Tuning Functionalized Ionic Liquids for CO2 Capture
Abstract
:1. Introduction
2. Classification, Structures, and Synthesis of Functionalized ILs
2.1. Classification and Structures of Functionalized ILs
2.2. Synthesis of Functionalized ILs
3. Functionalized ILs for CO2 Capture
3.1. Cation-Functionalized ILs for CO2 Capture
3.1.1. Single-Site Mechanisms
3.1.2. Multiple-Site Mechanisms
3.2. Anion-Functionalized ILs for CO2 Capture
3.2.1. Single-Site Mechanisms
- (1)
- Amino anion functionalized ILs
- (2)
- Carboxylate anion-functionalized ILs (O-site)
- (3)
- Alkoxide anion-functionalized ILs (O-site)
- (4)
- Phenolate anion-functionalized ILs (O-site)
- (5)
- Azolate anion-functionalized ILs (N-site)
3.2.2. Multiple-Site Mechanism
- (1)
- Multiple same groups in anion-functionalized ILs
- (2)
- Pyridinolate anion-functionalized ILs
- (3)
- Imide anion-functionalized ILs
- (4)
- Other multiple-site anion-functionalized ILs
3.3. Cation-Anion Dual-Functionalized ILs for CO2 Capture
3.3.1. Amino-Based Cation and Amino-Based Anion
3.3.2. Amino-Based Cation and Phenolate Anion
3.3.3. Amino-Based Cation and Azolate Anion
4. Conclusions and Outlook
- (1)
- Reaction mechanism of functionalized IL-CO2 needs to be investigated further;
- (2)
- A large amount of CO2 absorption experiments was tested at room temperature and atmospheric pressure, but the temperature of flue gas is high (50~80 °C) and the concentration of CO2 is low (10~15 vol%), there is still a big gap between laboratory research and industrial application;
- (3)
- The selective capture of CO2 and the deactivation of functionalized ILs under other gases conditions (H2O, SO2, NOx, etc.) should be studied;
- (4)
- Compared with conventional absorbents such as alkanolamine aqueous solutions, pure functionalized ILs have higher viscosity and cost;
- (5)
- It is important to investigate capture efficiency in mass absorption capacity or gravimetric capacity in order to better comparison and realize the competitive ILs. Thus, functionalized ILs with high mass absorption capacity should be developed.
- (6)
- The regeneration of the ILs is also important and related to energetic consume and the absorption cost. Thus, the absorption enthalpies should be investigated.
- (1)
- A combination of NMR and IR analysis and chemical calculations can be used to investigate the absorption mechanisms of active sites on the ILs with CO2;
- (2)
- The performance of CO2 capture is affected by absorption temperature and CO2 partial pressure. Due to the tunable structure and property of ILs, design functionalized ILs with high active sites is an efficient way to help ILs applicate in industry;
- (3)
- H2O, SO2, NOx, etc. will lead to a decrease in the activity of ILs, especially ILs with strong basicity. Thus, these impurities should first be removed. For example, ILs with weak basicity for SO2 or NOx removal and ILs with strong basicity for CO2 removal;
- (4)
- Functionalized ILs with a low viscosity could be synthesized through tuning the structures of cation and anion. Besides, the viscosity of amine-containing functionalized ILs or protic ILs were reported to be increased during the absorption of CO2, while for amine-free functionalized ILs and aprotic ILs no obvious change during CO2 capture was reported due to the absence of strong hydrogen bonded networks in these ILs (Table 5);
- (5)
- Aqueous monoethanolamine (30 wt%) process is the current CO2 capture technology in industry with a mass capacity of ~7 wt%. It can be found in Table 1, Table 2, Table 3 and Table 4 that functionalized ILs with a high molecular weight resulted in a high molar capacity but a low mass capacity. Functionalized ILs with a high molar capacity open the door to developing functionalized ILs with a high mass capacity via combining functional sites and a small molecular weight;
- (6)
- High regeneration or reversibility of the ILs for CO2 capture needs weak interactions or low absorption enthalpies, which always results in low efficiency. Thus, functionalized ILs is always accompanied by high energy consumption. However, the results from CO2 capture by preorganized imide-based ILs indicate that multiple weak interactions also lead to strong adsorption and high capacity, even under low concentrations of CO2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Meteorological Organization. State of the Global Climate 2021; WMO-No. 1290; WMO: Geneva, Switzerland, 2022; Available online: https://library.wmo.int/index.php?lvl=notice_display&id=22080 (accessed on 1 August 2022).
- Chen, S.; Liu, J.; Zhang, Q.; Teng, F.; McLellan, B.C. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew. Sustain. Energy Rev. 2022, 167, 112537. [Google Scholar] [CrossRef]
- Chen, H.; Tsai, T.-C.; Tan, C.-S. CO2 capture using amino acid sodium salt mixed with alkanolamines. Int. J. Greenh. Gas Control 2018, 79, 127–133. [Google Scholar] [CrossRef]
- Bhalothia, D.; Hsiung, W.-H.; Yang, S.-S.; Yan, C.; Chen, P.-C.; Lin, T.-H.; Wu, S.-C.; Chen, P.-C.; Wang, K.-W.; Lin, M.-W.; et al. Submillisecond Laser Annealing Induced Surface and Subsurface Restructuring of Cu–Ni–Pd Trimetallic Nanocatalyst Promotes Thermal CO2 Reduction. ACS Appl. Energy Mater. 2021, 4, 14043–14058. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, B.; Liu, Z. Ionic-Liquid-Catalyzed Approaches under Metal-Free Conditions. Accounts Chem. Res. 2021, 54, 3172–3190. [Google Scholar] [CrossRef]
- Yan, C.; Wang, C.-H.; Lin, M.; Bhalothia, D.; Yang, S.-S.; Fan, G.-J.; Wang, J.-L.; Chan, T.-S.; Wang, Y.-l.; Tu, X.; et al. Local synergetic collaboration between Pd and local tetrahedral symmetric Ni oxide enables ultra-high-performance CO2 thermal methanation. J. Mater. Chem. A 2020, 8, 12744–12756. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Quintana, A.A.; Sztapka, A.M.; Ebinuma, V.D.C.S.; Agatemor, C. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: A Fad or the Future? Angew. Chem. Int. Ed. 2022, 61, e202205609. [Google Scholar] [CrossRef]
- Fajardo, O.Y.; Bresme, F.; Kornyshev, A.A.; Urbakh, M. Electrotunable Friction with Ionic Liquid Lubricants: How Important Is the Molecular Structure of the Ions? J. Phys. Chem. Lett. 2015, 6, 3998–4004. [Google Scholar] [CrossRef]
- Wang, Y.; He, H.; Wang, C.; Lu, Y.; Dong, K.; Huo, F.; Zhang, S. Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids. JACS Au 2022, 2, 543–561. [Google Scholar] [CrossRef]
- Beil, S.; Markiewicz, M.; Pereira, C.S.; Stepnowski, P.; Thöming, J.; Stolte, S. Toward the Proactive Design of Sustainable Chemicals: Ionic Liquids as a Prime Example. Chem. Rev. 2021, 121, 13132–13173. [Google Scholar] [CrossRef]
- Roy, S. Ahmaruzzaman Ionic liquid based composites: A versatile materials for remediation of aqueous environmental contaminants. J. Environ. Manag. 2022, 315, 115089. [Google Scholar] [CrossRef]
- Tang, X.; Lv, S.; Jiang, K.; Zhou, G.; Liu, X. Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J. Power Sources 2022, 542, 231792. [Google Scholar] [CrossRef]
- Sun, L.; Zhuo, K.; Chen, Y.; Du, Q.; Zhang, S.; Wang, J. Ionic Liquid-Based Redox Active Electrolytes for Supercapacitors. Adv. Funct. Mater. 2022, 32, 2203611. [Google Scholar] [CrossRef]
