Evaluating the Safety and Quality of Life of Colorectal Cancer Patients Treated by Autologous Immune Enhancement Therapy (AIET) in Vinmec International Hospitals
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Immune Cell Expansion Ability
2.3. Safety of Ex Vivo Expanded Cell Infusion
2.4. Survival Time of Patients in This Study
2.5. Quality of Life of Patients Enrolled in This Study
2.5.1. Changes in Symptoms before and after Immune Cell Infusion
2.5.2. Changes in Patients’ Quality of Life before and after Immune Cell Infusion
3. Discussion
4. Materials and Methods
4.1. Patients
4.1.1. Inclusion Criteria
- -
- Patients were 18–75 years of age.
- -
- Patients had been diagnosed with colorectal cancer.
- -
- Patients signed the written informed consent form.
4.1.2. Exclusion Criteria
4.2. Study Design
4.3. Research Setting and Duration
4.4. Cohort Size
4.5. Isolation and Expansion of NK Cells and CTLs from Peripheral Blood
4.6. Dosage and Duration
4.7. Quality of Life Assessment
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr. Drug Targets 2020, 22, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.T.; Choi, K.S.; Nguyen, T.X.; Sohn, D.K.; Kim, S.Y.; Suh, J.K.; Phan, V.S.; Pham, H.T.; Nguyen, M.H.; Nguyen, T.B.; et al. The Direct and Indirect Costs of Colorectal Cancer in Vietnam: An Economic Analysis from a Social Perspective. Int. J. Environ. Res. Public Health 2021, 18, 12. [Google Scholar] [CrossRef] [PubMed]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Galat, V.; Galat, Y.; Lee, Y.K.A.; Wainwright, D.; Wu, J. NK Cell-Based Cancer Immunotherapy: From Basic Biology to Clinical Development. J. Hematol. Oncol. 2021, 14, 7. [Google Scholar] [CrossRef]
- Carlsen, L.; Huntington, K.E.; El-Deiry, W.S. Immunotherapy for Colorectal Cancer: Mechanisms and Predictive Biomarkers. Cancers 2022, 14, 1028. [Google Scholar] [CrossRef]
- Ooki, A.; Shinozaki, E.; Yamaguchi, K. Immunotherapy in Colorectal Cancer: Current and Future Strategies. J. Anus Rectum Colon 2021, 5, 11–24. [Google Scholar] [CrossRef]
- Shin, M.H.; Kim, J.; Lim, S.A.; Kim, J.; Kim, S.-J.; Lee, K.-M. NK Cell-Based Immunotherapies in Cancer. Immune Netw. 2020, 20, e14. [Google Scholar] [CrossRef]
- Terunuma, H. Autologous Immune Enhancement Therapy for Cancer—Our Experience since 2004. J. Stem Cells Regen. Med. 2012, 8, 205–206. [Google Scholar]
- Wu, S.-Y.; Fu, T.; Jiang, Y.-Z.; Shao, Z.-M. Natural Killer Cells in Cancer Biology and Therapy. Mol. Cancer 2020, 19, 120. [Google Scholar] [CrossRef]
- Kiessling, R.; Klein, E.; Wigzell, H. “Natural” Killer Cells in the Mouse. I. Cytotoxic Cells with Specificity for Mouse Moloney Leukemia Cells. Specificity and Distribution According to Genotype. Eur. J. Immunol. 1975, 5, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Pross, H.F.; Jondal, M. Cytotoxic Lymphocytes from Normal Donors. A Functional Marker of Human Non-T Lymphocytes. Clin. Exp. Immunol. 1975, 21, 226–235. [Google Scholar] [PubMed]
