Trimetazidine, an Anti-Ischemic Drug, Reduces the Antielectroshock Effects of Certain First-Generation Antiepileptic Drugs
Abstract
:1. Introduction
2. Results
2.1. Electroconvulsive Threshold Test and Maximal Electroshock Test
2.2. Chimney Test and Step-Through Passive Avoidance Task
2.3. Brain Concentrations of Antiepileptic Drugs
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs
4.3. Maximal Electroshock Seizure Test
4.4. Chimney Test
4.5. Step-Through Passive-Avoidance Test
4.6. Measurement of Brain Concentrations of Antiepileptic Drugs
4.7. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dayanithi, G.; Desmadryl, G.; Travo, C.; Chabbert, C.; Sans, A. Trimetazidine modulates AMPA/kainate receptors in rat vestibular ganglion neurons. Eur. J. Pharmacol. 2007, 574, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Sedky, A.A.; El Serafy, O.M.H.; Hassan, O.A.; Abdel-Kawy, H.S.; Hasanin, A.H.; Raafat, M.H. Trimetazidine potentiates the antiepileptic activity and ameliorates the metabolic changes associated with pentylenetetrazole kindling in rats treated with valproic acid. Can. J. Physiol. Pharmacol. 2017, 95, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Dhote, V.; Balaraman, R. Anti-oxidant activity mediated neuroprotective potential of trimetazidine on focal cerebral ischaemia reperfusion injury in rats. Clin. Exp. Pharmacol. Physiol. 2008, 35, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, J.-M.; Huang, H.; Kuznicki, M.; Zheng, S.; Sun, W.; Quan, N.; Wang, L.; Yang, H.; Guo, H.-M.; et al. The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway. Metabolism 2016, 65, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Dézsi, C.A. Trimetazidine in practice: Review of the clinical and experimental evidence. Am. J. Ther. 2016, 23, e871–e879. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, G.; Hosseini, A.; Pasbakhsh, P.; Akbari, M.; Ghaffarpour, M.; Takzare, N.; Zahmatkesh, M. Trimetazidine prevents oxidative changes induced in a rat model of sporadic type of Alzheimer’s disease. Acta Med. Iran. 2015, 53, 17–24. [Google Scholar] [PubMed]
- Erbaş, O.; Akseki, H.S.; Eliküçük, B.; Taşkıran, D. Antipsychotic-like effect of trimetazidine in a rodent model. Sci. World J. 2013, 2013, 686304. [Google Scholar] [CrossRef]
- Yin, R.X.; Liang, W.W.; Liu, T.W.; Tao, X.Z.; Zhu, L.G.; Al-Ghazali, R. Inhibitory effect of trimetazidine on cardiac myocyte apoptosis in rabbit model of ischemia–reperfusion. Chin. Med. Sci. J. 2004, 19, 242. [Google Scholar]
- Abdel-Salam, O.M.E.; El-Batran, S. Pharmacological investigation of trimetazidine in models of inflammation, pain and gastric injury in rodents. Pharmacology 2005, 75, 122–132. [Google Scholar] [CrossRef]
- Nowak, P.; Zagził, T.; Konecki, J.; Szczerbak, G.; Szkilnik, R.; Niwiński, J.; Gorzałek, J.; Kostrzewa, R.M.; Brus, R. Trimeta-zidine increases [3H]glucose uptake in rat brain. Pharmacol. Rep. 2006, 58, 559–561. [Google Scholar]
- Patel, M. Mitochondrial dysfuncions and oxidative stress: Cause and consequence of epileptic seizures. Free Radic. Biol. Med. 2004, 37, 951–962. [Google Scholar] [CrossRef]
- Jain, S.; Bharal, N.; Khurana, S.; Mediratta, P.K.; Sharma, K.K. Anticonvulsant and antioxidant actions of trimetazidine in pentylenetetrazole-induced kindling model in mice. Naunyn-Schmied. Arch. Pharmacol. 2011, 383, 385–392. [Google Scholar] [CrossRef]
- Jain, S.; Bharal, N.; Mediratta, P.K.; Sharma, K.K. Trimetazidine exerts protection against increasing current electroshock seizure test in mice. Seizure 2010, 19, 300–302. [Google Scholar] [CrossRef]
- Castel-Branco, M.M.; Alves, G.L.; Figueiredo, I.V.; Falcão, A.C.; Caramona, M.M. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find. Exp. Clin. Pharmacol. 2009, 31, 101–106. [Google Scholar] [CrossRef]
- Borowicz-Reutt, K.K. Effects of antiarrhythmic drugs on antiepileptic drug action—A critical review of experimental findings. Int. J. Mol. Sci. 2022, 23, 2891. [Google Scholar] [CrossRef]