- Li, Z.; Han, Q.; Wang, K.; Song, S.; Xue, Y.; Ji, X.; Zhai, J.; Huang, Y.; Zhang, S. Ionic liquids as a tunable solvent and modifier for biocatalysis. Catal. Rev. 2022, 117, 1–47. [Google Scholar] [CrossRef]
- Tan, X.; Sun, X.; Han, B. Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation. Natl. Sci. Rev. 2021, 9, nwab022. [Google Scholar] [CrossRef]
- Hosseini, A.; Khoshsima, A.; Sabzi, M.; Rostam, A. Toward Application of Ionic Liquids to Desulfurization of Fuels: A Review. Energy Fuels 2022, 36, 4119–4152. [Google Scholar] [CrossRef]
- Zhuang, W.; Hachem, K.; Bokov, D.; Ansari, M.J.; Nakhjiri, A.T. Ionic liquids in pharmaceutical industry: A systematic review on applications and future perspectives. J. Mol. Liq. 2021, 349, 118145. [Google Scholar] [CrossRef]
- Nikfarjam, N.; Ghomi, M.; Agarwal, T.; Hassanpour, M.; Sharifi, E.; Khorsandi, D.; Ali Khan, M.; Rossi, F.; Rossetti, A.; Nazarzadeh Zare, E.; et al. Antimicrobial Ionic Liquid-Based Materials for Biomedical Applications. Adv. Funct. Mater. 2021, 31, 2104148. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao, D.; Li, M.; Liu, X.; Zhang, S. Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process. Chem. Rev. 2017, 117, 9625–9673. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dai, Z.; Zhang, Z.; Zeng, S.; Li, F.; Zhang, X.; Nie, Y.; Zhang, L.; Zhang, S.; Ji, X. Ionic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating. Green Energy Environ. 2020, 6, 314–328. [Google Scholar] [CrossRef]
- Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H. CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 2002, 124, 926–927. [Google Scholar] [CrossRef]
- Heldebrant, D.J.; Yonker, C.R.; Jessop, P.G.; Phan, L. Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ. Sci. 2008, 1, 487–493. [Google Scholar] [CrossRef]
- Rochelle, G. Conventional amine scrubbing for CO2 capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- Blanchard, L.A.; Hancu, D.; Beckman, E.J.; Brennecke, J.F. Green processing using ionic liquids and CO2. Nature 1999, 399, 28–29. [Google Scholar] [CrossRef]
- Sistla, Y.S.; Khanna, A. Carbon dioxide absorption studies using amine-functionalized ionic liquids. J. Ind. Eng. Chem. 2014, 20, 2497–2509. [Google Scholar] [CrossRef]
- Sharma, P.; Park, S.D.; Park, K.T.; Nam, S.C.; Jeong, S.K.; Yoon, Y.I.; Baek, I.H. Solubility of carbon dioxide in amine-functionalized ionic liquids: Role of the anions. Chem. Eng. J. 2012, 193–194, 267–275. [Google Scholar] [CrossRef]
- Gutowski, K.E.; Maginn, E.J. Amine-Functionalized Task-Specific Ionic Liquids: A Mechanistic Explanation for the Dramatic Increase in Viscosity upon Complexation with CO2 from Molecular Simulation. J. Am. Chem. Soc. 2008, 130, 14690–14704. [Google Scholar] [CrossRef]
- Cao, B.; Du, J.; Liu, S.; Zhu, X.; Sun, X.; Sun, H.; Fu, H. Carbon dioxide capture by amino-functionalized ionic liquids: DFT based theoretical analysis substantiated by FT-IR investigation. RSC Adv. 2016, 6, 10462–10470. [Google Scholar] [CrossRef]
- Sistla, Y.S.; Khanna, A. CO2 absorption studies in amino acid-anion based ionic liquids. Chem. Eng. J. 2015, 273, 268–276. [Google Scholar] [CrossRef]
- Yang, Z.-Z.; He, L.-N. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li+-stabilized zwitterionic adduct formation. Beilstein J. Org. Chem. 2014, 10, 1959–1966. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Jia, C.; Dong, H.; Wang, J.; Zhang, X.; Zhang, S. A Novel Dual Amino-Functionalized Cation-Tethered Ionic Liquid for CO2 Capture. Ind. Eng. Chem. Res. 2013, 52, 5835–5841. [Google Scholar] [CrossRef]
- Doyle, K.A.; Murphy, L.J.; Paula, Z.A.; Land, M.A.; Robertson, K.N.; Clyburne, J.A.C. Characterization of a New Ionic Liquid and Its Use for CO2 Capture from Ambient Air: Studies on Solutions of Diethylenetriamine (DETA) and [DETAH]NO3 in Polyethylene Glycol. Ind. Eng. Chem. Res. 2015, 54, 8829–8841. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, R.; Liu, Z.; Liu, H.; Xu, C.; Meng, X.; Liang, M.; Liang, S. Absorption Performance and Mechanism of CO2 in Aqueous Solutions of Amine-Based Ionic Liquids. Energy Fuels 2015, 29, 6019–6024. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Y.; Zhu, X.; Cui, G.; Li, H.; Dai, S. Highly efficient CO2 capture by tunable alkanolamine-based ionic liquids with multidentate cation coordination. Chem. Commun. 2012, 48, 6526–6528. [Google Scholar] [CrossRef]
- Shi, G.; Zhao, H.; Chen, K.; Lin, W.; Li, H.; Wang, C. Efficient capture of CO2 from flue gas at high temperature by tunable polyamine-based hybrid ionic liquids. AIChE J. 2019, 66, e16779. [Google Scholar] [CrossRef]
- Suo, X.; Yang, Z.; Fu, Y.; Do-Thanh, C.-L.; Maltsev, D.; Luo, H.; Mahurin, S.M.; Jiang, D.-E.; Xing, H.; Dai, S. New-Generation Carbon-Capture Ionic Liquids Regulated by Metal-Ion Coordination. ChemSusChem 2022, 15, e202102136. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Dong, K.; Zhang, Y.; Shen, Y.; Lv, X. Supported Absorption of CO2 by Tetrabutylphosphonium Amino Acid Ionic Liquids. Chem. A Eur. J. 2006, 12, 4021–4026. [Google Scholar] [CrossRef] [PubMed]
- Gurkan, B.E.; de la Fuente, J.C.; Mindrup, E.M.; Ficke, L.E.; Goodrich, B.F.; Price, E.A.; Schneider, W.F.; Brennecke, J.F. Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids. J. Am. Chem. Soc. 2010, 132, 2116–2117. [Google Scholar] [CrossRef] [PubMed]
- Brennecke, J.F.; Gurkan, B.E. Ionic Liquids for CO2 Capture and Emission Reduction. J. Phys. Chem. Lett. 2010, 1, 3459–3464. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Z.; Bao, Z.; Zhang, Z.; Yang, Y.; Ren, Q.; Xing, H.; Dai, S. New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids. ChemSusChem 2016, 9, 806–812. [Google Scholar] [CrossRef]
- Noorani, N.; Mehrdad, A. CO2 solubility in some amino acid-based ionic liquids: Measurement, correlation and DFT studies. Fluid Phase Equilibria 2020, 517, 112591. [Google Scholar] [CrossRef]
- Ren, H.; Shen, H.; Liu, Y. Adsorption of CO2 with tetraethylammonium glycine ionic liquid modified alumina in the Rotating Adsorption Bed. J. CO2 Util. 2022, 58, 101925. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, E.; Li, Y.; Bernards, M.T.; Li, Y.; Cao, G.; He, Y.; Shi, Y. Synergistic Enhancement of CO2 Adsorption Capacity and Kinetics in Triethylenetetrammonium Nitrate Protic Ionic Liquid Functionalized SBA. Energy Fuels 2019, 33, 8967–8975. [Google Scholar] [CrossRef]
- Wang, X.; Akhmedov, N.G.; Duan, Y.; Luebke, D.; Li, B. Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture. J. Mater. Chem. A 2013, 1, 2978–2982. [Google Scholar] [CrossRef]
- Zheng, S.; Zeng, S.; Li, Y.; Bai, L.; Bai, Y.; Zhang, X.; Liang, X.; Zhang, S. State of the art of ionic liquid-modified adsorbents for CO2 capture and separation. AIChE J. 2022, 68, e17500. [Google Scholar] [CrossRef]
- Maginn, E.J. Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents; Quaterly Technical Reports to DOE (Award Number: DE-FG26-04NT42122). 2005. Available online: https://www.semanticscholar.org/paper/Design-and-Evaluation-of-Ionic-Liquids-as-Novel-CO2-Maginn/ae256f654ad690eee1e3c0231154748db89adbbb#citing-papers (accessed on 1 August 2022).