- Ran, G.H.; Lin, Y.Q.; Tian, L.; Zhang, T.; Yan, D.M.; Yu, J.H.; Deng, Y.C. Natural Killer Cell Homing and Trafficking in Tissues and Tumors: From Biology to Application. Signal Transduct. Target. Ther. 2022, 7, 205. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, V.; Sciumè, G.; Santoni, A.; Bernardini, G. Bone Marrow NK Cells: Origin, Distinctive Features, and Requirements for Tissue Localization. Front. Immunol. 2019, 10, 1569. [Google Scholar] [CrossRef] [PubMed]
- Min, X.-Y.; Liu, C.-F.; Cao, B.; Zhang, T.; Yang, X.; Ma, N.; Wang, N.; Li, K. Human CD3+CD56+ NKT-like Cells Express a Range of Complement Receptors and C3 Activation Has Negative Effects on These Cell Activity and Effector Function. Hum. Immunol. 2021, 82, 625–633. [Google Scholar] [CrossRef]
- Grégoire, C.; Chasson, L.; Luci, C.; Tomasello, E.; Geissmann, F.; Vivier, E.; Walzer, T. The Trafficking of Natural Killer Cells. Immunol. Rev. 2007, 220, 169–182. [Google Scholar] [CrossRef]
- Cerwenka, A.; Lanier, L.L. Natural Killer Cells, Viruses and Cancer. Nat. Rev. Immunol. 2001, 1, 41–49. [Google Scholar] [CrossRef]
- Martinet, L.; Smyth, M.J. Balancing Natural Killer Cell Activation through Paired Receptors. Nat. Rev. Immunol. 2015, 15, 243–254. [Google Scholar] [CrossRef]
- Meza Guzman, L.G.; Keating, N.; Nicholson, S.E. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers 2020, 12, 952. [Google Scholar] [CrossRef]
- St-Pierre, F.; Bhatia, S.; Chandra, S. Harnessing Natural Killer Cells in Cancer Immunotherapy: A Review of Mechanisms and Novel Therapies. Cancers 2021, 13, 1988. [Google Scholar] [CrossRef]
- Jimbo, H.; Nagai, H.; Fujiwara, S.; Shimoura, N.; Nishigori, C. Fas-FasL Interaction in Cytotoxic T Cell-Mediated Vitiligo: The Role of Lesional Expression of Tumor Necrosis Factor-α and Interferon-γ in Fas-Mediated Melanocyte Apoptosis. Exp. Dermatol. 2020, 29, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Phimister, E.G.; Rubin, E.J. Targeting Cytotoxic T Cells to Tumor. N. Engl. J. Med. 2022, 386, 2145–2148. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Hsu, E.; Fu, Y.-X.; Peng, H. Next-Generation Cytokines for Cancer Immunotherapy. Antib. Ther. 2021, 4, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Park, Y.; Ahn, J.W.; Sim, J.; Kang, S.J.; Hwang, S.; Chun, J.; Choi, H.; Kim, S.H.; Chun, D.H.; et al. Autologous Adoptive Immune-Cell Therapy Elicited a Durable Response with Enhanced Immune Reaction Signatures in Patients with Recurrent Glioblastoma: An Open Label, Phase I/IIa Trial. PLoS ONE 2021, 16, e0247293. [Google Scholar] [CrossRef]
- Jansen, L.; Koch, L.; Brenner, H.; Arndt, V. Quality of Life among Long-Term (≥5 Years) Colorectal Cancer Survivors--Systematic Review. Eur. J. Cancer 2010, 46, 2879–2888. [Google Scholar] [CrossRef]
- Fayers, P.M.; Aaronson, N.K.; Bjordal, K.; Groenvold, M.; Curran, D.; Bottomley, A. EORTC QLQ-C30 Scoring Manual; European Organisation for Research and Treatment of Cancer (EORTC): Brussels, Belgium, 2001; ISBN 978-2-930064-22-2. [Google Scholar]
- Terunuma, H.; Deng, X.; Nishino, N.; Watanabe, K. NK Cell-Based Autologous Immune Enhancement Therapy (AIET) for Cancer. J. Stem Cells Regen. Med. 2013, 9, 9–13. [Google Scholar] [CrossRef]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8(+) T Cells in Cancer and Cancer Immunotherapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef]