- Falco-Walter, J. Epilepsy—definition, classification, pathophysiology, and epidemiology. Semin. Neurol. 2020, 40, 617–623. [Google Scholar] [CrossRef]
- Borowicz-Reutt, K.K.; Czuczwar, S.J. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol. Rep. 2020, 72, 1218–1226. [Google Scholar] [CrossRef]
- Liu, M.; Wei, W.; Stone, C.R.; Zhang, L.; Tian, G.; Ding, J.N. Beneficial effects of trimetazidine on expression of serotonin and serotonin transporter in rats with myocardial infarction and depression. Neuropsychiatr. Dis. Treat. 2018, 14, 787–797. [Google Scholar] [CrossRef]
- Borowicz-Reutt, K.K. How antidepressant drugs affect the antielectroshock action of antiseizure drugs in mice: A critical review. Int. J. Mol. Sci. 2021, 22, 2521. [Google Scholar] [CrossRef]
- Löscher, W.; Czuczwar, S.J. Studies on the involvement of dopamine D-1 and D-2 receptors in the anticonvulsant effect of dopamine agonists in various rodent models of epilepsy. Eur. J. Pharmacol. 1986, 128, 55–65. [Google Scholar] [CrossRef]
- Ogren, S.O.; Pakh, B. Effects of dopamine D1 and D2 receptor agonists and antagonists on seizures induced by chemoconvulsants in mice. Pharmacol. Toxicol. 1993, 72, 213–220. [Google Scholar] [CrossRef]
- Barone, P.; Palma, V.; DeBartolomeis, A.; Tedeschi, E.; Muscettola, G.; Campanella, G. Dopamine D1 and D2 receptors mediate opposite functions in seizures induced by lithium-pilocarpine. Eur. J. Pharmacol. 1991, 195, 157–162. [Google Scholar] [CrossRef]
- Alam, A.M.; Starr, M.S. Dopaminergic modulation of pilocarpine-induced motor seizures in the rat: The role of hippocampal D2 receptors. Neuroscience 1993, 53, 425–431. [Google Scholar] [CrossRef]
- Starr, M.S. The role of dopamine in epilepsy. Synapse 1996, 22, 159–194. [Google Scholar] [CrossRef]
- An, J.J.; Bae, M.H.; Cho, S.R.; Lee, S.H.; Choi, S.H.; Lee, B.H.; Shin, H.S.; Kim, Y.N.; Park, K.W.; Borrelli, E.; et al. Altered GABAergic neurotransmission in mice lacking dopamine D2 receptors. Mol. Cell. Neurosci. 2004, 25, 732–741. [Google Scholar] [CrossRef]
- Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020, 168, 107966. [Google Scholar] [CrossRef]
- Winn, L.M.; Kim, P.M.; Nickoloff, J.A. Oxidative stress-induced homologous recombination as a novel mechanism for phenytoin initiated toxicity. J. Pharmacol. Exp. Ther. 2003, 306, 523–537. [Google Scholar] [CrossRef]
- Ilhan, A.; Gurel, A.; Armutcu, F.; Kamisli, S.; Iraz, M. Antiepileptogenic and antioxidant effects of Nigella sativa oil against pentylenetetrazol-induced kindling in mice. Neuropharmacology 2005, 49, 456–464. [Google Scholar] [CrossRef]
- Aycicek, A.; Iscan, A. The effects of carbamazepine, valproic acid and phenobarbital on the oxidative and antioxidative balance in epileptic children. Eur. Neurol. 2007, 57, 65–69. [Google Scholar] [CrossRef]
- Reeta, K.H.; Mehla, J.; Gupta, Y.K. Curcumin is protective against phenytoin-induced cognitive impairment and oxidative stress in rats. Brain Res. 2009, 1301, 52–60. [Google Scholar] [CrossRef]
- Arora, T.; Mehta, A.K.; Sharma, K.K.; Mediratta, P.K.; Banerjee, B.D.; Garg, G.R.; Sharma, A.K. Effect of carbamazepine and lamotrigine on cognitive function and oxidative stress in brain during chemical epileptogenesis in rats. Basic Clin. Pharmacol. Toxicol. 2010, 106, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jeong, J.; Park, Y.U.; Kwak, Y.; Lee, S.A.; Lee, H.; Son, H.; Park, S.K. Valproate alters dopamine signaling in association with induction of Par-4 protein expression. PLoS ONE 2012, 7, e45618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvinova, S.A.; Voronina, T.A.; Kondrakhin, E.A.; Gaydukov, I.O.; Davletshin, A.I.; Vasileva, E.V.; Kovalev, G.I.; Garbuz, D.G. ERK1/2 kinases and dopamine D2 receptors participate in the anticonvulsant effects of a new derivative of benzoylpyridine oxime and valproic acid. Eur. J. Pharmacol. 2021, 903, 174150. [Google Scholar] [CrossRef] [PubMed]