- Steckel, J.A. Ab Initio Calculations of the Interaction between CO2 and the Acetate Ion. J. Phys. Chem. A 2012, 116, 11643–11650. [Google Scholar] [CrossRef]
- Shi, W.; Thompson, R.L.; Albenze, E.; Steckel, J.A.; Nulwala, H.B.; Luebke, D.R. Contribution of the Acetate Anion to CO2 Solubility in Ionic Liquids: Theoretical Method Development and Experimental Study. J. Phys. Chem. B 2014, 118, 7383–7394. [Google Scholar] [CrossRef]
- Harb, W.; Ingrosso, F.; Ruiz-López, M.F. Molecular insights into the carbon dioxide–carboxylate anion interactions and implications for carbon capture. Theor. Chim. Acta 2019, 138, 85. [Google Scholar] [CrossRef]
- Chen, F.-F.; Dong, Y.; Sang, X.-Y.; Zhou, Y.; Tao, D.-J. Physicochemical Properties and CO2 Solubility of Tetrabutylphosphonium Carboxylate Ionic Liquids. Acta Phys.-Chim. Sin. 2016, 32, 605–610. [Google Scholar] [CrossRef]
- Zailani, N.H.Z.O.; Yunus, N.M.; Ab Rahim, A.H.; Bustam, M.A. Experimental Investigation on Thermophysical Properties of Ammonium-Based Protic Ionic Liquids and Their Potential Ability towards CO2 Capture. Molecules 2022, 27, 851. [Google Scholar] [CrossRef]
- Wang, N.; Cheng, H.; Wang, Y.; Yang, Y.; Teng, Y.; Li, C.; Zheng, S. Measuring and modeling the solubility of carbon dioxide in protic ionic liquids. J. Chem. Thermodyn. 2022, 173, 106838. [Google Scholar] [CrossRef]
- Umecky, T.; Abe, M.; Takamuku, T.; Makino, T.; Kanakubo, M. CO2 absorption features of 1-ethyl-3-methylimidazolium ionic liquids with 2,4-pentanedionate and its fluorine derivatives. J. CO2 Util. 2019, 31, 75–84. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, X.; Chen, W.; Liu, C.; Qiao, K.; Zhu, M.; Lou, Y.; Mu, T. High volatility of superbase-derived eutectic solvents used for CO2 capture. Phys. Chem. Chem. Phys. 2020, 23, 2193–2210. [Google Scholar] [CrossRef]
- Huang, Z.; Jiang, B.; Yang, H.; Wang, B.; Zhang, N.; Dou, H.; Wei, G.; Sun, Y.; Zhang, L. Investigation of glycerol-derived binary and ternary systems in CO2 capture process. Fuel 2017, 210, 836–843. [Google Scholar] [CrossRef]
- Wang, C.; Luo, H.; Jiang, D.-E.; Li, H.; Dai, S. Carbon Dioxide Capture by Superbase-Derived Protic Ionic Liquids. Angew. Chem. Int. Ed. 2010, 49, 5978–5981. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. A Protic Ionic Liquid Catalyzes CO2 Conversion at Atmospheric Pressure and Room Temperature: Synthesis of Quinazoline-2,4(1H,3H)-diones. Angew. Chem. Int. Ed. 2014, 53, 5922–5925. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Luo, H.; Li, H.; Zhu, X.; Yu, B.; Dai, S. Tuning the Physicochemical Properties of Diverse Phenolic Ionic Liquids for Equimolar CO2 Capture by the Substituent on the Anion. Chem. A Eur. J. 2012, 18, 2153–2160. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; He, X.; Luo, X.; Lin, W.; Chen, K.; Li, H.; Wang, C. Highly efficient CO2 capture by carbonyl-containing ionic liquids through Lewis acid-base and cooperative C-HO hydrogen bonding interaction strengthened by the anion. Chem. Commun. 2014, 50, 15041–15044. [Google Scholar] [CrossRef]
- Pan, M.; Cao, N.; Lin, W.; Luo, X.; Chen, K.; Che, S.; Li, H.; Wang, C. Reversible CO2Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds. ChemSusChem 2016, 9, 2351–2357. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, K.; Xia, S.; Chen, Y.-L.; Wu, Y.-T.; Hu, X.-B. Low-viscous fluorine-substituted phenolic ionic liquids with high performance for capture of CO2. Chem. Eng. J. 2015, 274, 30–38. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, X.; Tu, Z.; Wu, Y.; Hu, X. Low-viscous diamino protic ionic liquids with fluorine-substituted phenolic anions for improving CO2 reversible capture. J. Mol. Liq. 2018, 268, 617–624. [Google Scholar] [CrossRef]
- Suo, X.; Yang, Z.; Fu, Y.; Do-Thanh, C.; Chen, H.; Luo, H.; Jiang, D.; Mahurin, S.M.; Xing, H.; Dai, S. CO2 Chemisorption Behavior of Coordination-Derived Phenolate Sorbents. ChemSusChem 2021, 14, 2784. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Luo, X.; Luo, H.; Jiang, D.-E.; Li, H.; Dai, S. Tuning the Basicity of Ionic Liquids for Equimolar CO2 Capture. Angew. Chem. Int. Ed. 2011, 50, 4918–4922. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Zhao, N.; Wang, J.; Wang, C. Computer-Assisted Design of Imidazolate-Based Ionic Liquids for Improving Sulfur Dioxide Capture, Carbon Dioxide Capture, and Sulfur Dioxide/Carbon Dioxide Selectivity. Chem. Asian J. 2017, 12, 2863–2872. [Google Scholar] [CrossRef]
- Lei, X.; Xu, Y.; Zhu, L.; Wang, X. Highly efficient and reversible CO2 capture through 1,1,3,3-tetramethylguanidinium imidazole ionic liquid. RSC Adv. 2014, 4, 7052–7057. [Google Scholar] [CrossRef]
- Li, F.; Bai, Y.; Zeng, S.; Liang, X.; Wang, H.; Huo, F.; Zhang, X. Protic ionic liquids with low viscosity for efficient and reversible capture of carbon dioxide. Int. J. Greenh. Gas Control 2019, 90, 102801. [Google Scholar] [CrossRef]
- Zhu, X.; Song, M.; Xu, Y. DBU-Based Protic Ionic Liquids for CO2 Capture. ACS Sustain. Chem. Eng. 2017, 5, 8192–8198. [Google Scholar] [CrossRef]