- Shimasaki, N.; Jain, A.; Campana, D. NK Cells for Cancer Immunotherapy. Nat. Rev. Drug Discov. 2020, 19, 200–218. [Google Scholar] [CrossRef]
- Subramani, B.; Ratnavelu, K.; Pullai, C.R.; Krishnan, K.; Sugadan, S.D.; Deng, X.; Hiroshi, T. Autologous Immune Enhancement Therapy: A Case Report of a Stage IV Colonic Cancer. Oncol. Lett. 2013, 5, 1611–1614. [Google Scholar] [CrossRef]
- Subramani, B.; Pullai, C.R.; Krishnan, K.; Sugadan, S.D.; Deng, X.; Hiroshi, T.; Ratnavelu, K. Efficacy of Ex Vivo Activated and Expanded Natural Killer Cells and T Lymphocytes for Colorectal Cancer Patients. Biomed. Rep. 2014, 2, 505–508. [Google Scholar] [CrossRef]
- Nhung, H.T.M.; Anh, B.V.; Huyen, T.L.; Hiep, D.T.; Thao, C.T.; Lam, P.N.; Liem, N.T. Ex Vivo Expansion of Human Peripheral Blood Natural Killer Cells and Cytotoxic T Lymphocytes from Lung Cancer Patients. Oncol. Lett. 2018, 15, 5730–5738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dedeepiya, V.; Terunuma, H.; Manjunath, S.; Senthilkumar, R.; Thamaraikannan, P.; Srinivasan, T.; HelenReena, C.; Preethy, S.; Abraham, S. Autologous Immune Enhancement Therapy for Cancer Using NK Cells and CTLs without Feeder Layers; Our Six Year Experience in India. J. Stem Cells Regen. Med. 2011, 7, 95. [Google Scholar] [PubMed]
- Rosenberg, S.A.; Packard, B.S.; Aebersold, P.M.; Solomon, D.; Topalian, S.L.; Toy, S.T.; Simon, P.; Lotze, M.T.; Yang, J.C.; Seipp, C.A. Use of Tumor-Infiltrating Lymphocytes and Interleukin-2 in the Immunotherapy of Patients with Metastatic Melanoma. A Preliminary Report. N. Engl. J. Med. 1988, 319, 1676–1680. [Google Scholar] [CrossRef] [PubMed]
- Takayama, T.; Sekine, T.; Makuuchi, M.; Yamasaki, S.; Kosuge, T.; Yamamoto, J.; Shimada, K.; Sakamoto, M.; Hirohashi, S.; Ohashi, Y.; et al. Adoptive Immunotherapy to Lower Postsurgical Recurrence Rates of Hepatocellular Carcinoma: A Randomised Trial. Lancet 2000, 356, 802–807. [Google Scholar] [CrossRef]
- Terunuma, H.; Deng, X.; Dewan, Z.; Fujimoto, S.; Yamamoto, N. Potential Role of NK Cells in the Induction of Immune Responses: Implications for NK Cell-Based Immunotherapy for Cancers and Viral Infections. Int. Rev. Immunol. 2008, 27, 93–110. [Google Scholar] [CrossRef]
- Barkholt, L.; Alici, E.; Conrad, R.; Sutlu, T.; Gilljam, M.; Stellan, B.; Christensson, B.; Guven, H.; Björkström, N.K.; Söderdahl, G.; et al. Safety Analysis of Ex Vivo-Expanded NK and NK-like T Cells Administered to Cancer Patients: A Phase I Clinical Study. Immunotherapy 2009, 1, 753–764. [Google Scholar] [CrossRef]
- Cho, D.; Kim, S.K.; Carson, W.E. NK Cell-Based Immunotherapy for Treating Cancer: Will It Be Promising? Korean J. Hematol. 2011, 46, 3–5. [Google Scholar] [CrossRef]
- Iwai, K.; Soejima, K.; Kudoh, S.; Umezato, Y.; Kaneko, T.; Yoshimori, K.; Tokuda, H.; Yamaguchi, T.; Mizoo, A.; Setoguchi, Y.; et al. Extended Survival Observed in Adoptive Activated T Lymphocyte Immunotherapy for Advanced Lung Cancer: Results of a Multicenter Historical Cohort Study. Cancer Immunol. Immunother. 2012, 61, 1781–1790. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Wang, Y.; Lu, X.-C.; Fan, H.; Liu, Y.; Zhang, Y.; Feng, K.-C.; Zhang, W.-Y.; Chen, M.-X.; et al. Autologous CIK Cell Immunotherapy in Patients with Renal Cell Carcinoma after Radical Nephrectomy. Clin. Dev. Immunol. 2013, 2013, 195691. [Google Scholar] [CrossRef]
