The Impact of Non-Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That Benefit Crops
Abstract
:1. Introduction
2. Plant Microbiomes and Prospection of Diazotrophic Bacteria
Prospection of Diazotrophic Bacteria
3. Molecular Mechanisms Involved in the Association of Plant and Non-Nodulating Diazotrophic Bacteria
3.1. Modulation of Nitrogen Metabolism
3.2. Phytohormone Regulation
3.3. Antioxidant Metabolism
3.4. Modulation of Cell Wall Composition
3.5. Modulation of Plant–Microorganism Recognition Pathways
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Harper, J.E. Nitrogen Metabolism. In Physiology and Determination of Crop Yield; Boote, K.J., Bennett, J.M., Sinclair, T.R., Paulsen, G.M., Eds.; ASA, CSSA, and SSSA Books: Madison, WI, USA, 1994; pp. 285–302. [Google Scholar]
- Miflin, B.J.; Lea, P.J. The Pathway of Nitrogen Assimilation in Plants. Phytochemistry 1976, 15, 873–885. [Google Scholar] [CrossRef]
- Smil, V. Nitrogen and Food Production: Proteins for Human Diets. Ambio 2002, 31, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef]
- Grant, C.A.; Wub, R.; Sellesa, F.; Harkerc, K.N.; Claytond, G.W.; Bittmane, S.; Zebarthf, B.J.; Lupwayi, N.Z. Crop Yield and Nitrogen Concentration with Controlled Release Urea and Split Applications of Nitrogen as Compared to Non-Coated Urea Applied at Seeding. Field Crops Res. 2012, 127, 170–180. [Google Scholar] [CrossRef]
- Imran, A.; Hakim, S.; Tariq, M.; Nawaz, M.S.; Laraib, I.; Gulzar, U.; Hanif, M.K.; Siddique, M.J.; Hayat, M.; Fraz, A.; et al. Diazotrophs for Lowering Nitrogen Pollution Crises: Looking Deep into the Roots. Front. Microbiol. 2021, 12, 637815. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Fertilizers by Nutrient. Available online: http://www.fao.org/faostat/en/#data/RFN (accessed on 20 August 2022).
- Omara, P.; Aula, L.; Oyebiyi, F.; Raun, W.R. World Cereal Nitrogen Use Efficiency Trends: Review and Current Knowledge. Agrosyst. Geosci. Environ. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Franche, C.; Lindström, K. Nitrogen-Fixing Bacteria Associated with Leguminous and Non-Leguminous Plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Soil Nutrient Budget. Available online: https://www.fao.org/faostat/en/#data/ESB (accessed on 20 August 2022).
- dos Santos, S.G.; da Silva Ribeiro, F.; Alves, G.C.; Santos, L.A.; Reis, V.M. Inoculation with Five Diazotrophs Alters Nitrogen Metabolism during the Initial Growth of Sugarcane Varieties with Contrasting Responses to Added Nitrogen. Plant Soil 2020, 451, 25–44. [Google Scholar] [CrossRef]
- dos Santos, C.L.R.; Alves, G.C.; de Matos Macedo, A.V.; Giori, F.G.; Pereira, W.; Urquiaga, S.; Reis, V.M. Contribution of a Mixed Inoculant Containing Strains of Burkholderia spp. and Herbaspirillum ssp. to the Growth of Three Sorghum Genotypes under Increased Nitrogen Fertilization Levels. Appl. Soil Ecol. 2017, 113, 96–106. [Google Scholar] [CrossRef]
- da Fonseca Breda, F.A.; da Silva, T.F.R.; dos Santos, S.G.; Alves, G.C.; Reis, V.M. Modulation of Nitrogen Metabolism of Maize Plants Inoculated with Azospirillum brasilense and Herbaspirillum seropedicae. Arch. Microbiol. 2019, 201, 547–558. [Google Scholar] [CrossRef]
- Oldroyd, G.E.D. Speak, Friend, and Enter: Signalling Systems That Promote Beneficial Symbiotic Associations in Plants. Nat. Rev. Microbiol. 2013, 11, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.L.G.; Ballesteros, H.G.F.; Thiebaut, F.; Ferreira, P.C.G.; Hemerly, A.S. Nice to Meet You: Genetic, Epigenetic and Metabolic Controls of Plant Perception of Beneficial Associative and Endophytic Diazotrophic Bacteria in Non-Leguminous Plants. Plant Mol. Biol. 2016, 90, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Santi, C.; Bogusz, D.; Franche, C. Biological Nitrogen Fixation in Non-Legume Plants. Ann. Bot. 2013, 111, 743–767. [Google Scholar] [CrossRef]
- Favero, V.O.; Carvalho, R.H.; Motta, V.M.; Leite, A.B.C.; Coelho, M.R.R.; Xavier, G.R.; Rumjanek, N.G.; Urquiaga, S. Bradyrhizobium as the Only Rhizobial Inhabitant of Mung Bean (Vigna radiata) Nodules in Tropical Soils: A Strategy Based on Microbiome for Improving Biological Nitrogen Fixation Using Bio-Products. Front. Plant Sci. 2021, 11, 602645. [Google Scholar] [CrossRef] [PubMed]
- de Castilho, C.L.; Longoni, L.; Sampaio, J.; Lisboa, B.B.; Vargas, L.K.; Beneduzi, A. The Rhizosphere Microbiome and Growth-Promoting Rhizobacteria of the Brazilian Juçara Palm. Rhizosphere 2020, 15, 100233. [Google Scholar] [CrossRef]
- Zuluaga, M.Y.A.; Milani, K.M.L.; Gonçalves, L.S.A.; De Oliveira, A.L.M. Diversity and Plant Growth-Promoting Functions of Diazotrophic/N-Scavenging Bacteria Isolated from the Soils and Rhizospheres of Two Species of Solanum. PLoS ONE 2020, 15, e0227422. [Google Scholar] [CrossRef] [PubMed]
- Moretti, L.G.; Crusciol, C.A.C.; Bossolani, J.W.; Calonego, J.C.; Moreira, A.; Garcia, A.; Momesso, L.; Kuramae, E.E.; Hungria, M. Beneficial Microbial Species and Metabolites Alleviate Soybean Oxidative Damage and Increase Grain Yield during Short Dry Spells. Eur. J. Agron. 2021, 127, 126293. [Google Scholar] [CrossRef]
- Nunes, R.d.O.; Domiciano Abrahão, G.; de Sousa Alves, W.; Aparecida de Oliveira, J.; César Sousa Nogueira, F.; Pasqualoto Canellas, L.; Lopes Olivares, F.; Benedeta Zingali, R.; Soares, M.R. Quantitative Proteomic Analysis Reveals Altered Enzyme Expression Profile in Zea mays Roots during the Early Stages of Colonization by Herbaspirillum seropedicae. Proteomics 2021, 21, 2000129. [Google Scholar] [CrossRef]
- Fukami, J.; Ollero, F.J.; Megías, M.; Hungria, M. Phytohormones and Induction of Plant-Stress Tolerance and Defense Genes by Seed and Foliar Inoculation with Azospirillum brasilense Cells and Metabolites Promote Maize Growth. AMB Express 2017, 7, 153. [Google Scholar] [CrossRef]
- Filgueiras, L.; Silva, R.; Almeida, I.; Vidal, M.; Baldani, J.I.; Meneses, C.H.S.G. Gluconacetobacter diazotrophicus Mitigates Drought Stress in Oryza sativa L. Plant Soil 2020, 451, 57–73. [Google Scholar] [CrossRef]
- Vargas, L.; Brigida, A.B.S.; Mota Filho, J.P.; De Carvalho, T.G.; Rojas, C.A.; Vaneechoutte, D.; Van Bel, M.; Farrinelli, L.; Ferreira, P.C.G.; Vandepoele, K.; et al. Drought Tolerance Conferred to Sugarcane by Association with Gluconacetobacter diazotrophicus: A Transcriptomic View of Hormone Pathways. PLoS ONE 2014, 9, e114744. [Google Scholar] [CrossRef] [PubMed]
- Döbereiner, J.; Baldani, V.L.D.; Reis, V.M. Endophytic Occurrence of Diazotrophic Bacteria in Non-Leguminous Crops. In Azospirillum VI and Related Microorganisms; NATO ASI Series; Springer: Berlin/Heidelberg, Germany, 1995; Volume 37, pp. 3–14. [Google Scholar] [CrossRef]
- Boddey, R.M.; Urquiaga, S.; Reis, V.; Dobereiner, J. Biological Nitrogen Fixation Associated with Sugar Cane. Plant Soil 1991, 137, 111–117. [Google Scholar] [CrossRef]
- Castro, J. Inoculantes; Outlook Globalfer: Brasil.
