathological situations: Its impact on cell proliferation. Adv. Biol. Regul. 2014, 54, 142–151. [Google Scholar] [CrossRef]
- Suwa, A.; Kurama, T.; Shimokawa, T. SHIP2 and its involvement in various diseases. Expert Opin. Ther. Targets 2010, 14, 727–737. [Google Scholar] [CrossRef]
- Accardi, G.; Virruso, C.; Balistreri, C.R.; Emanuele, F.; Licastro, F.; Monastero, R.; Porcellini, E.; Vasto, S.; Verga, S.; Caruso, C.; et al. SHIP2: A “new” insulin pathway target for aging research. Rejuvenation Res. 2014, 17, 221–225. [Google Scholar] [CrossRef]
- Kam, T.I.; Park, H.; Gwon, Y.; Song, S.; Kim, S.H.; Moon, S.W.; Jo, D.G.; Jung, Y.K. FcgammaRIIb-SHIP2 axis links Abeta to tau pathology by disrupting phosphoinositide metabolism in Alzheimer’s disease model. Elife 2016, 5, e18691. [Google Scholar] [CrossRef]
- Singh, S.P.; de Bruijn, M.J.W.; da Graca, C.V.G.; Corneth, O.B.J.; Rip, J.; Stadhouders, R.; Meijers, R.W.J.; Schurmans, S.; Kerr, W.G.; Ter Burg, J.; et al. Overexpression of SH2-Containing Inositol Phosphatase Contributes to Chronic Lymphocytic Leukemia Survival. J. Immunol. 2020, 204, 360–374. [Google Scholar] [CrossRef]
- Rajadurai, C.V.; Havrylov, S.; Coelho, P.P.; Ratcliffe, C.D.; Zaoui, K.; Huang, B.H.; Monast, A.; Chughtai, N.; Sangwan, V.; Gertler, F.B.; et al. 5′-Inositol phosphatase SHIP2 recruits Mena to stabilize invadopodia for cancer cell invasion. J. Cell Biol. 2016, 214, 719–734. [Google Scholar] [CrossRef]
- Le Coq, J.; Camacho-Artacho, M.; Velazquez, J.V.; Santiveri, C.M.; Gallego, L.H.; Campos-Olivas, R.; Dolker, N.; Lietha, D. Structural basis for interdomain communication in SHIP2 providing high phosphatase activity. Elife 2017, 6, e26640. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shang, Y.; Li, J.C.; Chen, W.D.; Li, G.; Wan, J.; Liu, W.; Zhang, M.J. Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions. Elife 2018, 7, e35677. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Nie, Y.; Zhang, K.; Xu, H.; Ramelot, T.A.; Kennedy, M.A.; Liu, M.; Zhu, J.; Yang, Y. Solution structure of SHIP2 SH2 domain and its interaction with a phosphotyrosine peptide from c-MET. Arch. Biochem. Biophys. 2018, 656, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yue, X.; Wang, Z.; Li, S.; Zhu, J.; Yang, Y.; Liu, M. Expression, purification and characterization of the RhoA-binding domain of human SHIP2 in E. coli. Protein Expr. Purif. 2021, 180, 105821. [Google Scholar] [CrossRef]
- Ming-Lum, A.; Shojania, S.; So, E.; McCarrell, E.; Shaw, E.; Vu, D.; Wang, I.; McIntosh, L.P.; Mui, A.L. A pleckstrin homology-related domain in SHIP1 mediates membrane localization during Fcgamma receptor-induced phagocytosis. FASEB J. 2012, 26, 3163–3177. [Google Scholar] [CrossRef]
- Prasad, N.; Topping, R.S.; Decker, S.J. SH2-containing inositol 5′-phosphatase SHIP2 associates with the p130(Cas) adapter protein and regulates cellular adhesion and spreading. Mol. Cell Biol. 2001, 21, 1416–1428. [Google Scholar] [CrossRef]
- Koch, A.; Mancini, A.; El Bounkari, O.; Tamura, T. The SH2-domian-containing inositol 5-phosphatase (SHIP)-2 binds to c-Met directly via tyrosine residue 1356 and involves hepatocyte growth factor (HGF)-induced lamellipodium formation, cell scattering and cell spreading. Oncogene 2005, 24, 3436–3447. [Google Scholar] [CrossRef]
- Muraille, E.; Bruhns, P.; Pesesse, X.; Daeron, M.; Erneux, C. The SH2 domain containing inositol 5-phosphatase SHIP2 associates to the immunoreceptor tyrosine-based inhibition motif of Fc gammaRIIB in B cells under negative signaling. Immunol. Lett. 2000, 72, 7–15. [Google Scholar] [CrossRef]
- Pengal, R.A.; Ganesan, L.P.; Fang, H.; Marsh, C.B.; Anderson, C.L.; Tridandapani, S. SHIP-2 inositol phosphatase is inducibly expressed in human monocytes and serves to regulate Fcgamma receptor-mediated signaling. J. Biol. Chem. 2003, 278, 22657–22663. [Google Scholar] [CrossRef]