- Polanski, J.; Jankowska-Polanska, B.; Rosinczuk, J.; Chabowski, M.; Szymanska-Chabowska, A. Quality of Life of Patients with Lung Cancer. OncoTargets Ther. 2016, 9, 1023–1028. [Google Scholar] [CrossRef]
- Maisey, N.R.; Norman, A.; Watson, M.; Allen, M.J.; Hill, M.E.; Cunningham, D. Baseline Quality of Life Predicts Survival in Patients with Advanced Colorectal Cancer. Eur. J. Cancer 2002, 38, 1351–1357. [Google Scholar] [CrossRef]
- Roychowdhury, D.; Hayden, A.; Liepa, A.M. Health-Related Quality-of-Life Parameters as Independent Prognostic Factors in Advanced or Metastatic Bladder Cancer. J. Clin. Oncol. 2003, 21, 673–678. [Google Scholar] [CrossRef]
- Meyer, F.; Fortin, A.; Gélinas, M.; Nabid, A.; Brochet, F.; Têtu, B.; Bairati, I. Health-Related Quality of Life as a Survival Predictor for Patients with Localized Head and Neck Cancer Treated with Radiation Therapy. J. Clin. Oncol. 2009, 27, 2970–2976. [Google Scholar] [CrossRef]
- Djärv, T.; Metcalfe, C.; Avery, K.N.L.; Lagergren, P.; Blazeby, J.M. Prognostic Value of Changes in Health-Related Quality of Life Scores during Curative Treatment for Esophagogastric Cancer. J. Clin. Oncol. 2010, 28, 1666–1670. [Google Scholar] [CrossRef]
- Braun, D.P.; Gupta, D.; Grutsch, J.F.; Staren, E.D. Can Changes in Health Related Quality of Life Scores Predict Survival in Stages III and IV Colorectal Cancer? Health Qual. Life Outcomes 2011, 9, 62. [Google Scholar] [CrossRef]
- Liem, N.T.; Van Phong, N.; Kien, N.T.; Anh, B.V.; Huyen, T.L.; Thao, C.T.; Tu, N.D.; Hiep, D.T.; Hoai Thu, D.T.; Nhung, H.T.M. Phase I Clinical Trial Using Autologous Ex Vivo Expanded NK Cells and Cytotoxic T Lymphocytes for Cancer Treatment in Vietnam. Int. J. Mol. Sci. 2019, 20, 3166. [Google Scholar] [CrossRef]
- Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a Biomarker of Response to Immune-Checkpoint Inhibitors. Nat. Rev. Clin. Oncol. 2021, 18, 345–362. [Google Scholar] [CrossRef]
- Huang, J.; Teng, X. Expression of PD-L1 for Predicting Response to Immune Checkpoint Inhibitors in Metastatic Urothelial Carcinoma: A Systematic Review and Meta-Analysis. Curr. Oncol. 2020, 27, e656–e663. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.A.; Patel, V.G. The Role of PD-L1 Expression as a Predictive Biomarker: An Analysis of All US Food and Drug Administration (FDA) Approvals of Immune Checkpoint Inhibitors. J. Immunother. Cancer 2019, 7, 278. [Google Scholar] [CrossRef] [PubMed]
- Moinpour, C.M. Measuring Quality of Life: An Emerging Science. Semin. Oncol. 1994, 21, 43–48. [Google Scholar]