- Xu, Y. CO2 absorption behavior of azole-based protic ionic liquids: Influence of the alkalinity and physicochemical properties. J. CO2 Util. 2017, 19, 1–8. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Z.; Ji, P.; Cheng, J.-P. CO2 Absorption by DBU-Based Protic Ionic Liquids: Basicity of Anion Dictates the Absorption Capacity and Mechanism. Front. Chem. 2019, 6, 658. [Google Scholar] [CrossRef]
- Oncsik, T.; Vijayaraghavan, R.; MacFarlane, D.R. High CO2 absorption by diamino protic ionic liquids using azolide anions. Chem. Commun. 2018, 54, 2106–2109. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.; Yang, D. CO2 Absorption Mechanism by Diamino Protic Ionic Liquids (DPILs) Containing Azolide Anions. Processes 2021, 9, 1023. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, W.; Peng, L.; Wu, Y.; Hu, X. Highly selective absorption separation of H2S and CO2 from CH4 by novel azole-based protic ionic liquids. AIChE J. 2020, 66, e16936. [Google Scholar] [CrossRef]
- Zhu, X.; Song, M.; Ling, B.; Wang, S.; Luo, X. The Highly Efficient Absorption of CO2 by a Novel DBU Based Ionic Liquid. J. Solut. Chem. 2020, 49, 257–271. [Google Scholar] [CrossRef]
- Tang, H.; Wu, C. Reactivity of Azole Anions with CO2 from the DFT Perspective. ChemSusChem 2013, 6, 1050–1056. [Google Scholar] [CrossRef]
- Fu, H.; Wang, X.; Sang, H.; Fan, R.; Han, Y.; Zhang, J.; Liu, Z. The study of bicyclic amidine-based ionic liquids as promising carbon dioxide capture agents. J. Mol. Liq. 2020, 304, 112805. [Google Scholar] [CrossRef]
- Oh, S.; Morales-Collazo, O.; Keller, A.N.; Brennecke, J.F. Cation–Anion and Anion–CO2 Interactions in Triethyl(octyl)phosphonium Ionic Liquids with Aprotic Heterocyclic Anions (AHAs). J. Phys. Chem. B 2020, 124, 8877–8887. [Google Scholar] [CrossRef]
- Keller, A.N.; Bentley, C.L.; Morales-Collazo, O.; Brennecke, J.F. Design and Characterization of Aprotic N-Heterocyclic Anion Ionic Liquids for Carbon Capture. J. Chem. Eng. Data 2022, 67, 375–384. [Google Scholar] [CrossRef]
- Lin, W.; Pan, M.; Xiao, Q.; Li, H.; Wang, C. Tuning the Capture of CO2 through Entropic Effect Induced by Reversible Trans–Cis Isomerization of Light-Responsive Ionic Liquids. J. Phys. Chem. Lett. 2019, 10, 3346–3351. [Google Scholar] [CrossRef]
- Li, A.; Tian, Z.; Yan, T.; Jiang, D.-E.; Dai, S. Anion-Functionalized Task-Specific Ionic Liquids: Molecular Origin of Change in Viscosity upon CO2 Capture. J. Phys. Chem. B 2014, 118, 14880–14887. [Google Scholar] [CrossRef] [PubMed]
- Gurkan, B.; Goodrich, B.F.; Mindrup, E.M.; Ficke, L.E.; Massel, M.; Seo, S.; Senftle, T.P.; Wu, H.; Glaser, M.F.; Shah, J.K.; et al. Molecular Design of High Capacity, Low Viscosity, Chemically Tunable Ionic Liquids for CO2 Capture. J. Phys. Chem. Lett. 2010, 1, 3494–3499. [Google Scholar] [CrossRef]
- Seo, S.; Quiroz-Guzman, M.; DeSilva, M.A.; Lee, T.B.; Huang, Y.; Goodrich, B.F.; Schneider, W.F.; Brennecke, J.F. Chemically Tunable Ionic Liquids with Aprotic Heterocyclic Anion (AHA) for CO2 Capture. J. Phys. Chem. B 2014, 118, 5740–5751. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Simoni, L.D.; Ma, M.; DeSilva, M.A.; Huang, Y.; Stadtherr, M.A.; Brennecke, J.F. Phase-Change Ionic Liquids for Postcombustion CO2 Capture. Energy Fuels 2014, 28, 5968–5977. [Google Scholar] [CrossRef]
- Sheridan, Q.R.; Mullen, R.G.; Lee, T.B.; Maginn, E.J.; Schneider, W.F. Hybrid Computational Strategy for Predicting CO2 Solubilities in Reactive Ionic Liquids. J. Phys. Chem. C 2018, 122, 14213–14221. [Google Scholar] [CrossRef]
- Sheridan, Q.R.; Oh, S.; Morales-Collazo, O.; Castner, J.E.W.; Brennecke, J.F.; Maginn, E.J. Liquid Structure of CO2–Reactive Aprotic Heterocyclic Anion Ionic Liquids from X-ray Scattering and Molecular Dynamics. J. Phys. Chem. B 2016, 120, 11951–11960. [Google Scholar] [CrossRef]
- Wu, H.; Shah, J.K.; Tenney, C.M.; Rosch, T.W.; Maginn, E.J. Structure and Dynamics of Neat and CO2-Reacted Ionic Liquid Tetrabutylphosphonium 2-Cyanopyrrolide. Ind. Eng. Chem. Res. 2011, 50, 8983–8993. [Google Scholar] [CrossRef]
- Mullen, R.G.; Corcelli, S.A.; Maginn, E.J. Reaction Ensemble Monte Carlo Simulations of CO2 Absorption in the Reactive Ionic Liquid Triethyl(octyl)phosphonium 2-Cyanopyrrolide. J. Phys. Chem. Lett. 2018, 9, 5213–5218. [Google Scholar] [CrossRef]
- Wu, C.; Senftle, T.P.; Schneider, W.F. First-principles-guided design of ionic liquids for CO2 capture. Phys. Chem. Chem. Phys. 2012, 14, 13163–13170. [Google Scholar] [CrossRef]
- Goel, H.; Windom, Z.W.; Jackson, A.A.; Rai, N. CO2 sorption in triethyl(butyl)phosphonium 2-cyanopyrrolide ionic liquid via first principles simulations. J. Mol. Liq. 2019, 292, 111323. [Google Scholar] [CrossRef]
- Firaha, D.S.; Hollóczki, O.; Kirchner, B. Computer-Aided Design of Ionic Liquids as CO2 Absorbents. Angew. Chem. Int. Ed. 2015, 54, 7805–7809. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, Q.R.; Schneider, W.F.; Maginn, E.J. Role of Molecular Modeling in the Development of CO2–Reactive Ionic Liquids. Chem. Rev. 2018, 118, 5242–5260. [Google Scholar] [CrossRef]
- Oh, S.; Morales-Collazo, O.; Brennecke, J.F. Cation–Anion Interactions in 1-Ethyl-3-methylimidazolium-Based Ionic Liquids with Aprotic Heterocyclic Anions (AHAs). J. Phys. Chem. B 2019, 123, 8274–8284. [Google Scholar] [CrossRef]