- Pirttilä, A.M.; Mohammad, H.; Tabas, P.; Baruah, N.; Koskimäki, J.J. Biofertilizers and Biocontrol Agents for Agriculture: How to Identify and Develop New Potent Microbial Strains and Traits. Microorganisms 2021, 9, 817. [Google Scholar] [CrossRef] [PubMed]
- Diário Oficial da República Federativa do Brasil. Instrução Normativa SDA No 13, de 24 de Março de 2011; Diário Oficial da República Federativa do Brasil: Brasilia, Brazil, 2011. [Google Scholar]
- Hungria, M.; Franchini, J.C.; Campo, R.J.; Crispino, C.C.; Moraes, J.Z.; Sibaldelli, R.N.R.; Mendes, I.C.; Arihara, J. Nitrogen Nutrition of Soybean in Brazil: Contributions of Biological N 2 Fixation and N Fertilizer to Grain Yield. Can. J. Plant Sci. 2006, 86, 927–939. [Google Scholar] [CrossRef]
- Associação Nacional do Produtores e Importadores de Inoculantes. Estatísticas: O Crescimento da Utilização dos Inoculantes Na Última Década. Available online: https://www.anpii.org.br/estatisticas/ (accessed on 5 August 2022).
- De Oliveira, A.M.; Regina, M.; Henrique, P.; Bispo, S.; Roa, P.B. Brazilian Scenario of Inoculant Production: A Look at Patents. Rev. Bras. Cienc. Solo 2022, 46, e0210081. [Google Scholar] [CrossRef]
- Pascale, A.; Proietti, S.; Pantelides, I.S.; Stringlis, I.A. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Front. Plant Sci. 2020, 10, 1741. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The Rhizosphere Microbiome and Plant Health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- De Souza, R.S.C.; Okura, V.K.; Armanhi, J.; Jorrín, B.; Lozano, N.; Da Silva, M.J.; Gonzalez-Guerrero, M.; De Araújo, L.M.; Verza, N.C.; Bagheri, H.C.; et al. Unlocking the Bacterial and Fungal Communities Assemblages of Sugarcane Microbiome. Sci. Rep. 2016, 6, 28774. [Google Scholar] [CrossRef]
- Dong, M.; Yang, Z.; Cheng, G.; Peng, L.; Xu, Q.; Xu, J. Diversity of the Bacterial Microbiome in the Roots of Four Saccharum Species: S. spontaneum, S. robustum, S. barberi, and S. officinarum. Front. Microbiol. 2018, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.N.; Kumar, V.; Dhaliwal, H.S.; Prasad, R.; Saxena, A.K. Microbiome in Crops: Diversity, Distribution, and Potential Role in Crop Improvement; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780444639875. [Google Scholar]
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants 2020, 9, 97. [Google Scholar] [CrossRef]
- Nyholm, L.; Koziol, A.; Marcos, S.; Botnen, A.B.; Aizpurua, O.; Gopalakrishnan, S.; Limborg, M.T.; Gilbert, M.T.P.; Alberdi, A. Holo-Omics: Integrated Host-Microbiota Multi-Omics for Basic and Applied Biological Research. iScience 2020, 23, 101414. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, J.; Rondon, M.R.; Brady, S.F.; Clardy, J.; Goodman, R.M. Molecular Biological Access to the Chemistry of Unknown Soil Microbes: A New Frontier for Natural Products. Chem. Biol. 1998, 5, R245–R249. [Google Scholar] [CrossRef]
- de Souza, R.S.C.; Armanhi, J.S.L.; Arruda, P. From Microbiome to Traits: Designing Synthetic Microbial Communities for Improved Crop Resiliency. Front. Plant Sci. 2020, 11, 1179. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Dubey, A. Rhizosphere Microbiome: Engineering Bacterial Competitiveness for Enhancing Crop Production. J. Adv. Res. 2020, 24, 337–352. [Google Scholar] [CrossRef]
- Procópio, L.; Barreto, C. The Soil Microbiomes of the Brazilian Cerrado. J. Soils Sediments 2021, 21, 2327–2342. [Google Scholar] [CrossRef]
- Ludwig, W.; Schleifer, K.H. Bacterial Phylogeny Based on 16S and 23S rRNA Sequence Analysis. FEMS Microbiol. Rev. 1994, 15, 155–173. [Google Scholar] [CrossRef]
- Caroline, L.; Helene, F.; Klepa, M.S.; Hungria, M. New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhizobia. Int. J. Microbiol. 2022, 2022, 4623713. [Google Scholar] [CrossRef]
- de Alencar Menezes Júnior, I.; Feitosa de Matos, G.; Moura de Freitas, K.; da Conceição Jesus, E.; Rouws, L.F.M. Occurrence of Diverse Bradyrhizobium spp. in Roots and Rhizospheres of Two Commercial Brazilian Sugarcane Cultivars. Braz. J. Microbiol. 2019, 50, 759–767. [Google Scholar] [CrossRef]
- Mehnaz, S.; Mirza, M.S.; Haurat, J.; Bally, R.; Normand, P.; Bano, A.; Malik, K.A. Isolation and 16S RRNA Sequence Analysis of the Beneficial Bacteria from the Rhizosphere of Rice. Can. J. Microbiol. 2001, 47, 110–117. [Google Scholar] [CrossRef]
- Shoresh, M.; Harman, G.E.; Mastouri, F. Induced Systemic Resistance and Plant Responses to Fungal Biocontrol Agents. Annu. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef]
- Fakruddin, M.; Bin Mannan, K.S.; Mohammad Mazumdar, R.M.; Chowdhury, A.; Nur Hossain, M. Identification and Characterization of Microorganisms: DNA-Fingerprinting Methods. Songklanakarin J. Sci. Technol. 2013, 35, 397–404. [Google Scholar]
- Bomfim, C.S.G.; da Silva, V.B.; Cursino, L.H.S.; Mattos, W.d.S.; Santos, J.C.S.; de Souza, L.S.B.; Dantas, B.F.; de Freitas, A.D.S.; Fernandes-Júnior, P.I. Endophytic Bacteria Naturally Inhabiting Commercial Maize Seeds Occupy Different Niches and Are Efficient Plant Growth-Promoting Agents. Symbiosis 2020, 81, 255–269. [Google Scholar] [CrossRef]
- Pcr, R.; Healy, M.; Huong, J.; Bittner, T.; Lising, M.; Frye, S.; Raza, S.; Schrock, R.; Manry, J.; Renwick, A.; et al. Microbial DNA Typing by Automated Repetitive-Sequence-Based PCR. J. Clin. Microbiol. 2005, 43, 199–207. [Google Scholar] [CrossRef]
- Ferrarezi, J.A.; Carvalho-Estrada, P.d.A.; Batista, B.D.; Aniceto, R.M.; Tschoeke, B.A.P.; Andrade, P.A.d.M.; Lopes, B.d.M.; Bonatelli, M.L.; Odisi, E.J.; Azevedo, J.L.; et al. Effects of Inoculation with Plant Growth-Promoting Rhizobacteria from the Brazilian Amazon on the Bacterial Community Associated with Maize in Field. Appl. Soil Ecol. 2022, 170, 104297. [Google Scholar] [CrossRef]