- Osoba, D. Lessons Learned from Measuring Health-Related Quality of Life in Oncology. J. Clin. Oncol. 1994, 12, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Uwer, L.; Rotonda, C.; Guillemin, F.; Miny, J.; Kaminsky, M.-C.; Mercier, M.; Tournier-Rangeard, L.; Leonard, I.; Montcuquet, P.; Rauch, P.; et al. Responsiveness of EORTC QLQ-C30, QLQ-CR38 and FACT-C Quality of Life Questionnaires in Patients with Colorectal Cancer. Health Qual. Life Outcomes 2011, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.S.; Williams, L.A.; Eng, C.; Mendoza, T.R.; Shah, N.A.; Kirkendoll, K.J.; Shah, P.K.; Trask, P.C.; Palos, G.R.; Cleeland, C.S. Validation and Application of a Module of the M. D. Anderson Symptom Inventory for Measuring Multiple Symptoms in Patients with Gastrointestinal Cancer (the MDASI-GI). Cancer 2010, 116, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Monographs on Statistics and Applied Probability; Chapman & Hall: New York, NY, USA, 1993; ISBN 978-0-412-04231-7. [Google Scholar]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997; ISBN 978-0-521-57471-6. [Google Scholar]
- Walters, S.J.; Campbell, M.J. The Use of Bootstrap Methods for Analysing Health-Related Quality of Life Outcomes (Particularly the SF-36). Health Qual. Life Outcomes 2004, 2, 70. [Google Scholar] [CrossRef] [Green Version]
Patient | Sex | Age | Stage | Metastatic Site | Pretreatment | Duration of AIET after Surgery (Months) | Estimated Survival Prior to AIET (Months) |
---|---|---|---|---|---|---|---|
PT 1 | M | 54.5 | IV | M1 m | - | 14 | 12 |
PT 2 | F | 58.7 | IV | M1 m (liver) | Chemo | 8 | 6 |
PT 3 | M | 54.6 | III | - | Chemo | 19 | 48 |
PT 4 | F | 59.7 | III | - | Surgical/Chemo | 17 | 20 |
PT 5 | M | 66.8 | III | - | Surgical/Chemo | 20 | 38 |
PT 6 | F | 52.1 | III | - | Surgical/Chemo | 2 | 9 |
PT 7 | M | 62.5 | IV | M1 m | Chemo | 17 | 9 |
PT 8 | M | 65.7 | IV | M1 m (liver) | Chemo | 4 | 12 |
PT 9 | M | 58.3 | III | - | Chemo | 23 | 16 |
PT 10 | M | 62.1 | IV | M1 m (liver, lung) | - | 16 | 5 |
PT 11 | F | 71.2 | IV | M1 m | Surgical/Chemo | 24 | 33 |
PT 12 | M | 54.3 | IV | M1 m | Surgical/Chemo | 24 | 12 |
Mean (SD) Median [Min; Max] * | - | 60.0 (5.83) 59.2 [52.1; 71.2] | - | - | - | 15.7 (7.45) 17.0 [2; 24] | 18.3 (13.9) 12.0 [5.0; 48.0] |
Patient | Number of Infusions | Number of NK Cells/Infusions (×106) before Expansion (Mean ± SD) | Number of NK Cells/Infusions (×106) after Expansion (Mean ± SD) | Fold Increase in NK Cells (Mean ± SD) |
---|---|---|---|---|
PT 1 | 2 | 2.04 ± 0.22 | 12,189 ± 2438 | 5931 ± 534 |
PT 2 | 1 | 3.71 | 3555 | 959 |
PT 3 | 3 | 1.14 ± 0.61 | 4891.6 ± 1829.4 | 4646 ± 1311.7 |
PT 4 | 1 | 0.59 | 3215.2 | 5448.5 |
PT 5 | 7 | 3.34 ± 0.86 | 11,575.4 ± 6978.7 | 1745.5 ± 3892 |
PT 6 | 2 | 2.4 ± 0 | 2903 ± 2372.4 | 1211 ± 989.4 |
PT 7 | 2 | 2.72 ± 1.52 | 14,903.4 ± 883.1 | 6604 ± 4019.7 |
PT 8 | 4 | 2.70 ± 0.68 | 6742.7 ± 990.1 | 2687 ± 1029.4 |
PT 9 | 1 | 3.86 | 13,043.5 | 3382 |
PT 10 | 1 | 1.90 | 1611 | 849 |
PT 11 | 1 | 3.38 | 5014.6 | 1485 |
PT 12 | 4 | 2.96 ± 0.55 | 11,525.8 ± 5631.4 | 3862 ± 1452.6 |
Patient | Number of Infusions | Number of CTLs/Infusions (×106) before Expansion (Mean ± SD) | Number of CTLs/Infusions (×106) after Expansion (Mean ± SD) | Fold Increase in CTLs (Mean ± SD) |
---|---|---|---|---|
PT 1 | 2 | 6.66 ± 2.75 | 10,148.2 ± 1747.5 | 1606 ± 402.8 |
PT 2 | 1 | 8.23 | 6016.3 | 731 |
PT 3 | 3 | 12.98 ± 7.98 | 9696.7 ± 4235.4 | 1036 ± 705.8 |
PT 4 | 1 | 5.80 | 11,563.9 | 1995.2 |
PT 5 | 7 | 7.88 ± 2.07 | 7463 ± 3574.1 | 967 ± 467.8 |
PT 6 | 2 | 6.43 ± 0 | 7514.4 ± 3479.4 | 1168 ± 540.7 |