- Hu, J.; Chen, L.; Shi, M.; Zhang, C. A quantum chemistry study for 1-ethyl-3-Methylimidazolium ion liquids with aprotic heterocyclic anions applied to carbon dioxide absorption. Fluid Phase Equilibria 2018, 459, 208–218. [Google Scholar] [CrossRef]
- Mei, K.; He, X.; Chen, K.; Zhou, X.; Li, H.; Wang, C. Highly Efficient CO2 Capture by Imidazolium Ionic Liquids through a Reduction in the Formation of the Carbene–CO2 Complex. Ind. Eng. Chem. Res. 2017, 56, 8066–8072. [Google Scholar] [CrossRef]
- Gohndrone, T.R.; Song, T.; DeSilva, M.A.; Brennecke, J.F. Quantification of Ylide Formation in Phosphonium-Based Ionic Liquids Reacted with CO2. J. Phys. Chem. B 2021, 125, 6649–6657. [Google Scholar] [CrossRef]
- Gurau, G.; Rodríguez, H.; Kelley, S.P.; Janiczek, P.; Kalb, R.S.; Rogers, R.D. Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate Ionic Liquids. Angew. Chem. Int. Ed. 2011, 50, 12024–12026. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, W.; Tu, Z.; Peng, L.; Wu, Y.; Hu, X. Supported Ionic Liquid Membranes with Dual-Site Interaction Mechanism for Efficient Separation of CO2. ACS Sustain. Chem. Eng. 2019, 7, 10792–10799. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Mei, M.; Song, Z.; Cheng, H.; Chen, L.; Qi, Z. Transformation of CO2 incorporated in adducts of N-heterocyclic carbene into dialkyl carbonates under ambient conditions: An experimental and mechanistic study. Chem. Eng. J. 2021, 413, 127469. [Google Scholar] [CrossRef]
- Lee, T.B.; Oh, S.; Gohndrone, T.R.; Morales-Collazo, O.; Seo, S.; Brennecke, J.F.; Schneider, W.F. CO2 Chemistry of Phenolate-Based Ionic Liquids. J. Phys. Chem. B 2016, 120, 1509–1517. [Google Scholar] [CrossRef]
- Goodrich, B.F.; de la Fuente, J.C.; Gurkan, B.E.; Lopez, Z.K.; Price, E.A.; Huang, Y.; Brennecke, J.F. Effect of Water and Temperature on Absorption of CO2 by Amine-Functionalized Anion-Tethered Ionic Liquids. J. Phys. Chem. B 2011, 115, 9140–9150. [Google Scholar] [CrossRef]
- Saravanamurugan, S.; Kunov-Kruse, A.J.; Fehrmann, R.; Riisager, A. Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO2. ChemSusChem 2014, 7, 897–902. [Google Scholar] [CrossRef]
- Li, S.; Zhao, C.; Sun, C.; Shi, Y.; Li, W. Reaction Mechanism and Kinetics Study of CO2 Absorption into [C2OHmim][Lys]. Energy Fuels 2016, 30, 8535–8544. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Shah, F.U. Ether Functionalized Choline Tethered Amino Acid Ionic Liquids for Enhanced CO2 Capture. ACS Sustain. Chem. Eng. 2016, 4, 5441–5449. [Google Scholar] [CrossRef]
- Ma, J.-W.; Zhou, Z.; Zhang, F.; Fang, C.-G.; Wu, Y.-T.; Zhang, Z.-B.; Li, A.-M. Ditetraalkylammonium Amino Acid Ionic Liquids as CO2 Absorbents of High Capacity. Environ. Sci. Technol. 2011, 45, 10627–10633. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Chen, S.; Yu, P.; Luo, Y. CO2 Capture by Imidazolate-Based Ionic Liquids: Effect of Functionalized Cation and Dication. Ind. Eng. Chem. Res. 2013, 52, 6069–6075. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Wu, Z.; Yu, P.; Luo, Y. Synthesis and thermophysical properties of imidazolate-based ionic liquids: Influences of different cations and anions. J. Chem. Thermodyn. 2014, 74, 209–215. [Google Scholar] [CrossRef]
- Lin, W.; Cai, Z.; Lv, X.; Xiao, Q.; Chen, K.; Li, H.; Wang, C. Significantly Enhanced Carbon Dioxide Capture by Anion-Functionalized Liquid Pillar[5]arene through Multiple-Site Interactions. Ind. Eng. Chem. Res. 2019, 58, 16894–16900. [Google Scholar] [CrossRef]
- Singh, P.; Niederer, J.P.; Versteeg, G.F. Structure and activity relationships for amine-based CO2 absorbents-II. Chem. Eng. Res. Des. 2009, 87, 135–144. [Google Scholar] [CrossRef]
- Luo, X.; Guo, Y.; Ding, F.; Zhao, H.; Cui, G.; Li, H.; Wang, C. Significant Improvements in CO2 Capture by Pyridine-Containing Anion-Functionalized Ionic Liquids through Multiple-Site Cooperative Interactions. Angew. Chem. Int. Ed. 2014, 53, 7053–7057. [Google Scholar] [CrossRef]
- An, X.; Du, X.; Duan, D.; Shi, L.; Hao, X.; Lu, H.; Guan, G.; Peng, C. An absorption mechanism and polarity-induced viscosity model for CO2 capture using hydroxypyridine-based ionic liquids. Phys. Chem. Chem. Phys. 2016, 19, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-Y.; Chen, X.-Y.; Qiu, R.-X.; Pei, B.-Y.; Wei, Y.; Hu, M.; Lin, J.-Q.; Zhang, J.-Y.; Luo, G.-G. Enhanced CO2 capture by reducing cation–anion interactions in hydroxyl-pyridine anion-based ionic liquids. Dalton Trans. 2019, 48, 2300–2307. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wu, X.; Xu, Y. Effects of the structure on physicochemical properties and CO2 absorption of hydroxypyridine anion-based protic ionic liquids. J. Mol. Liq. 2022, 362, 119743. [Google Scholar] [CrossRef]
- Cheng, J.; Li, Y.; Hu, L.; Zhou, J.; Cen, K. CO2 Adsorption Performance of Ionic Liquid [P66614][2-Op] Loaded onto Molecular Sieve MCM-41 Compared to Pure Ionic Liquid in Biohythane/Pure CO2 Atmospheres. Energy Fuels 2016, 30, 3251–3256. [Google Scholar] [CrossRef]
- Xue, C.; Feng, L.; Zhu, H.; Huang, R.; Wang, E.; Du, X.; Liu, G.; Hao, X.; Li, K. Pyridine-containing ionic liquids lowly loaded in large mesoporous silica and their rapid CO2 gas adsorption at low partial pressure. J. CO2 Util. 2019, 34, 282–292. [Google Scholar] [CrossRef]