- Rocha, S.M.B.; Mendes, L.W.; Oliveira, L.M.d.S.; Melo, V.M.M.; Antunes, J.E.L.; Araujo, F.F.; Hungria, M.; Araujo, A.S.F. Nodule Microbiome from Cowpea and Lima Bean Grown in Composted Tannery Sludge-Treated Soil. Appl. Soil Ecol. 2020, 151, 103542. [Google Scholar] [CrossRef]
- Kumar, A.; Vyas, P.; Kumar, D.; Dubey, A. Screening and Characterization of Achromobacter xylosoxidans Isolated from Rhizosphere of Jatropha curcas L. (Energy Crop) for Plant-Growth-Promoting Traits. J. Adv. Res. Biotechnol. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Van Themaat, E.V.L.; Schulze-Lefert, P. Structure and Functions of the Bacterial Microbiota of Plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef]
- Urquiaga, S.; Xavier, R.P.; de Morais, R.F.; Batista, R.B.; Schultz, N.; Leite, J.M.; Maia e Sá, J.; Barbosa, K.P.; de Resende, A.S.; Alves, B.J.R.; et al. Evidence from Field Nitrogen Balance and 15N Natural Abundance Data for the Contribution of Biological N 2 Fixation to Brazilian Sugarcane Varieties. Plant Soil 2012, 356, 5–21. [Google Scholar] [CrossRef]
- Boddey, R.M.; Polidoro, J.C.; Resende, A.S.; Alves, B.J.R.; Urquiaga, S. Use of the 15N Natural Abundance Technique for the Quantification of the Contribution of N2 Fixation to Sugar Cane and Other Grasses. Aust. J. Plant Physiol. 2001, 28, 889–895. [Google Scholar] [CrossRef]
- Urquiaga, S.; Cruz, K.H.S.; Boddey, R.M. Contribution of Nitrogen Fixation to Sugar Cane: Nitrogen-15 and Nitrogen-Balance Estimates. Soil Sci. Soc. Am. J. 1992, 56, 105–114. [Google Scholar] [CrossRef]
- Rouws, L.F.M.; Leite, J.; De Matos, G.F.; Zilli, J.E.; Coelho, M.R.R.; Xavier, G.R.; Fischer, D.; Hartmann, A.; Reis, V.M.; Baldani, J.I. Endophytic Bradyrhizobium spp. Isolates from Sugarcane Obtained through Different Culture Strategies. Environ. Microbiol. Rep. 2014, 6, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Singh, P.; Sharma, A.; Guo, D.; Upadhyay, S.K.; Song, Q.; Verma, K.K.; Li, D.; Malviya, M.K.; Song, X.; et al. Unraveling Nitrogen Fixing Potential of Endophytic Diazotrophs of Different Saccharum Species for Sustainable Sugarcane Growth. Int. J. Mol. Sci. 2022, 23, 6242. [Google Scholar] [CrossRef] [PubMed]
- Olivares, F.L.; Baldani, V.L.D.; Reis, V.M. Occurrence of the Endophytic Diazotrophs Herbaspirillum spp. in Roots, Stems, and Leaves, Predominantly of Gramineae. Biol. Fertil. Soils 1996, 20, 197–200. [Google Scholar] [CrossRef]
- Cavalcante, V.A.; Dobereiner, J. A New Acid-Tolerant Nitrogen-Fixing Bacterium Associated with Sugarcane. Plant Soil 1988, 108, 23–31. [Google Scholar] [CrossRef]
- Dobereiner, J. Nitrogen-Fixing Bacteria of the Genus Beijerinckia Derx in the Rhizosphere of Sugarcane. Plant Soil 1961, 15, 211–216. [Google Scholar] [CrossRef]
- Rangel de Souza, A.L.S.; De Souza, S.A.; De Oliveira, M.V.V.; Ferraz, T.M.; Figueiredo, F.A.M.M.A.; Da Silva, N.D.; Rangel, P.L.; Panisset, C.R.S.; Olivares, F.L.; Campostrini, E.; et al. Endophytic Colonization of Arabidopsis thaliana by Gluconacetobacter diazotrophicus and Its Effect on Plant Growth Promotion, Plant Physiology, and Activation of Plant Defense. Plant Soil 2016, 399, 257–270. [Google Scholar] [CrossRef]
- Armanhi, J.S.L.; de Souza, R.S.C.; Damasceno, N.d.B.; de Araújo, L.M.; Imperial, J.; Arruda, P. A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome. Front. Plant Sci. 2018, 8, 2191. [Google Scholar] [CrossRef]
- Li, H.; Singh, R.K.; Singh, P.; Song, Q.; Xing, Y. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere. Front. Microbiol. 2017, 8, 1268. [Google Scholar] [CrossRef]
- Higdon, S.M.; Pozzo, T.; Tibbett, E.J.; Chiu, C.; Jeannotte, R.; Weimer, B.C.; Bennett, A.B. Diazotrophic Bacteria from Maize Exhibit Multifaceted Plant Growth Promotion Traits in Multiple Hosts. PLoS ONE 2020, 15, e0239081. [Google Scholar] [CrossRef]
- Higdon, S.M.; Pozzo, T.; Kong, N.; Huang, B.C.; Yang, M.L.; Jeannotte, R.; Brown, C.T.; Bennett, A.B.; Weimer, B.C. Genomic Characterization of a Diazotrophic Microbiota Associated with Maize Aerial Root Mucilage. PLoS ONE 2020, 15, e0239677. [Google Scholar] [CrossRef]
- Zhu, S.; Vivanco, J.M.; Manter, D.K. Nitrogen Fertilizer Rate Affects Root Exudation, the Rhizosphere Microbiome and Nitrogen-Use-Ef Fi Ciency of Maize. Appl. Soil Ecol. 2016, 107, 324–333. [Google Scholar] [CrossRef]
- Yan, D.; Tajima, H.; Cline, L.C.; Fong, R.Y.; Ottaviani, J.I.; Shapiro, H.; Blumwald, E. Genetic Modification of Flavone Biosynthesis in Rice Enhances Biofilm Formation of Soil Diazotrophic Bacteria and Biological Nitrogen Fixation. Plant Biotechnol. J. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.N.; Gomaa, A.; Yanni, Y.G.; Stedtfeld, T.M. Alterations in the Endophyte-Enriched Root-Associated Microbiome of Rice Receiving Growth-Promoting Treatments of Urea Fertilizer and Rhizobium Biofertilizer. Microb. Ecol. 2020, 79, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, T.; Zhao, D.; Wang, Z.; Liao, Y. Science of the Total Environment Different Tillage Practices Change Assembly, Composition, and Co-Occurrence Patterns of Wheat Rhizosphere Diazotrophs. Sci. Total Environ. 2021, 767, 144252. [Google Scholar] [CrossRef]
- Leite, J.; Fischer, D.; Rouws, L.F.M.; Fernandes-Júnior, P.I.; Hofmann, A.; Kublik, S.; Schloter, M.; Xavier, G.R.; Radl, V. Cowpea Nodules Harbor Non-Rhizobial Bacterial Communities That Are Shaped by Soil Type Rather than Plant Genotype. Front. Plant Sci. 2017, 7, 2064. [Google Scholar] [CrossRef] [PubMed]
- Reinhold-hurek, B.; Wiebke, B.; Sof, C.; Sabale, M.; Hurek, T. Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity. Annu. Rev. Phytopathol. 2015, 53, 403–424. [Google Scholar] [CrossRef]