PT 7 | 2 | 3.92 ± 1.85 | 6770.3 ± 55.97 | 1950 ± 939 |
PT 8 | 4 | 1.91 ± 0.20 | 4097.1 ± 4881.6 | 1966 ± 2327.8 |
PT 9 | 1 | 7.29 | 7699 | 1056.7 |
PT 10 | 1 | 2.34 | 1109 | 474 |
PT 11 | 1 | 3.99 | 8108 | 2034.1 |
PT 12 | 4 | 6.11 ± 0.50 | 2809.3 ± 275.7 | 477 ± 275.7 |
Preexpanded Immune Cells | |||||
---|---|---|---|---|---|
Percentage of NK Cell (CD3−/56+) (%) | NK Cell Number (×106) | Percentage of CTL (CD3+/8+) (%) | CTL Number (×106) | ||
Age group | Below 60 (n = 14) (Mean ± SD) | 9 ± 6 | 2.31 ± 1.07 | 29 ± 7 | 7.92 ± 4.28 |
Above 60 (n = 15) (Mean ± SD) | 14 ± 3 | 2.99 ± 0.88 | 21 ± 8 | 5.13 ± 3.12 | |
p value | 0.027 | 0.073 | 0.008 | 0.058 | |
Stage | III (n = 14) (Mean ± SD) | 9 ± 4 | 2.57 ± 1.27 | 28 ± 5 | 8.58 ± 4.24 |
IV (n = 15) (Mean ± SD) | 14 ± 4 | 2.74 ± 0.75 | 22 ± 9 | 4.52 ± 2.36 | |
p value | 0.006 | 0.668 | 0.020 | 0.005 | |
Cancer metastatic | Yes (n = 13) (Mean ± SD) | 14 ± 5 | 2.75 ± 0.68 | 22 ± 10 | 4.61 ± 2.48 |
No (n = 16) (Mean ± SD) | 10 ± 4 | 2.59 ± 1.25 | 27 ± 6 | 8.0 ± 4.28 | |
p value | 0.013 | 0.674 | 0.104 | 0.014 |
Percentage of NK Cell (CD3−/56+) (%) | CTL Number (×106) | Fold Increase of NK Cell | Percentage of CTL (CD3+/8+) (%) | CTL Number (×106) | Fold Increase of CTL | ||
---|---|---|---|---|---|---|---|
Age group | Below 60 (n = 14) (Mean ± SD) | 79 ± 22 | 7913 ± 5168 | 3818 ± 1894 | 3818 ± 1894 | 7209 ± 3837 | 1025 ± 596 |
Above 60 (n = 15) (Mean ± SD) | 91 ± 12 | 9629 ± 5958 | 3271 ± 2240 | 56 ± 17 | 6093 ± 3846 | 1403 ± 1279 | |
p value | 0.086 | 0.414 | 0.482 | 0.037 | 0.441 | 0.315 | |
Stage | III (n = 14) (Mean ± SD) | 81 ± 23 | 8412 ± 6330 | 3426 ± 1782 | 66 ± 15 | 8259 ± 3370 | 1091 ± 522 |
IV (n = 15) (Mean ± SD) | 90 ± 12 | 9163 ± 4932 | 3637 ± 2352 | 59 ± 20 | 5113 ± 3666 | 1342 ± 1325 | |
p value | 0.224 | 0.726 | 0.786 | 0.328 | 0.023 | 0.505 | |
Cancer metastatic | Yes (n = 13) (Mean ± SD) | 89 ± 13 | 8280 ± 4687 | 3181 ± 1848 | 58 ± 21 | 4858 ± 3893 | 1248 ± 1379 |
No (n = 16) (Mean ± SD) | 82 ± 22 | 9223 ± 6301 | 3823 ± 2238 | 66 ± 14 | 8073 ± 3178 | 1198 ± 618 | |
p value | 0.297 | 0.648 | 0.405 | 0.265 | 0.025 | 0.905 |
Patient | Survival Time at Last Evaluation (Months) | Relapse | Vital Status (Until December 2021) | Causes of Death (If Any) |
---|---|---|---|---|
PT 1 | 33 | Yes (May 2020) | Died (October 2021) | Pneumonia, respiratory failure |
PT 2 | 57 | No | Alive | |
PT 3 | 59 | No | Alive | |
PT 4 | 21 | Yes (July 2019 | Died (2020) | Circulatory failure |
PT 5 | 53 | No | Alive | |
PT 6 | 24 | No | Alive | |
PT 7 | 35 | No | Alive | |
PT 8 | 20 | Yes (February 2021) | Died (June 2021) | Respiratory failure, tumor invasion of the chest wall, tumor compression of the nerve (lung metastases). |
PT 9 | 31 | No | Alive | |
PT 10 | 8 | Yes (May 2020) | Died (June 2020) | End-stage colon cancer, dark blood in the stool, multiorgan failure. |
PT 11 | 33 | No | Alive | |
PT 12 | 17 | Yes (July 2020) | Died (December 2020) | Malignant bowel obstruction, abdominal tumors, tumor compression of vital abdominal organs. |
Criteria | Before Infusion (n = 8) Mean (SD) Median [Min; Max] | After Infusion (n = 8) Mean (SD) Median [Min; Max] | Change in the MDASI-GI Score (Mean Difference) Mean [95% CI] |