- Breugst, M.; Tokuyasu, T.; Mayr, H. Nucleophilic Reactivities of Imide and Amide Anions. J. Org. Chem. 2010, 75, 5250–5258. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Cui, G.; Zhao, Y.; Wang, H.; Li, Z.; Dai, S.; Wang, J. Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO2 by Ionic Liquids. Angew. Chem. Int. Ed. 2017, 56, 13293–13297. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, G.; Wang, H.; Li, Z.; Wang, J. Tuning ionic liquids with imide-based anions for highly efficient CO2 capture through enhanced cooperations. J. CO2 Util. 2018, 28, 299–305. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, G.; Zhao, Y.; Wang, H.; Li, Z.; Dai, S.; Wang, J. Reply to the Correspondence on “Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO2 by Ionic Liquids”. Angew. Chem. 2018, 58, 386–389. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, G.; Wang, H.; Li, Z.; Wang, J. Absorption and thermodynamic properties of CO2 by amido-containing anion-functionalized ionic liquids. RSC Adv. 2019, 9, 1882–1888. [Google Scholar] [CrossRef]
- Luo, X.Y.; Lv, X.Y.; Shi, G.L.; Meng, Q.; Li, H.R.; Wang, C.M. Designing amino-based ionic liquids for improved carbon capture: One amine binds two CO2. AIChE J. 2018, 65, 230–238. [Google Scholar] [CrossRef]
- Chen, F.-F.; Huang, K.; Zhou, Y.; Tian, Z.-Q.; Zhu, X.; Tao, D.-J.; Jiang, D.-E.; Dai, S. Multi-Molar Absorption of CO2 by the Activation of Carboxylate Groups in Amino Acid Ionic Liquids. Angew. Chem. Int. Ed. 2016, 55, 7166–7170. [Google Scholar] [CrossRef]
- Pan, M.; Zhao, Y.; Zeng, X.; Zou, J. Efficient Absorption of CO2 by Introduction of Intramolecular Hydrogen Bonding in Chiral Amino Acid Ionic Liquids. Energy Fuels 2018, 32, 6130–6135. [Google Scholar] [CrossRef]
- Chen, X.; Luo, X.; Li, J.; Qiu, R.; Lin, J. Cooperative CO2 absorption by amino acid-based ionic liquids with balanced dual sites. RSC Adv. 2020, 10, 7751–7757. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhao, Y.; Li, R.; Yu, B.; Chen, Y.; Liu, X.; Wu, C.; Luo, X.; Liu, Z. Tetrabutylphosphonium-Based Ionic Liquid Catalyzed CO2 Transformation at Ambient Conditions: A Case of Synthesis of α-Alkylidene Cyclic Carbonates. ACS Catal. 2017, 7, 6251–6255. [Google Scholar] [CrossRef]
- Pan, M.; Vijayaraghavan, R.; Zhou, F.; Kar, M.; Li, H.; Wang, C.; MacFarlane, D.R. Enhanced CO2 uptake by intramolecular proton transfer reactions in amino-functionalized pyridine-based ILs. Chem. Commun. 2017, 53, 5950–5953. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; He, L.; Yuan, W.-L.; Xu, D.; Tao, G.-H. Is it Always Chemical When Amino Groups Come Across CO2? Anion–Anion-Interaction-Induced Inhibition of Chemical Adsorption. J. Phys. Chem. B 2019, 123, 6536–6542. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Lu, X.; Zhou, Q.; Fan, W.; Zhang, X. Dual Amino-Functionalised Phosphonium Ionic Liquids for CO2Capture. Chem. A Eur. J. 2009, 15, 3003–3011. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, Z.; Han, J.; Chen, Y.; Mu, T. Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazolium cation and taurine anion. Int. J. Greenh. Gas Control 2011, 5, 628–633. [Google Scholar] [CrossRef]
- Ren, J.; Wu, L.; Li, B.-G. Preparation and CO2 Sorption/Desorption of N-(3-Aminopropyl)Aminoethyl Tributylphosphonium Amino Acid Salt Ionic Liquids Supported into Porous Silica Particles. Ind. Eng. Chem. Res. 2012, 51, 7901–7909. [Google Scholar] [CrossRef]
- Peng, H.; Zhou, Y.; Liu, J.; Zhang, H.; Xia, C.; Zhou, X. Synthesis of novel amino-functionalized ionic liquids and their application in carbon dioxide capture. RSC Adv. 2013, 3, 6859–6864. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, X.; Jing, G.; Lv, B. Evaluation of the Multi-amine Functionalized Ionic Liquid for Efficient Postcombustion CO2 Capture. Energy Fuels 2016, 30, 7489–7495. [Google Scholar] [CrossRef]
- Lv, B.; Jing, G.; Qian, Y.; Zhou, Z. An efficient absorbent of amine-based amino acid-functionalized ionic liquids for CO2 capture: High capacity and regeneration ability. Chem. Eng. J. 2016, 289, 212–218. [Google Scholar] [CrossRef]
- Jing, G.; Qian, Y.; Zhou, X.; Lv, B.; Zhou, Z. Designing and Screening of Multi-Amino-Functionalized Ionic Liquid Solution for CO2 Capture by Quantum Chemical Simulation. ACS Sustain. Chem. Eng. 2017, 6, 1182–1191. [Google Scholar] [CrossRef]
- Ye, C.-P.; Wang, R.-N.; Gao, X.; Li, W.-Y. CO2 Capture Performance of Supported Phosphonium Dual Amine-Functionalized Ionic Liquids@MCM-41. Energy Fuels 2020, 34, 14379–14387. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.; Yang, X.; Zhu, M.; Wang, B. DFT Study on the Chemical Absorption Mechanism of CO2 in Diamino Protic Ionic Liquids. J. Phys. Chem. B 2021, 125, 1416–1428. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Xu, Y.; Xie, B.; Ge, Y.; Shu, H. Alkanolamine-based dual functional ionic liquids with multidentate cation coordination and pyrazolide anion for highly efficient CO2 capture at relatively high temperature. Int. J. Greenh. Gas Control 2017, 56, 194–201. [Google Scholar] [CrossRef]