- Brusamarello-Santos, L.C.; Gilard, F.; Brulé, L.; Quilleré, I.; Gourion, B.; Ratet, P.; De Souza, E.M.; Lea, P.J.; Hirel, B. Metabolic Profiling of Two Maize (Zea mays L.) Inbred Lines Inoculated with the Nitrogen Fixing Plant-Interacting Bacteria Herbaspirillum seropedicae and Azospirillum brasilense. PLoS ONE 2017, 12, e0174576. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhang, H.; Wang, M.; Chen, S. Diazotrophic Paenibacillus beijingensis BJ-18 Provides Nitrogen for Plant and Promotes Plant Growth, Nitrogen Uptake and Metabolism. Front. Microbiol. 2019, 10, 1119. [Google Scholar] [CrossRef]
- da Silveira, A.P.D.; Sala, V.M.R.; Cardoso, E.J.B.N.; Labanca, E.G.; Cipriano, M.A.P. Nitrogen Metabolism and Growth of Wheat Plant under Diazotrophic Endophytic Bacteria Inoculation. Appl. Soil Ecol. 2016, 107, 313–319. [Google Scholar] [CrossRef]
- dos Santos, S.G.; da Silva Ribeiro, F.; da Fonseca, C.S.; Pereira, W.; Santos, L.A.; Reis, V.M. Development and Nitrate Reductase Activity of Sugarcane Inoculated with Five Diazotrophic Strains. Arch. Microbiol. 2017, 199, 863–873. [Google Scholar] [CrossRef]
- Carvalho, T.L.G.; Rosman, A.C.; Grativol, C.; Nogueira, E.d.M.; Baldani, J.I.; Hemerly, A.S. Sugarcane Genotypes with Contrasting Biological Nitrogen Fixation Efficiencies Differentially Modulate Nitrogen. Plants 2022, 11, 1971. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.H. Nitrate Reductase Structure, Function and Regulation: Bridging the Gap between Biochemistry and Physiology. Annu. Rev. Plant Biol. 1999, 50, 277–303. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Stitt, M. Nitrate Reduction and Signalling. In Plant Nitrogen; Springer: Berlin/Heidelberg, Germany, 2001; pp. 37–59. [Google Scholar] [CrossRef]
- Hardoim, P.R.; de Carvalho, T.L.G.; Ballesteros, H.G.F.; Bellieny-Rabelo, D.; Rojas, C.A.; Venancio, T.M.; Ferreira, P.C.G.; Hemerly, A.S. Genome-Wide Transcriptome Profiling Provides Insights into the Responses of Maize (Zea mays L.) to Diazotrophic Bacteria. Plant Soil 2020, 451, 121–143. [Google Scholar] [CrossRef]
- Guo, D.; Li, D.; Singh, R.K.; Singh, P.; Verma, K.; Sharma, A.; Qin, Y.; Khan, Q.; Song, X.; Mukesh, K.; et al. Comparative Transcriptome Analysis of Two Sugarcane Varieties in Response to Diazotrophic Plant Growth Promoting Endophyte Enterobacter roggenkampii ED5. J. Plant Interact. 2022, 17, 75–84. [Google Scholar] [CrossRef]
- Lea, P.J.; Miflin, B.J. Alternative Route for Nitrogen Assimilation in Higher Plants. Nature 1974, 251, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Camilios-Neto, D.; Bonato, P.; Wassem, R.; Tadra-Sfeir, M.Z.; Brusamarello-Santos, L.C.C.; Valdameri, G.; Donatti, L.; Faoro, H.; Weiss, V.A.; Chubatsu, L.S.; et al. Dual RNA-Seq Transcriptional Analysis of Wheat Roots Colonized by Azospirillum brasilense Reveals up-Regulation of Nutrient Acquisition and Cell Cycle Genes. BMC Genom. 2014, 15, 378. [Google Scholar] [CrossRef]
- De Matos Nogueira, E.; Lopes Olivares, F.; Cavalcante Japiassu, J.; Vilar, C.; Vinagre, F.; Ivo Baldani, J.; Silva Hemerly, A. Characterization of Glutamine Synthetase Genes in Sugarcane Genotypes with Different Rates of Biological Nitrogen Fixation. Plant Sci. 2005, 169, 819–832. [Google Scholar] [CrossRef]
- Aguiar, N.O.; Olivares, F.L.; Novotny, E.H.; Canellas, L.P. Changes in Metabolic Profiling of Sugarcane Leaves Induced by Endophytic Diazotrophic Bacteria and Humic Acids. PeerJ 2018, 2018, e5445. [Google Scholar] [CrossRef]
- Cipriano, M.A.P.; Freitas-Iório, R.d.P.; Dimitrov, M.R.; de Andrade, S.A.L.; Kuramae, E.E.; da Silveira, A.P.D. Plant-Growth Endophytic Bacteria Improve Nutrient Use Efficiency and Modulate Foliar n-Metabolites in Sugarcane Seedling. Microorganisms 2021, 9, 479. [Google Scholar] [CrossRef]
- Thomas, J.; Kim, H.R.; Rahmatallah, Y.; Wiggins, G.; Yang, Q.; Id, R.S.; Glazko, G.; Id, A.M. RNA-Seq Reveals Differentially Expressed Genes in Rice (Oryza sativa) Roots during Interactions with Plant-Growth Promoting Bacteria, Azospirillum brasilense. PLoS ONE 2019, 14, e0217309. [Google Scholar] [CrossRef]
- de Azevedo, I.G.; Olivares, F.L.; Ramos, A.C.; Bertolazi, A.A.; Canellas, L.P. Humic Acids and Herbaspirillum seropedicae Change the Extracellular H+ Flux and Gene Expression in Maize Roots Seedlings. Chem. Biol. Technol. Agric. 2019, 6, 8. [Google Scholar] [CrossRef]
- Wiggins, G.; Thomas, J.; Rahmatallah, Y.; Deen, C.; Haynes, A.; Degon, Z.; Glazko, G.; Mukherjee, A. Common Gene Expression Patterns Are Observed in Rice Roots during Associations with Plant Growth-Promoting Bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Sci. Rep. 2022, 12, 8827. [Google Scholar] [CrossRef]
- Da Fonseca Breda, F.A.; Alves, G.C.; Reis, V.M. Produtividade de Milho Na Presença de Doses de N e de Inoculação de Herbaspirillum seropedicae. Pesqui. Agropecu. Bras. 2016, 51, 45–52. [Google Scholar] [CrossRef]
- Brusamarello-Santos, L.C.C.; Pacheco, F.; Aljanabi, S.M.M.; Monteiro, R.A.; Cruz, L.M.; Baura, V.A.; Pedrosa, F.O.; Souza, E.M.; Wassem, R. Differential Gene Expression of Rice Roots Inoculated with the Diazotroph Herbaspirillum seropedicae. Plant Soil 2012, 356, 113–125. [Google Scholar] [CrossRef]
- Silva, R.; Filgueiras, L.; Santos, B.; Coelho, M.; Silva, M.; Estrada-Bonilla, G.; Vidal, M.; Baldani, J.I.; Meneses, C. Gluconacetobacter diazotrophicus Changes the Molecular Mechanisms of Root Development in Oryza sativa L. Growing under Water Stress. Int. J. Mol. Sci. 2020, 21, 333. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J. Auxin and Plant-Microbe Interactions. Cold Spring Harb. Perspect. Biol. 2011, 3, a001438. [Google Scholar] [CrossRef]