---|---|---|---|
Symptom severity | |||
Pain | 4.38 (2.50) 4.50 [1.00; 9.00] | 2.63 (2.72) 2.00 [0; 8.00] | 1.75 * [1.25; 2.25] |
Fatigue | 4.88 (2.95) 5.50 [1.00; 9.00] | 2.13 (1.55) 1.50 [1.00; 5.0] | 2.75 * [1.38; 4.13] |
Nausea | 2.88 (3.00) 2.50 [0; 9.00] | 0.875 (1.13) 0.50 [0; 3.00] | 2.0 * [0.5; 3.87] |
Disturbed sleep | 3.63 (2.62) 3.50 [0; 7.0] | 1.38 (1.69) 0.50 [0; 4.0] | 2.25 * [0.75; 4.0] |
Distress | 2.50 (2.33) 2.50 [0; 7.0] | 1.25 (0.89) 1.00 [0; 3.00] | 1.13 * [0; 2.75] |
Shortness of breath | 0.250 (0.463) 0 [0; 1.00] | 0.250 (0.463) 0 [0; 1.00] | 0 [−0.38; 0.38] |
Impaired memory | 0.875 (0.835) 1.00 [0; 2.00] | 0.750 (0.707) 1.00 [0; 2.00] | 0.13 [−0.25; 0.50] |
Lack of appetite | 3.63 (2.45) 3.00 [1.00; 7.00] | 0.875 (0.835) 1.00 [0; 2.00] | 2.75 * [1.25; 4.25] |
Drowsiness | 0.875 (1.73) 0 [0; 5.00] | 1.13 (1.89) 0 [0; 5.00] | −0.25 [−1.13; 0.25] |
Dry mouth | 1.25 (1.67) 1.00 [0; 5.0] | 0.13 (0.35) 0 [0; 1.00] | 1.13 * [0.25; 2.38] |
Sadness | 4.00 (2.7) 4.00 [0; 8.0] | 1.38 (1.77) 1.0 [0; 5.0] | 2.63 * [1.13; 4.50] |
Vomiting | 2.38 (2.07) 2.50 [0, 6.00] | 0.63 (1.06) 0 [0, 3.00] | 1.75 * [0.63; 3.13] |
Numbness/tingling | 0.13 (0.35) 0.13 (0.35) | 0.13 (0.35) 0 [0; 1.00] | - |
Specific symptoms for gastrointestinal cancer | |||
Constipation | 1.50 (1.93) 0.500 [0; 5.00] | 0 [0, 1.00] 0.500 [0; 3.00] | 0.75 * [0; 2.0] |
Diarrhea or watery stools | 0.500 (1.07) 0 [0; 3.00] | 0.250 (0.463) 0 [0; 1.00] | 0.25 * [0; 0.75] |
Difficulty swallowing | 1.38 (2.00) 0.500 [0; 5.00] | 0.375 (0.744) 0 [0; 2.00] | 0.88 * [0.13; 2.25] |
Change in taste | 3.50 (3.07) 3.00 [0; 9.00] | 1.00 (0.756) 1.00 [0; 2.00] | 2.5 * [0.63; 4.25] |
Feeling bloated | 0.875 (1.73) 0 [0; 5.00] | 1.00 (1.77) 0 [0; 5.00] | −0.13 [−1.88; 1.13] |
Symptom interference | |||
General activity | 4.00 (2.67) 4.00 [0; 8.00] | 2.00 (2.00) 2.00 (2.00) | 2.0 * [0.75; 3.25] |
Mood | 3.75 (2.55) 4.00 [0; 8.00] | 1.75 (2.19) 1.00 [0; 7.00] | 2.0 * [1.0; 3.0] |
Work | 3.25 (2.55) 4.00 [0; 6.00] | 1.63 (1.69) 1.00 [0; 5.00] | 1.63 * [0.38; 3.0] |
Relations with others | 2.75 (1.98) 3.00 [0; 5.00] | 1.63 (1.69) 1.00 [0; 5.00] | 1.13 * [0.25; 2.0] |
Walking | 3.00 (2.56) 3.00 [0; 6.00] | 1.38 (1.41) 1.00 [0; 4.00] | 1.63 * [0.5; 3.0] |
Enjoyment of life | 4.25 (2.55) 4.50 [0; 8.00] | 2.00 (1.77) 1.00 [0; 5.00] | 2.25 * [1.0; 3.50] |
Criteria | Before Infusion (n = 8) Mean (SD) Median [Min; Max] | After Infusion (n = 8) Mean (SD) Median [Min; Max] | Change in the QoL Score (Mean Difference) Mean [95% CI] |
---|---|---|---|
Global health status | 57.3 (18.1) 50.0 [33.3; 83.3] | 71.9 (13.3) 75.0 [41.7; 83.3] | 13.5 * [4.17; 26.07] |
Function scales | |||
Physical functioning | 62.5 (19.5) 60.0 [40.0; 93.3] | 76.7 (16.7) 86.7 [46.7; 93.3] | 13.3 * [5.83; 25.00] |
Role functioning | 62.5 (21.4) 58.3 [33.3; 100] | 77.1 (17.7) 75.0 [50.0; 100] | 14.58 * [4.17; 29.17] |
Emotional functioning | 70.8 (21.4) 66.7 [33.3; 100] | 90.6 (15.1) 100 [66.7; 100] | 19.79 * [8.33; 29.17] |
Cognitive functioning | 89.6 (15.3) 100 [66.7; 100] | 95.8 (14.8) 100 [66.7; 117] | 6.25 [−2.08; 16.67] |