- Basselin, M.; Chang, L.; Chen, M.; Bell, J.M.; Rapoport, S.I. Chronic carbamazepine administration attenuates dopamine D2-like receptor-initiated signaling via arachidonic acid in rat brain. Neurochem. Res. 2008, 33, 1373–1383. [Google Scholar] [CrossRef]
- Ramadan, E.; Basselin, M.; Taha, A.Y.; Cheon, Y.; Chang, L.; Chen, M.; Rapoport, S.I. Chronic valproate treatment blocks D2-like receptor-mediated brain signaling via arachidonic acid in rats. Neuropharmacology 2011, 61, 1256–1264. [Google Scholar] [CrossRef]
- Abg Abd Wahab, D.Y.; Gau, C.H.; Zakaria, R.; Muthu Karuppan, M.K.; A-Rahbi, B.S.; Abdullah, Z.; Alrafiah, A.; Abdullah, J.M.; Muthuraju, S. Review on cross talk between neurotransmitters and neuroinflammation in striatum and cerebellum in the mediation of motor behaviour. BioMed Res. Int. 2019, 2019, 1767203. [Google Scholar] [CrossRef]
- Bello, E.P.; Casas-Cordero, R.; Galiñanes, G.L.; Casey, E.; Belluscio, M.A.; Rodríguez, V.; Noaín, D.; Murer, M.G.; Rubinstein, M. Inducible ablation of dopamine D2 receptors in adult mice impairs locomotion, motor skill learning and leads to severe parkinsonism. Mol. Psychiatry 2017, 22, 595–604. [Google Scholar] [CrossRef]
- Liu, Z.; Zhai, X.R.; Du, Z.S.; Xu, F.F.; Huang, Y.; Wang, X.Q.; Qiu, Y.H.; Peng, Y.P. Dopamine receptor D2 on CD4+ T cells is protective against neuroinflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain Behav Immun. 2021, 98, 110–121. [Google Scholar] [CrossRef]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef]
- Banach, M.; Popławska, M.; Borowicz-Reutt, K.K. Amiodarone, a multi-channel blocker, enhances anticonvulsive effect of carbamazepine in the mouse maximal electroshock model. Epilepsy Res. 2018, 140, 105–110. [Google Scholar] [CrossRef]
- Litchfield, J.T.; Wilcoxon, F.A. Simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 1949, 96, 99–113. [Google Scholar]
- Boissier, P.J.-R.; Tardy, J.; Diverres, J.-C. Une nouvelle méthode simple pour explorer l’action «tranquillisante»: Le test de la cheminée. Pharmacology 1960, 3, 81–84. [Google Scholar] [CrossRef]
- Venault, P.; Chapouthier, G.; De Carvalho, L.P.; Simiand, J.; Morre, M.; Dodd, R.H.; Rossier, J. Benzodiazepine impairs and-carboline enhances performance in learning and memory tasks. Nat. Cell Biol. 1986, 321, 864–866. [Google Scholar] [CrossRef]
Drug (mg/kg) | CS50 ± SEM (mA) | Detailed Data |
---|---|---|
Vehicle | 5.8 ± 0.42 | 5 mA 1/8 6 mA 4/8 7 mA 7/8 |
TMZ 60 min | 5.9 ± 0.42 | 5 mA 2/8 6 mA 4/8 7 mA 6/8 |
TMZ 30 min | 5.8 ± 0.37 | 5 mA 2/8 6 mA 4/8 7 mA 7/8 |
TMZ 15 min | 5.2 ± 0.34 | 4 mA 1/8 5 mA 3/8 6 mA 4/8 7 mA 8/8 |
Drug (mg/kg) | CS50 ± SEM (mA) |
---|---|
Vehicle | 5.4 ± 0.34 |
TMZ (20) | 5.4 ± 0.25 |
TMZ (40) | 5.1 ± 0.40 |
TMZ (80) | 5.2 ± 0.41 |
TMZ (120) | 5.4 ± 0.25 |
Drugs (mg/kg) | Mice Impaired (%) |
---|---|
Vehicle | 0 |
TMZ (120) | 0 |
VPA (463.8) | 40 |
VPA (463.8) + TMZ (120) | 100 ***,# |
CBZ (21.7) | 40 |
CBZ (21.7) + TMZ (120) | 20 |
PB (43.6) | 50 * |
PB (43.6) + TMZ (120) | 40 |
PHT (27.2) | 30 |
PHT (27.2) + TMZ (120) | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowicz-Reutt, K.; Banach, M. Trimetazidine, an Anti-Ischemic Drug, Reduces the Antielectroshock Effects of Certain First-Generation Antiepileptic Drugs. Int. J. Mol. Sci. 2022, 23, 11328. https://doi.org/10.3390/ijms231911328
Borowicz-Reutt K, Banach M. Trimetazidine, an Anti-Ischemic Drug, Reduces the Antielectroshock Effects of Certain First-Generation Antiepileptic Drugs. International Journal of Molecular Sciences. 2022; 23(19):11328. https://doi.org/10.3390/ijms231911328
Chicago/Turabian StyleBorowicz-Reutt, Kinga, and Monika Banach. 2022. "Trimetazidine, an Anti-Ischemic Drug, Reduces the Antielectroshock Effects of Certain First-Generation Antiepileptic Drugs" International Journal of Molecular Sciences 23, no. 19: 11328. https://doi.org/10.3390/ijms231911328
APA StyleBorowicz-Reutt, K., & Banach, M. (2022). Trimetazidine, an Anti-Ischemic Drug, Reduces the Antielectroshock Effects of Certain First-Generation Antiepileptic Drugs. International Journal of Molecular Sciences, 23(19), 11328. https://doi.org/10.3390/ijms231911328