- Shu, H.; Xu, Y. Tuning the strength of cation coordination interactions of dual functional ionic liquids for improving CO2 capture performance. Int. J. Greenh. Gas Control 2020, 94, 102934. [Google Scholar] [CrossRef]
- Zema, Z.A.; Chen, T.; Shu, H.; Xu, Y. Tuning the CO2 absorption and physicochemical properties of K+ chelated dual functional ionic liquids by changing the structure of primary alkanolamine ligands. J. Mol. Liq. 2021, 344, 117983. [Google Scholar] [CrossRef]
IL | T (°C) | P (bar) | Mw (g mol–1) a | n CO2/n IL | n CO2/kg IL b | g CO2/g IL b | Ref. |
---|---|---|---|---|---|---|---|
[apbim][BF4] | 22 | 1 | 269.1 | ~0.5 | ~1.86 | ~0.08 | [22] |
[aemim][BF4] | 30 | 1 | 213.0 | 0.41 | 1.92 | 0.08 | [27] |
[Bmim][Met] | 25 | 2 | 287.4 | 0.42 | 1.46 | 0.06 | [30] |
[Bmim][Pro] | 25 | 2 | 253.3 | 0.32 | 1.26 | 0.06 | [30] |
[PEG150MeBu2NLi][Tf2N] | 25 | 1 | 562.5 | 0.66 | 1.17 | 0.05 | [31] |
[PEG150MeTMGLi][Tf2N] | 25 | 1 | 548.5 | 0.89 | 1.62 | 0.07 | [31] |
DAIL c | 30 | 1 | 249.2 | 1.05 | 4.21 (0.42) | 0.19 (0.02) | [32] |
[TETA][NO3] d | 15 | 1 | 209.3 | 1.49 | 7.12 (2.85) | 0.31 (0.13) | [34] |
[Li(HDA)][Tf2N] | 40 | 1 | 391.2 | 0.88 | 2.25 | 0.10 | [35] |
[Li(DOBA)][Tf2N] | 40 | 1 | 435.3 | 0.90 | 2.07 | 0.09 | [35] |
[Li(TEPA)][Tf2N] | 80 | 0.1 | 476.4 | 0.72 | 1.51 | 0.07 | [36] |
[Li(TEPA)][Tf2N] e | 80 | 0.1 | 476.4 | 1.95 | 4.09 (1.36) | 0.18 (0.06) | [36] |
IL | T (°C) | P (bar) | Mw (g mol–1) a | n CO2/n IL | n CO2/kg IL b | g CO2/g IL b | Ref. |
---|---|---|---|---|---|---|---|
[P4444][Gly] c | – | 1 | 333.5 | ~0.6 | ~1.80 (0.74) | ~0.08 (0.03) | [38] |
[P4444][Ala] c | – | 1 | 347.5 | ~0.67 | ~1.93 (0.81) | ~0.08 (0.04) | [38] |
[P4444][β-Ala] c | – | 1 | 347.5 | ~0.6 | ~1.73 (0.72) | ~0.08 (0.03) | [38] |
[P66614][Met] | 22 | 1 | 632.1 | ~0.9 | ~1.42 | ~0.06 | [39] |
[P66614][Pro] | 22 | 1 | 598.0 | ~0.9 | ~1.51 | ~0.07 | [39] |
[P4444][Butyrate] | 40 | 1 | 346.5 | 0.4 | 1.15 | 0.05 | [51] |
[MTBDH][TFE] | 23 | 1 | 253.3 | 1.13 | 4.46 | 0.20 | [57] |
[MTBDH][TFPA] | 23 | 1 | 329.4 | 0.93 | 2.82 | 0.12 | [57] |
[MTBDH]2[HFPD] | 23 | 1 | 518.5 | 2.04 | 3.93 | 0.17 | [57] |
[DBUH][TFE] | r.t. | 1 | 252.3 | 1.01 | 4.00 | 0.18 | [58] |
[P66614][4-Me-PhO] | 30 | 1 | 591.0 | 0.91 | 1.54 | 0.07 | [59] |
[P66614][4-H-PhO] | 30 | 1 | 577.0 | 0.85 | 1.47 | 0.06 | [59] |
[P66614][4-Cl-PhO] | 30 | 1 | 611.4 | 0.82 | 1.34 | 0.06 | [59] |
[P66614][4-CF3-PhO] | 30 | 1 | 645.0 | 0.61 | 0.95 | 0.04 | [59] |
[P66614][4-NO2-PhO] | 30 | 1 | 622.0 | 0.30 | 0.48 | 0.02 | [59] |
[P66614][2,4,6-Cl-PhO] | 30 | 1 | 680.3 | 0.07 | 0.10 | 0.0044 | [59] |
[P66614][4-Kt-PhO] | 30 | 1 | 619.0 | 1.04 | 1.68 | 0.07 | [60] |
[P66614][4-EF-PhO] | 30 | 1 | 649.0 | 1.03 | 1.59 | 0.07 | [60] |
[P66614][4-CHO-PhO] | 30 | 1 | 605.0 | 1.01 | 1.67 | 0.07 | [60] |
[P66614][PPhO] | 20 | 1 | 653.1 | 0.93 | 1.42 | 0.06 | [61] |
[P66614][PCCPhO] | 20 | 1 | 679.1 | 0.96 | 1.41 | 0.06 | [61] |
[P4444][2-F-PhO] | 40 | 1 | 370.5 | 0.67 | 1.81 | 0.08 | [62] |
[P4444][3-F-PhO] | 40 | 1 | 370.5 | 0.74 | 2.00 | 0.09 | [62] |
[P4444][4-F-PhO] | 40 | 1 | 370.5 | 0.84 | 2.27 | 0.10 | [62] |
[Na(15-crown-5)][PhO] | 25 | 1 | 336.4 | 0.75 | 2.23 | 0.10 | [64] |
[Na(15-crown-5)][n-C3H7PhO] | 25 | 1 | 378.4 | 0.66 | 1.74 | 0.08 | [64] |
[Na(15-crown-5)][n-C8H17PhO] | 25 | 1 | 448.6 | 0.50 | 1.11 | 0.05 | [64] |
[MTBDH][Im] | 23 | 1 | 221.3 | 1.03 | 4.65 | 0.20 | [57] |
[(P2-Et)H][Im] | 23 | 1 | 407.5 | 0.96 | 2.36 | 0.10 | [57] |
[P66614][Im] | 23 | 1 | 550.9 | 1.00 | 1.82 | 0.08 | [65] |
[TMGH][Im] | 30 | 1 | 183.3 | 1.00 | 5.46 | 0.24 | [67] |
[DBUH][Im] | 25 | 1 | 220.3 | ~0.88 | ~3.99 | ~0.18 | [69] |
[DBNH][Im] | 25 | 1 | 192.3 | 0.8 | 4.16 | 0.18 | [70] |
[DMAPAH][Im] | 22 | 1 | 170.3 | 0.81 | 4.76 | 0.21 | [72] |
[DMEDAH][Im] | 22 | 1 | 156.2 | 0.77 | 4.93 | 0.22 | [73] |
[P66614][Pyrz] | 23 | 1 | 550.9 | 1.02 | 1.85 | 0.08 | [65] |
[P66614][Tetz] | 23 | 1 | 552.9 | 0.08 | 0.14 | 0.01 | [65] |
[P66614][Triz] | 23 | 1 | 551.9 | 0.95 | 1.72 | 0.08 | [65] |
[P66614][4-CHO-Im] | 20 | 1 | 578.9 | 1.24 | 2.14 | 0.09 | [60] |
[P66614][4-Br-Im] | 20 | 1 | 629.8 | 0.87 | 1.38 | 0.06 | [66] |
[P66614][2-CN-Pyr] | 22 | 1 | 575.0 | 0.9 | 1.57 | 0.07 | [82] |
[P66614][2-CF3-Pyra] | 22 | 1 | 618.9 | 0.9 | 1.45 | 0.06 | [82] |
IL | T (°C) | P (bar) | Mw (g mol–1) | n CO2/n IL | n CO2/kg IL | g CO2/g IL | Ref. |
---|---|---|---|---|---|---|---|
[P66614][Lys] | 22 | 1 | 629.0 | 1.37 | 2.18 | 0.10 | [101] |
[N66614][Lys] | 22 | 1 | 612.1 | 2.1 | 3.43 | 0.15 | [102] |
[C2OHmim][Lys] | 30 | 1 | 272.3 | 1.68 | 6.17 | 0.27 | [103] |
[N1,1,6,2O4][Lys] | 20 | 1 | 375.6 | 1.62 | 4.31 | 0.19 | [104] |
[N66614][His] | 22 | 1 | 612.0 | 1.9 | 3.10 | 0.14 | [102] |
[N66614][Asn] | 22 | 1 | 598.0 | 2.0 | 3.34 | 0.15 | [102] |
[N66614][Gln] | 22 | 1 | 612.1 | 1.9 | 3.10 | 0.14 | [102] |
[MTBDH]2[HFPD] | 23 | 1 | 518.5 | 2.04 | 3.93 | 0.17 | [57] |
[P66614]10[DCP5] | 50 | 1 | 6019.5 | 5.52 | 0.92 | 0.04 | [108] |
[P66614][2-Op] | 20 | 1 | 578.0 | 1.58 | 2.73 | 0.12 | [110] |
[P66614][4-Op] | 20 | 1 | 578.0 | 1.49 | 2.58 | 0.11 | [110] |
[P66614][3-Op] | 20 | 1 | 578.0 | 1.38 | 2.39 | 0.11 | [110] |
[P4442][2-Op] | 30 | 1 | 325.5 | 1.40 | 4.30 | 0.19 | [112] |
[N4442][2-Op] | 30 | 1 | 308.5 | 1.24 | 4.02 | 0.18 | [112] |