- Zhang, Y.; Wavreille, A.S.; Kunys, A.R.; Pei, D. The SH2 domains of inositol polyphosphate 5-phosphatases SHIP1 and SHIP2 have similar ligand specificity but different binding kinetics. Biochemistry 2009, 48, 11075–11083. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Yue, X.; Zhu, J.; Yang, Y.; Liu, M. An auxiliary binding interface of SHIP2-SH2 for Y292-phosphorylated FcgammaRIIB reveals diverse recognition mechanisms for tyrosine-phosphorylated receptors involved in different cell signaling pathways. Anal. Bioanal. Chem. 2022, 414, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Murata-Kamiya, N.; Hatakeyama, M. Helicobacter pylori CagA oncoprotein interacts with SHIP2 to increase its delivery into gastric epithelial cells. Cancer Sci. 2020, 111, 1596–1606. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Yamaoka, Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins 2019, 11, 677. [Google Scholar] [CrossRef] [PubMed]
- Takahashi-Kanemitsu, A.; Knight, C.T.; Hatakeyama, M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell. Mol. Immunol. 2020, 17, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Tohidpour, A. CagA-mediated pathogenesis of Helicobacter pylori. Microb. Pathog. 2016, 93, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Senda, M.; Suzuki, N.; Nishikawa, H.; Ben, C.; Tang, C.; Nagase, L.; Inoue, K.; Senda, T.; Hatakeyama, M. Differential Mechanisms for SHP2 Binding and Activation Are Exploited by Geographically Distinct Helicobacter pylori CagA Oncoproteins. Cell Rep. 2017, 20, 2876–2890. [Google Scholar] [CrossRef] [PubMed]
- Tegtmeyer, N.; Neddermann, M.; Asche, C.I.; Backert, S. Subversion of host kinases: A key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol. Microbiol. 2017, 105, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Backert, S.; Tegtmeyer, N. Type IV Secretion and Signal Transduction of Helicobacter pylori CagA through Interactions with Host Cell Receptors. Toxins 2017, 9, 115. [Google Scholar] [CrossRef]
- Hatakeyama, M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat. Rev. Cancer 2004, 4, 688–694. [Google Scholar] [CrossRef]
- Xia, Y.; Yamaoka, Y.; Zhu, Q.; Matha, I.; Gao, X. A comprehensive sequence and disease correlation analyses for the C-terminal region of CagA protein of Helicobacter pylori. PLoS ONE 2009, 4, e7736. [Google Scholar] [CrossRef] [Green Version]
SHIP2-SH2 | EPIYA-A | EPIYA-B | EPIYA-C | EPIYA-D |
---|---|---|---|---|
Wild type | 23.43 ± 1.03 a | 18.59 ± 1.25 | 2.96 ± 0.14 | 3.16 ± 0.13 |
R28A | 132.69 ± 6.95 | 142.58 ± 17.43 | 12.87 ± 1.38 | 15.54 ± 2.77 |
S49A | 418.55 ± 18.59 | 302.74 ± 16.24 | 77.54 ± 3.12 | 76.82 ± 5.16 |
E50A | 8.28 ± 0.67 | 6.60 ± 0.60 | 0.96 ± 0.14 | 1.14 ± 0.16 |
S51A | 180.00 ± 37.36 | 170.76 ± 35.96 | 22.38 ± 2.88 | 24.55 ± 2.23 |
R70A | 539.26 ± 24.19 | 532.45 ± 47.48 | 119.27 ± 4.93 | 116.08 ± 6.61 |
S84A | 16.44 ± 0.47 | 17.92 ± 0.95 | 2.79 ± 0.18 | 2.69 ± 0.19 |
Q107A | 25.53 ± 1.50 | 21.45 ± 1.33 | 2.78 ± 0.14 | 3.46 ± 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Shan, Y.; Wang, R.; Zhou, H.; Hu, R.; Li, Y.; Zhu, J.; Yang, Y.; Liu, M. Structural Insights into the Binding Propensity of Human SHIP2 SH2 to Oncogenic CagA Isoforms from Helicobacter pylori. Int. J. Mol. Sci. 2022, 23, 11299. https://doi.org/10.3390/ijms231911299
Wang Z, Shan Y, Wang R, Zhou H, Hu R, Li Y, Zhu J, Yang Y, Liu M. Structural Insights into the Binding Propensity of Human SHIP2 SH2 to Oncogenic CagA Isoforms from Helicobacter pylori. International Journal of Molecular Sciences. 2022; 23(19):11299. https://doi.org/10.3390/ijms231911299
Chicago/Turabian StyleWang, Zi, Yubao Shan, Ru Wang, Heng Zhou, Rui Hu, Ying Li, Jiang Zhu, Yunhuang Yang, and Maili Liu. 2022. "Structural Insights into the Binding Propensity of Human SHIP2 SH2 to Oncogenic CagA Isoforms from Helicobacter pylori" International Journal of Molecular Sciences 23, no. 19: 11299. https://doi.org/10.3390/ijms231911299
APA StyleWang, Z., Shan, Y., Wang, R., Zhou, H., Hu, R., Li, Y., Zhu, J., Yang, Y., & Liu, M. (2022). Structural Insights into the Binding Propensity of Human SHIP2 SH2 to Oncogenic CagA Isoforms from Helicobacter pylori. International Journal of Molecular Sciences, 23(19), 11299. https://doi.org/10.3390/ijms231911299