Social functioning | 68.8 (24.3) 66.7 [33.3; 100] | 81.3 (22.6) 91.7 [50.0; 100] | 12.5 * [0; 25.0] |
Symptom scales | |||
Fatigue | 36.1 (24.3) 38.9 [0; 66.7] | 23.6 (21.8) 27.8 [0; 55.6] | 12.5 * [1.39; 2 25.03] |
Nausea and vomiting | 20.8 (17.3) 33.3 [0; 33.3] | 6.25 (17.7) 0 [0; 50.0] | 14.6 * [2.03; 29.17] |
Pain | 41.7 (26.7) 41 [0; 83.3] | 29.2 (34.2) 25.0 [0; 100] | 11.9 [−1.25 × 10−9; 2.71 × 101] |
Dyspnea | 8.33 (15.4) 0 [0; 33.3] | 4.17 (11.8) 0 [0; 33.3] | 4.17 * [0; 12.50] |
Insomnia | 33.3 (17.8) 33.3 [0; 66.7] | 20.8 (24.8) 16.7 [0; 66.7] | 12.50 [−8.33; 33.33] |
Appetite loss | 25.0 (15.4) 33.3 [0; 33.3] | 16.7 (25.2) 0 [0; 66.7] | 8.33 [−12.5; 25.0] |
Constipation | 16.7 (25.2) 0 [0; 66.7] | 8.33 (15.4) 0 [0; 33.3] | 8.33 * [0; 2.50] |
Diarrhea | 4.17 (11.8) 0 [0; 33.3] | 4.17 (11.8) 0 [0; 33.3] | 0 |
Financial difficulties | 41.7 (29.5) 50.0 [0; 66.7] | 33.3 (30.9) 33.3 [0; 66.7] | 8.33 * [0; 20.83] |
Variable a | % Difference | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
General QoL | General Function | ||||||||||||
Unit or Baseline Group | Global | p-Value | Physical | p-Value | Role | p-Value | Emotional | p-Value | Cognitive | p-Value | Social | p-Value | |
Age | 5 years | −9.52 | 0.15 | −1.35 | 0.67 | 5.07 | 0.39 | 8.93 | 0.16 | 3.92 | 0.58 | 8.61 | 0.41 |
Sex | Female | −11.87 | 0.34 | −15.74 | 0.08 | −18.42 | 0.18 | −10.86 | 0.37 | −11.50 | 0.46 | −15.55 | 0.47 |
Stage | IV | −13.73 | 0.29 | −10.11 | 0.21 | −20.82 | 0.15 | −20.38 | 0.14 | −0.02 | 0.99 | −18.31 | 0.41 |
Survival duration | >3 years | 15.58 | 0.24 | 29.84 | 0.01 * | 21.80 | 0.14 | 22.11 | 0.12 | 17.40 | 0.30 | 19.98 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.-P.; Pham, D.-A.D.; Dinh Nguyen, D.; Nguyen, P.V.; Bui, V.-A.; Hoang, M.-N.T.; Nguyen, L.T. Evaluating the Safety and Quality of Life of Colorectal Cancer Patients Treated by Autologous Immune Enhancement Therapy (AIET) in Vinmec International Hospitals. Int. J. Mol. Sci. 2022, 23, 11362. https://doi.org/10.3390/ijms231911362
Nguyen H-P, Pham D-AD, Dinh Nguyen D, Nguyen PV, Bui V-A, Hoang M-NT, Nguyen LT. Evaluating the Safety and Quality of Life of Colorectal Cancer Patients Treated by Autologous Immune Enhancement Therapy (AIET) in Vinmec International Hospitals. International Journal of Molecular Sciences. 2022; 23(19):11362. https://doi.org/10.3390/ijms231911362
Chicago/Turabian StyleNguyen, Hoang-Phuong, Duc-Anh Dao Pham, Duy Dinh Nguyen, Phong Van Nguyen, Viet-Anh Bui, My-Nhung Thi Hoang, and Liem Thanh Nguyen. 2022. "Evaluating the Safety and Quality of Life of Colorectal Cancer Patients Treated by Autologous Immune Enhancement Therapy (AIET) in Vinmec International Hospitals" International Journal of Molecular Sciences 23, no. 19: 11362. https://doi.org/10.3390/ijms231911362
APA StyleNguyen, H. -P., Pham, D. -A. D., Dinh Nguyen, D., Nguyen, P. V., Bui, V. -A., Hoang, M. -N. T., & Nguyen, L. T. (2022). Evaluating the Safety and Quality of Life of Colorectal Cancer Patients Treated by Autologous Immune Enhancement Therapy (AIET) in Vinmec International Hospitals. International Journal of Molecular Sciences, 23(19), 11362. https://doi.org/10.3390/ijms231911362