- Liu, L.; Guo, G.; Wang, Z.; Ji, H.; Mu, F.; Li, X. Auxin in Plant Growth and Stress Responses. In Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications; Springer: New York, NY, USA, 2014; pp. 1–35. [Google Scholar] [CrossRef]
- Patten, C.L.; Glick, B.R. Bacterial Biosynthesis of Indole-3-Acetic Acid. Can. J. Microbiol. 1996, 42, 207–220. [Google Scholar] [CrossRef]
- Baca, B.; Elmerich, C. Microbial Production of Plant Hormones. In Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations; Elmerich, C., Newton, W., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2007; pp. 113–143. [Google Scholar]
- Sukumar, P.; Legué, V.; Vayssières, A.; Martin, F.; Tuskan, G.A.; Kalluri, U.C. Involvement of Auxin Pathways in Modulating Root Architecture during Beneficial Plant–Microorganism Interactions. Plant Cell Environ. 2013, 36, 909–919. [Google Scholar] [CrossRef]
- Espindula, E.; Faleiro, A.C.; Pereira, T.P.; do Amaral, F.P.; Arisi, A.C.M. Azospirillum brasilense FP2 Modulates Respiratory Burst Oxidase Gene Expression in Maize Seedlings. Indian J. Plant Physiol. 2017, 22, 316–323. [Google Scholar] [CrossRef]
- Thiebaut, F.; Rojas, C.A.; Grativol, C.; Motta, M.; Vieira, T.; Regulski, M.; Martienssen, R.A.; Farinelli, L.; Hemerly, A.S.; Ferreira, P.C.G. Genome-Wide Identification of MicroRNA and SiRNA Responsive to Endophytic Beneficial Diazotrophic Bacteria in Maize. BMC Genom. 2014, 15, 766. [Google Scholar] [CrossRef]
- Xie, Q.; Frugis, G.; Colgan, D.; Chua, N. Arabidopsis NAC1 Transduces Auxin Signal Downstream of TIR1 to Promote Lateral Root Development. Genes Dev. 2000, 14, 3024–3036. [Google Scholar] [CrossRef]
- Li, J.; Guo, G.; Guo, W.; Guo, G.; Tong, D.; Ni, Z.; Sun, Q. MiRNA164-Directed Cleavage of ZmNAC1 Confers Lateral Root Development in Maize (Zea mays L.). BMC Plant Biol. 2012, 12, 220. [Google Scholar] [CrossRef]
- Bastián, F.; Cohen, A.; Piccoli, P.; Luna, V.; Baraldi, R.; Bottini, R. Production of Indole-3-Acetic Acid and Gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in Chemically-Defined Culture Media. Plant Growth Regul. 1998, 24, 7–11. [Google Scholar] [CrossRef]
- Bottini, R.; Cassán, F.; Piccoli, P. Gibberellin Production by Bacteria and Its Involvement in Plant Growth Promotion and Yield Increase. Appl. Microbiol. Biotechnol. 2004, 65, 497–503. [Google Scholar] [CrossRef]
- Yamaguchi, S. Gibberellin Metabolism and Its Regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef]
- Moya, J.L.; Ros, R.; Picazo, I. Heavy Metal-Hormone Interactions in Rice Plants: Effects on Growth, Net Photosynthesis, and Carbohydrate Distribution. J. Plant Growth Regul. 1995, 14, 61–67. [Google Scholar] [CrossRef]
- Prakash, L.; Prathapasenan, G. Nacl-and Gibberellic Acid-Induced Changes in the Content of Auxin and the Activities of Cellulase and Pectin Lyase during Leaf Growth in Rice (Oryza sativa). Ann. Bot. 1990, 65, 251–257. [Google Scholar] [CrossRef]
- Do Amaral, F.P.; Bueno, J.C.F.; Hermes, V.S.; Arisi, A.C.M. Gene Expression Analysis of Maize Seedlings (DKB240 Variety) Inoculated with Plant Growth Promoting Bacterium Herbaspirillum seropedicae. Symbiosis 2014, 62, 41–50. [Google Scholar] [CrossRef]
- Glick, B.R.; Penrose, D.M.; Li, J. A Model for the Lowering of Plant Ethylene Concentrations by Plant Growth-Promoting Bacteria. J. Theor. Biol. 1998, 190, 63–68. [Google Scholar] [CrossRef]
- Solanki, M.K.; Wang, Z.; Wang, F.Y.; Li, C.N.; Lan, T.J.; Singh, R.K.; Singh, P.; Yang, L.T.; Li, Y.R. Intercropping in Sugarcane Cultivation Influenced the Soil Properties and Enhanced the Diversity of Vital Diazotrophic Bacteria. Sugar Tech 2017, 19, 136–147. [Google Scholar] [CrossRef]
- Pedrosa, F.O.; Monteiro, R.A.; Wassem, R.; Cruz, L.M.; Ayub, R.a.; Colauto, N.B.; Fernandez, M.A.; Fungaro, M.H.P.; Grisard, E.C.; Hungria, M.; et al. Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses. PLoS Genet. 2011, 7, e1002064. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef]
- Saleem, M.; Arshad, M.; Hussain, S.; Bhatti, A.S. Perspective of Plant Growth Promoting Rhizobacteria (PGPR) Containing ACC Deaminase in Stress Agriculture. J. Ind. Microbiol. Biotechnol. 2007, 34, 635–648. [Google Scholar] [CrossRef]
- Alberton, D.; Müller-Santos, M.; Brusamarello-Santos, L.C.C.; Valdameri, G.; Cordeiro, F.A.; Yates, M.G.; De Oliveira Pedrosa, F.; De Souza, E.M. Comparative Proteomics Analysis of the Rice Roots Colonized by Herbaspirillum seropedicae Strain SmR1 Reveals Induction of the Methionine Recycling in the Plant Host. J. Proteome Res. 2013, 12, 4757–4768. [Google Scholar] [CrossRef]
- Vargas, L.; Carvalho, T.L.G.; Ferreira, P.C.G.; Baldani, V.L.D.; Baldani, J.I.; Hemerly, A.S. Early Responses of Rice (Oryza sativa L.) Seedlings to Inoculation with Beneficial Diazotrophic Bacteria Are Dependent on Plant and Bacterial Genotypes. Plant Soil 2012, 356, 127–137. [Google Scholar] [CrossRef]
- De Nogueira, E.M.; Vinagre, F.; Masuda, H.P.; Vargas, C.; De Pádua, V.L.M.; Da Silva, F.R.; Dos Santos, R.V.; Baldani, J.I.; Ferreira, P.C.G.; Hemerly, A.S. Expression of Sugarcane Genes Induced by Inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genet. Mol. Biol. 2001, 24, 199–206. [Google Scholar] [CrossRef]
- Vargas, C.; Muniz De Pádua, V.L.; De Matos Nogueira, E.; Vinagre, F.; Masuda, H.P.; Rodrigues Da Silva, F.; Baldani, J.I.; Cavalcanti Gomes Ferreira, P.; Silva Hemerly, A. Signaling Pathways Mediating the Association between Sugarcane and Endophytic Diazotrophic Bacteria: A Genomic Approach. Symbiosis 2003, 35, 159–180. [Google Scholar]
- Cavalcante, J.J.V.V.; Vargas, C.; Nogueira, E.M.; Vinagre, F.; Schwarcz, K.; Baldani, J.I.; Ferreira, P.C.G.; Hemerly, A.S. Members of the Ethylene Signalling Pathway Are Regulated in Sugarcane during the Association with Nitrogen-Fixing Endophytic Bacteria. J. Exp. Bot. 2007, 58, 673–686. [Google Scholar] [CrossRef]