[Bmim][2-Op] | 30 | 1 | 233.3 | 1.02 | 4.37 | 0.19 | [112] |
[P4442OH][2-Op] | 30 | 1 | 341.5 | 0.94 | 2.75 | 0.12 | [112] |
[Ph-C8eim][2-Op] | 30 | 1 | 379.5 | 1.69 | 4.45 | 0.20 | [112] |
[Ph-C8eim][2-Op] | 20 | 1 | 379.5 | 1.83 | 4.82 | 0.21 | [112] |
[DBUH][2-Op] | 40 | 1 | 247.3 | ~0.86 | ~3.48 | ~0.15 | [113] |
[TMGH][2-Op] | 40 | 1 | 210.3 | ~0.82 | ~3.90 | ~0.17 | [113] |
[P4442][Suc] | 20 | 1 | 329.5 | 1.87 | 5.68 | 0.25 | [117] |
[P4442][Suc] | 20 | 0.1 | 329.5 | 1.65 | 5.01 | 0.22 | [117] |
[P4442][DAA] | 20 | 1 | 331.5 | 1.25 | 3.77 | 0.17 | [117] |
[P4442][DAA] | 20 | 0.1 | 331.5 | 1.12 | 3.38 | 0.15 | [117] |
[P4442][Cy-Suc] | 20 | 1 | 383.6 | 2.21 | 5.76 | 0.25 | [118] |
[P4442][Ph-Suc] | 20 | 1 | 377.5 | 1.0 | 2.65 | 0.12 | [118] |
[P66614][MA-Tetz] | 30 | 1 | 581.9 | 1.13 | 1.94 | 0.09 | [121] |
[P4442]2[IDA] | 40 | 1 | 593.8 | 1.69 | 2.85 | 0.13 | [122] |
[P4442]2[D-Ser] | 25 | 1 | 565.8 | 1.06 | 1.87 | 0.08 | [123] |
[P4442]2[L-Ser] | 25 | 1 | 565.8 | 1.10 | 1.94 | 0.09 | [123] |
[P66614]2[AA-Su] | 30 | 1 | 1148.9 | 1.48 | 1.29 | 0.06 | [124] |
[P66614]2[AA-Ac] | 30 | 1 | 1112.8 | 1.97 | 1.77 | 0.08 | [124] |
[P66614]2[AA-Im] | 30 | 1 | 1120.9 | 1.55 | 1.38 | 0.06 | [124] |
[P66614]2[AA-Ind] | 30 | 1 | 1169.9 | 1.45 | 1.24 | 0.05 | [124] |
[P4444]3[2,4-OPym-5-Ac] | r.t. | 1 | 931.4 | 1.46 | 1.57 | 0.07 | [125] |
[P66614]2[Am-iPA] | 30 | 1 | 1146.8 | 2.38 | 2.08 | 0.09 | [124] |
IL | T (°C) | P (bar) | Mw (g mol–1) a | n CO2/n IL | n CO2/kg IL b | g CO2/g IL b | Ref. |
---|---|---|---|---|---|---|---|
[aP4443][Gly] c | – | 1 | 334.5 | ~0.94 | ~2.81 (1.15) | ~0.12 (0.05) | [128] |
[aP4443][Ala] c | – | 1 | 348.5 | ~0.92 | ~2.64 (1.11) | ~0.12 (0.05) | [128] |
[aemmim][Tau] | 30 | 1 | 264.4 | ~0.9 | ~3.40 | ~0.15 | [129] |
[apaeP444][Lys] d | 25 | 1 | 448.7 | 1.73 | 3.86 (1.93) | 0.17 (0.08) | [130] |
[apaeP444][Gly] d | 25 | 1 | 377.6 | 1.29 | 3.42 (1.71) | 0.15 (0.08) | [130] |
[apaeP444][Ser] d | 25 | 1 | 407.6 | 1.19 | 2.92 (1.46) | 0.13 (0.06) | [130] |
[apaeP444][Ala] d | 25 | 1 | 391.6 | 1.14 | 2.91 (1.46) | 0.13 (0.06) | [130] |
[apaeP444][Asp] d | 25 | 1 | 435.6 | 1.07 | 2.46 (1.23) | 0.11 (0.05) | [130] |
[apaeP444][His] d | 25 | 1 | 457.6 | 1.01 | 2.21 (1.11) | 0.10 (0.05) | [130] |
[AEMP][Gly] e | – | 1 | 218.3 | 1.50 | 6.87 (1.37) | 0.30 (0.06) | [131] |
[AEMP][Ala] e | – | 1 | 232.3 | 1.57 | 6.76 (1.35) | 0.30 (0.06) | [131] |
[AEMP][Pro] e | – | 1 | 258.4 | 1.54 | 5.96 (1.19) | 0.26 (0.05) | [131] |
[AEMP][Leu] e | – | 1 | 274.4 | 1.47 | 5.36 (1.07) | 0.24 (0.05) | [131] |
[APmim][Gly] f | 30 | 1 | 214.3 | 1.23 | 4.31 | 0.19 | [133] |
[APmim][Lys] f | 30 | 1 | 285.4 | 1.80 | 6.71 | 0.27 | [132] |
[TETAH][Lys] f | 40 | 1 | 292.4 | 2.59 | 8.86 | 0.39 | [134] |
[DETAH][Lys] f | 40 | 1 | 249.4 | 2.13 | 8.55 | 0.38 | [134] |
[aP4443][2-Op] | 30 | 1 | 354.5 | 1.57 | 4.44 | 0.20 | [135] |
[aP4443][2-Np] | 30 | 1 | 353.5 | 1.88 | 5.32 | 0.23 | [135] |
[aP4443][Triz] | 30 | 1 | 328.5 | 1.32 | 4.02 | 0.18 | [135] |
[Na(MDEA)2][Pyrz] | 80 | 1 | 328.4 | 0.75 | 2.28 | 0.10 | [137] |
[K(DGA)2][Im] | 60 | 1 | 316.4 | 1.37 | 4.33 | 0.19 | [138] |
[K(AMP)2][Im] | 60 | 1 | 284.4 | 1.19 | 4.18 | 0.18 | [139] |
IL | T (°C) | P (bar) | Viscosity of IL (cP) | Viscosity of IL + CO2 (cP) | Viscosity Increase (fold) | Ref. |
---|---|---|---|---|---|---|
[APbim][BF4] | 22 | 1 | - | - | Dramatic increase | [22] |
[P66614][Pyr] | 23 | 1 | 245.4 | 555.1 | 2.26 | [65] |
[P66614][Oxa] | 23 | 1 | 555.5 | 1145.8 | 2.06 | [65] |
[P66614][PhO] | 23 | 1 | 390.3 | 645.4 | 1.65 | [65] |
[P66614][Im] | 23 | 1 | 810.4 | 648.7 | 0.84 | [65] |
[P66614][2-CN-Pyr] | 25 | 1 | 360 | 370 | 1.03 | [82] |
[P66614][3-CF3-Pyr] | 25 | 1 | 270 | 500 | 1.85 | [82] |
[P66614][Pro] | 20 | 1 | 1000 | 1700 | 1.7 | [101] |
[P66614][Met] | 25 | 1 | 350 | 33,000 | 94 | [101] |
[P66614][Lys] | 20 | 1 | 1000 | 280,000 | 280 | [101] |
[P66614][Tau] | 25 | 1 | 670 | 44,000 | 66 | [101] |
[P66614][2-Op] | 20 | 1 | 573 | 2273 | 4 | [110] |
[P4442][Suc] | 20 | 0.1 | 998 | 629 | 0.63 | [117] |
[P4442][DAA] | 20 | 0.1 | 605 | 147 | 0.24 | [117] |
[P4442]2[IDA] | 40 | 1 | 66.2 | 961.6 | 14.5 | [122] |
[aP4443][Gly] | 25 | 1 | 713.9 | - | Dramatic increase | [128] |
[Na(MDEA)2][Pyrz] | 50 | 1 | 1310 | 713.9 | 0.54 | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Ke, Q.; Zhang, Z.; Zhou, B.; Cui, G.; Lu, H. Tuning Functionalized Ionic Liquids for CO2 Capture. Int. J. Mol. Sci. 2022, 23, 11401. https://doi.org/10.3390/ijms231911401
Zhang R, Ke Q, Zhang Z, Zhou B, Cui G, Lu H. Tuning Functionalized Ionic Liquids for CO2 Capture. International Journal of Molecular Sciences. 2022; 23(19):11401. https://doi.org/10.3390/ijms231911401
Chicago/Turabian StyleZhang, Ruina, Quanli Ke, Zekai Zhang, Bing Zhou, Guokai Cui, and Hanfeng Lu. 2022. "Tuning Functionalized Ionic Liquids for CO2 Capture" International Journal of Molecular Sciences 23, no. 19: 11401. https://doi.org/10.3390/ijms231911401
APA StyleZhang, R., Ke, Q., Zhang, Z., Zhou, B., Cui, G., & Lu, H. (2022). Tuning Functionalized Ionic Liquids for CO2 Capture. International Journal of Molecular Sciences, 23(19), 11401. https://doi.org/10.3390/ijms231911401