- Gupta, A.; Bano, A.; Rai, S.; Dubey, P.; Khan, F.; Sharma, S. Plant Growth Promoting Rhizobacteria (PGPR): A Sustainable Agriculture to Rescue the Vegetation from the Effect of Biotic Stress: A Review. NanoBioScience 2021, 10, 2459–2465. [Google Scholar]
- Lugtenberg, B.; Ahmed, I.F.T.I.; Ali, S.; Lugtenberg, B.J.J.; Berg, G. Plant Growth Promotion by Microbes. Mol. Microb. Ecol. Rhizosphere 2013, 2, 561–573. [Google Scholar]
- Solano, B.R.; Maicas, J.B.; De Iglesia, M.T.P.; Domenech, J.; Mañero, F.J.G.; San, U.; Ceu, P.; De Farmacia, F.; Box, P.O.; Monte, B. Systemic Disease Protection Elicited by Plant Growth Promoting Rhizobacteria Strains: Relationship Between Metabolic Responses, Systemic Disease Protection, and Biotic Elicitors. Phytopathology 2008, 98, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Barriuso, J.; Solano, B.R.; Mañero, F.J.G.; San, U.; Ceu, P.; De Farmacia, F.; Monte, B. Protection Against Pathogen and Salt Stress by Four Plant Growth-Promoting Rhizobacteria Isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 2008, 98, 666–672. [Google Scholar] [CrossRef]
- Tamosiune, I.; BAniulis, D.; Stanys, V. Role of Endophytic Bacteria in Stress Tolerance of Agricultural Plants: Diversity of Microorganisms and Molecular Mechanisms. In Probiotics in Agroecosystem; Springer: Singapore, 2017; ISBN 9789811040597. [Google Scholar] [CrossRef]
- Herman, M.A.B.; Nault, B.A.; Smart, C.D. Effects of Plant Growth-Promoting Rhizobacteria on Bell Pepper Production and Green Peach Aphid Infestations in New York. Crop Prot. 2008, 27, 996–1002. [Google Scholar] [CrossRef]
- Thara, V.K.; Tang, X.; Gu, Y.Q.; Martin, G.B.; Zhou, J.M. Pseudomonas Syringae Pv Tomato Induces the Expression of Tomato EREBP-like Genes Pti4 and Pti5 Independent of Ethylene, Salicylate and Jasmonate. Plant J. 1999, 20, 475–483. [Google Scholar] [CrossRef]
- Thomma, B.P.H.J.; Eggermont, K.; Tierens, K.F.M.J.; Broekaert, W.F. Requirement of Functional Ethylene-Insensitive 2 Gene for Efficient Resistance of Arabidopsis to Infection by Botrytis Cinerea. Plant Physiol. 1999, 121, 1093–1101. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Zehnder, G.W.; Murphya, J.F.; Fernandez, C. Plant Root-Bacterial Interactions in Biological Control of Soilborne Diseases and Potential Extension to Systemic and Foliar Diseases. Australas. Plant Pathol. 1999, 28, 21–26. [Google Scholar] [CrossRef]
- García-gutiérrez, M.S.; Ortega-álvaro, A.; Busquets-garcía, A.; Pérez-ortiz, J.M.; Caltana, L.; Jimena, M.; Brusco, A.; Maldonado, R.; Manzanares, J. Neuropharmacology Synaptic Plasticity Alterations Associated with Memory Impairment Induced by Deletion of CB2 Cannabinoid Receptors. Neuropharmacology 2013, 73, 388–396. [Google Scholar] [CrossRef]
- Medeiros, F.H.V.; Souza, R.M.; Medeiros, F.C.L.; Zhang, H.; Wheeler, T.; Payton, P.; Ferro, H.M.; Paré, P.W. Transcriptional Profiling in Cotton Associated with Bacillus subtilis (UFLA285) Induced Biotic-Stress Tolerance. Plant Soil 2011, 347, 327–337. [Google Scholar] [CrossRef]
- Chen, X.H.; Koumoutsi, A.; Scholz, R.; Eisenreich, A.; Schneider, K.; Heinemeyer, I.; Morgenstern, B.; Voss, B.; Hess, W.R.; Reva, O.; et al. Comparative Analysis of the Complete Genome Sequence of the Plant Growth-Promoting Bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 2007, 25, 1007–1014. [Google Scholar] [CrossRef]
- Rudrappa, T.; Biedrzycki, M.L.; Kunjeti, S.G.; Nicole, M.; Czymmek, K.J.; Paré, P.W.; Bais, H.P.; Rudrappa, T.; Biedrzycki, M.L.; Kunjeti, S.G.; et al. Systemic Resistance in Arabidopsis Thaliana The Rhizobacterial Elicitor Acetoin Induces Systemic Resistance in Arabidopsis thaliana. Commun. Integr. Biol. 2010, 3, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Borris, R. Phytostimulation and Biocontrol by the Plant-Associated Bacillus amyloliquefaciens FZB42: An Update. In Phyto-microbiome in Stress Regulation (Environmental and Microbial Biotechnology); Springer: Singapore, 2020. [Google Scholar]
- Gamalero, E.; National, I.; Galetto, L.; National, I.; Massa, N. An 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase-Expressing Endophyte Increases Plant Resistance to Flavescence Dorée Phytoplasma Infection. Plant Biol. 2016, 151, 331–340. [Google Scholar] [CrossRef]
- Davies, W.J.; Kudoyarova, G.; Hartung, W. Long-Distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. J. Plant Growth Regul. 2005, 24, 285–295. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Bano, A.; Saud, S.; Hassan, S.; Shan, D.; Khan, F.A.; Khan, F.; Chen, Y.; Wu, C.; et al. Potential Role of Phytohormones and Plant Growth-Promoting Rhizobacteria in Abiotic Stresses: Consequences for Changing Environment. Environ. Sci. Pollut. Res. 2015, 22, 4907–4921. [Google Scholar] [CrossRef]
- Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF Family Transcription Factors in Plant Abiotic Stress Responses. Biochim. Biophys. Acta Gene Regul. Mech. 2012, 1819, 86–96. [Google Scholar] [CrossRef]
- Bhattacharjee, S. Reactive Oxygen Species and Oxidative Burst: Roles in Stress, Senescence and Signal Transduction in Plants. Curr. Sci. 2005, 89, 1113–1121. [Google Scholar]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. Plant Cell 2005, 17, 1866–1875. [Google Scholar] [CrossRef]
- Fukami, J.; De La Osa, C.; Ollero, F.J.; Megías, M.; Hungria, M. Co-Inoculation of Maize with Azospirillum brasilense and Rhizobium tropici as a Strategy to Mitigate Salinity Stress. Funct. Plant Biol. 2018, 45, 328–339. [Google Scholar] [CrossRef]
- Barros, F.C.; de Camargo, R.; Lana, R.M.Q.; Franco, M.H.R.; Stanger, M.C.; Pereira, V.J.; Lemes, E.M. Azospirillum brasilense and Organomineral Fertilizer Co-Inoculated with Bradyrhizobium japonicum on Oxidative Stress in Soybean. Int. J. Recycl. Org. Waste Agric. 2022, 11, 229–245. [Google Scholar] [CrossRef]
- Devi, K.A.; Pandey, G.; Rawat, A.K.S.; Sharma, G.D.; Pandey, P. The Endophytic Symbiont—Pseudomonas aeruginosa Stimulates the Antioxidant Activity and Growth of Achyranthes aspera L. Front. Microbiol. 2017, 8, 1897. [Google Scholar] [CrossRef]
- Mandon, K.; Nazaret, F.; Farajzadeh, D.; Frendo, P. Redox Regulation in Diazotrophic Bacteria in Interaction with Plants. Antioxidants 2021, 10, 880. [Google Scholar] [CrossRef]
- Medeiros, C.D.; Oliveira, M.T.; Rivas, R.; Baldani, J.I.; Kido, E.A.; Santos, M.G. Gas Exchange, Growth, and Antioxidant Activity in Sugarcane under Biological Nitrogen Fixation. Photosynthetica 2012, 50, 519–528. [Google Scholar] [CrossRef]
- Nunes, A.; Leonel, T.; Constantino, V.; Bervelieri, T. Plant Growth-Promoting Bacteria Improve Leaf Antioxidant Metabolism of Drought-Stressed Neotropical Trees. Planta 2020, 251, 83. [Google Scholar] [CrossRef]
- Zakikhani, H.; Ardakani, M.R.; Rejali, F.; Gholamhoseini, M.; Joghan, A.K. Influence of Diazotrophic Bacteria on Antioxidant Enzymes and Some Biochemical Characteristics of Soybean Subjected to Water Stress. J. Integr. Agric. 2012, 11, 1828–1835. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, G.; Zhang, W.; Lang, D.; Li, Z.; Zhang, X. Bacillus sp. G2 Improved the Growth of Glycyrrhiza uralensis Fisch. Related to Antioxidant Metabolism and Osmotic Adjustment. Acta Physiol. Plant. 2021, 43, 152. [Google Scholar] [CrossRef]
- Gruau, C.; Trotel-aziz, P.; Villaume, S.; Rabenoelina, F.; Cl, C. Pseudomonas fluorescens PTA-CT2 Triggers Local and Systemic Immune Response Against Botrytis cinerea in Grapevine. Mol. Plant-Microbe Interact. 2015, 28, 1117–1129. [Google Scholar] [CrossRef]
- García-Cristobal, J.; García-Villaraco, A.; Ramos, B.; Gutierrez-Mañero, J.; Lucas, J.A. Priming of Pathogenesis Related-Proteins and Enzymes Related to Oxidative Stress by Plant Growth Promoting Rhizobacteria on Rice Plants upon Abiotic and Biotic Stress Challenge. J. Plant Physiol. 2015, 188, 72–79. [Google Scholar] [CrossRef]
- Mariutto, M.; Duby, F.; Adam, A.; Bureau, C.; Fauconnier, M.; Ongena, M.; Thonart, P.; Dommes, J. The Elicitation of a Systemic Resistance by Pseudomonas putida BTP1 in Tomato Involves the Stimulation of Two Lipoxygenase Isoforms. BMC Plant Biol. 2011, 11, 29. [Google Scholar] [CrossRef]
- Bacete, L.; Hamann, T. The Role of Mechanoperception in Plant Cell Wall Integrity Maintenance. Plants 2020, 9, 574. [Google Scholar] [CrossRef]
- De Lorenzo, G.; Ferrari, S.; Giovannoni, M.; Mattei, B.; Cervone, F. Cell Wall Traits That Influence Plant Development, Immunity, and Bioconversion. Plant J. 2019, 97, 134–147. [Google Scholar] [CrossRef]
- Novaković, L.; Guo, T.; Bacic, A.; Sampathkumar, A.; Johnson, K.L. Hitting the Wall—Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress. Plants 2018, 7, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, M.R.; Lou, H.; Aubert, M.K.; Wilkinson, L.G.; Little, A.; Houston, K.; Pinto, S.C.; Shirley, N.J. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development. Plants 2018, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, H.G.F.; Rosman, A.C.; Carvalho, T.L.G.; Grativol, C.; Hemerly, A.S. Cell Wall Formation Pathways Are Differentially Regulated in Sugarcane Contrasting Genotypes Associated with Endophytic Diazotrophic Bacteria. Planta 2021, 254, 109. [Google Scholar] [CrossRef] [PubMed]
- James, E.K.; Gyaneshwar, P.; Mathan, N.; Barraquio, W.L.; Reddy, P.M.; Iannetta, P.P.M.; Olivares, F.L.; Ladha, J.K. Infection and Colonization of Rice Seedlings by the Plant Growth-Promoting Bacterium Herbaspirillum seropedicae Z67. Mol. Plant-Microbe Interact. 2002, 15, 894–906. [Google Scholar] [CrossRef]
- Cocking, E.C. Endophytic Colonization of Plant Roots by Nitrogen-Fixing Bacteria. Plant Soil 2003, 252, 169–175. [Google Scholar] [CrossRef]
- James, E.K.; Olivares, F.L. Infection and Colonization of Sugar Cane and Other Graminaceous Plants by Endophytic Diazotrophs. CRC Crit. Rev. Plant Sci. 2010, 17, 77–119. [Google Scholar] [CrossRef]
- Rouws, L.F.M.; Meneses, C.H.S.G.; Guedes, H.V.; Vidal, M.S.; Baldani, J.I.; Schwab, S. Monitoring the Colonization of Sugarcane and Rice Plants by the Endophytic Diazotrophic Bacterium Gluconacetobacter diazotrophicus Marked with Gfp and GusA Reporter Genes. Lett. Appl. Microbiol. 2010, 51, 325–330. [Google Scholar] [CrossRef]
- Monteiro, R.A.; Balsanelli, E.; Wassem, R.; Marin, A.M.; Brusamarello-Santos, L.C.C.; Schmidt, M.A.; Tadra-Sfeir, M.Z.; Pankievicz, V.C.S.; Cruz, L.M.; Chubatsu, L.S.; et al. Herbaspirillum-Plant Interactions: Microscopical, Histological and Molecular Aspects. Plant Soil 2012, 356, 175–196. [Google Scholar] [CrossRef]
- Elbeltagy, A.; Nishioka, K.; Sato, T.; Suzuki, H.; Ye, B.I.N.; Hamada, T.; Isawa, T.; Mitsui, H. Endophytic Colonization and In Planta Nitrogen Fixation by a Herbaspirillum sp. Isolated from Wild Rice Species. Appl. Environ. Microbiol. 2001, 67, 5285–5293. [Google Scholar] [CrossRef]
- Mattos, K.A.; Pádua, V.L.M.; Romeiro, A.; Hallack, L.F. Endophytic Colonization of Rice (Oryza sativa L.) by the Diazotrophic Bacterium Burkholderia kururiensis and Its Ability to Enhance Plant Growth. An. Acad. Bras. Cienc. 2008, 80, 477–493. [Google Scholar] [CrossRef]
- Pankievicz, V.C.S.; do Amaral, F.P.; Ané, J.-M.; Stacey, G. Diazotrophic Bacteria and Their Mechanisms to Interact and Benefit Cereals. Mol. Plant-Microbe Interact. 2021, 34, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Irizarry, I.; White, J.F. Application of Bacteria from Non-Cultivated Plants to Promote Growth, Alter Root Architecture and Alleviate Salt Stress of Cotton. J. Appl. Microbiol. 2017, 122, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Brusamarello-Santos, L.C.C.; Alberton, D.; Valdameri, G.; Camilios-Neto, D.; Covre, R.; Lopes, K.d.P.; Zibetti Tadra-Sfeir, M.; Faoro, H.; Adele Monteiro, R.; Barbosa-Silva, A.; et al. Modulation of Defence and Iron Homeostasis Genes in Rice Roots by the Diazotrophic Endophyte Herbaspirillum seropedicae. Sci. Rep. 2019, 9, 10573. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Choi, H.; Cho, H. Root Hair-Specific EXPANSIN A7 Is Required for Root Hair Elongation in Arabidopsis. Mol. Cells 2011, 31, 393–397. [Google Scholar] [CrossRef]
- Zhiming, Y.; Bo, K.; Xiaowei, H.; Shaolei, L.; Youhuang, B.; Wona, D.; Ming, C.; Hyung-taeg, C.; Ping, W.; Genomics, P. Root Hair-Specific Expansins Modulate Root Hair Elongation in Rice. Plant J. 2011, 66, 725–734. [Google Scholar] [CrossRef]
- Kwasniewski, M.; Szarejko, I. Molecular Cloning and Characterization of b -Expansin Gene Related to Root Hair Formation in Barley 1. Plant Physiol. 2006, 141, 1149–1158. [Google Scholar] [CrossRef]
- Su, F.; Jacquard, C.; Villaume, S.; Michel, J.; Rabenoelina, F.; Clément, C.; Barka, E.A.; Dhondt-Cordelier, S.; Vaillant-Gaveau, N. Burkholderia phytofirmans PsJN Reduces Impact of Freezing Temperatures on Photosynthesis in Arabidopsis thaliana. Front. Plant Sci. 2015, 6, 810. [Google Scholar] [CrossRef]
- Barros-Carvalho, G.A.; Paschoal, A.R.; Marcelino-Guimarães, F.C.; Hungria, M. Prediction of Potential Novel MicroRNAs in Soybean When in Symbiosis. Genet. Mol. Res. 2014, 13, 8519–8529. [Google Scholar] [CrossRef]
- Thiebaut, F.; Rojas, C.A.; Grativol, C.; Calixto, E.P.D.R.; Motta, M.R.; Ballesteros, H.G.F.; Peixoto, B.; De Lima, B.N.S.; Vieira, L.M.; Walter, M.E.; et al. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction. Non-Coding RNA 2017, 3, 25. [Google Scholar] [CrossRef]
- de Carvalho, T.L.G.; Ferreira, P.C.G.; Hemerly, A.S. Sugarcane Genetic Controls Involved in the Association with Beneficial Endophytic Nitrogen Fixing Bacteria. Trop. Plant Biol. 2011, 4, 31–41. [Google Scholar] [CrossRef]
- Mengistu, A.A. Endophytes: Colonization, Behaviour, and Their Role in Defense Mechanism. Int. J. Microbiol. 2020, 2020, 6927219. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Chen, H.; Li, C.; Xu, J.; Qi, Q.; Xu, Y.; Zhu, Y.; Zheng, J.; Peng, D.; Ruan, L.; et al. Endophyte Bacillus subtilis Evade Plant Defense by Producing Lantibiotic Subtilomycin to Mask Self-Produced Flagellin. Commun. Biol. 2019, 2, 368. [Google Scholar] [CrossRef] [PubMed]
- Hardoim, P.R.; van Overbeek, L.S.; Elsas, J.D. Van Properties of Bacterial Endophytes and Their Proposed Role in Plant Growth. Trends Microbiol. 2008, 16, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Jone, J.D.G.; Dang, J.L. The Plant Immune System. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Couto, D.; Zipfel, C. Regulation of Pattern Recognition Receptor Signalling in Plants. Nat. Rev. Immunol. 2016, 16, 537–552. [Google Scholar] [CrossRef]
- Ringli, C. Monitoring the Outside: Cell Wall-Sensing Mechanisms. Plant Physiol. 2010, 153, 1445–1452. [Google Scholar] [CrossRef]
- Tang, D.; Wang, G.; Zhou, J.M. Receptor Kinases in Plant-Pathogen Interactions: More than Pattern Recognition. Plant Cell 2017, 29, 618–637. [Google Scholar] [CrossRef]
- Vinagre, F.; Vargas, C.; Schwarcz, K.; Cavalcante, J.; Nogueira, E.M.; Baldani, J.I.; Ferreira, P.C.G.; Hemerly, A.S. SHR5: A Novel Plant Receptor Kinase Involved in Plant-N2-Fixing Endophytic Bacteria Association. J. Exp. Bot. 2006, 57, 559–569. [Google Scholar] [CrossRef]
- Martínez-Hidalgo, P.; Maymon, M.; Pule-Meulenberg, F.; Hirsch, A.M. Engineering Root Microbiomes for Healthier Crops and Soils Using Beneficial, Environmentally Safe Bacteria. Can. J. Microbiol. 2019, 65, 91–104. [Google Scholar] [CrossRef]
- Vílchez, J.I.; Navas, A.; González-López, J.; Arcos, S.C.; Manzanera, M. Biosafety Test for Plant Growth-Promoting Bacteria: Proposed Environmental and Human Safety Index (EHSI) Protocol. Front. Microbiol. 2016, 6, 1514. [Google Scholar] [CrossRef]
- Estrada, G.A.; Baldani, V.L.D.; de Oliveira, D.M.; Urquiaga, S.; Baldani, J.I. Selection of Phosphate-Solubilizing Diazotrophic Herbaspirillum and Burkholderia Strains and Their Effect on Rice Crop Yield and Nutrient Uptake. Plant Soil 2013, 369, 115–129. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiebaut, F.; Urquiaga, M.C.d.O.; Rosman, A.C.; da Silva, M.L.; Hemerly, A.S. The Impact of Non-Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That Benefit Crops. Int. J. Mol. Sci. 2022, 23, 11301. https://doi.org/10.3390/ijms231911301
Thiebaut F, Urquiaga MCdO, Rosman AC, da Silva ML, Hemerly AS. The Impact of Non-Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That Benefit Crops. International Journal of Molecular Sciences. 2022; 23(19):11301. https://doi.org/10.3390/ijms231911301
Chicago/Turabian StyleThiebaut, Flávia, Maria Clara de Oliveira Urquiaga, Aline Cardozo Rosman, Mirielson Loures da Silva, and Adriana Silva Hemerly. 2022. "The Impact of Non-Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That Benefit Crops" International Journal of Molecular Sciences 23, no. 19: 11301. https://doi.org/10.3390/ijms231911301
APA StyleThiebaut, F., Urquiaga, M. C. d. O., Rosman, A. C., da Silva, M. L., & Hemerly, A. S. (2022). The Impact of Non-Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That Benefit Crops. International Journal of Molecular Sciences, 23(19), 11301. https://doi.org/10.3390/ijms231911301