CD8+ T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease
Abstract
:1. Introduction
1.1. CD8+ Cytotoxic T Cells
1.2. CD8+ Tregs
- Release of inhibitory cytokines such as IL-10 and transforming growth factor β (TGFβ) [19];
- Suppression of CD4+ T cells via cell contact dependent mechanisms involving TGFβ and cytotoxic T cell antigen 4 (CTLA-4) expression on the CD8+ Treg surface [19];
- Perforin mediated cytotoxicity against antigen activated follicular helper CD4+ T cells expressing Qa-1 (mouse equivalent of human HLA-E) [22].
1.3. CD8+ Trm Cells
1.4. Systemic Lupus Erythematosus (SLE)
1.5. Sjögren’s Syndrome (SS)
1.6. Systemic Scleroderma/Systemic Sclerosis (SSc)
1.7. Polymyositis (PM) and Dermatomyositis (DM)
2. Aims and Methodology
3. Results
3.1. Altered CD8+ T cell Phenotype in Adult CTD
3.1.1. SLE
Author et al., Year [Ref] | Type of Study | N: Patients or Controls Age 1: Mean ± SD or Median (Range) or [IQR] | CD8+ T Cell Populations | Clinical Relevance |
---|---|---|---|---|
Lu Z. et al., 2020 [66] | Cross-sectional | N = 143 SLE 35 [26–48] N = 30 HC ASM | Increased % of CD8+ T cells in a subset of treatment naïve SLE patients identified by hierarchical cluster analysis. | The patient cluster with higher % of CD8+ T cells had higher incidence of LN (OR 2.85, CI 1.15–7.08, p = 0.024). |
Lai Z-W. et al., 2018 [61] | Clinical trial | N = 40 SLE, Mean: 45.4 (18–71) N = 56 HC, Mean: 45.4 (18–71) | Increased % CD8+CD45RA+ naïve T cells in SLE vs. HC (p < 0.05) Decreased % CD8+CD45RO+ memory T cells in SLE vs. HC (p < 0.05) Decreased % CD8 EM (CD62L−CD197−) T cells in SLE vs. HC (p < 0.05). | Reduction in CD8+ memory T cells was reversed after 12 months of sirolimus treatment and was the strongest predictor of therapeutic response. |
Kubo S. et al., 2017 [65] | Longitudinal prospective | N = 143 SLE 42.7 ± 16.4 N = 49 HC 45.6 ± 14.7 | No differences in % of CD8+ T cell subpopulations (naïve, EM, CM, TEMRA). Increase in % of activated CD8+ T cells (CD3+CD8+CD38+HLA-DR+) in SLE vs. HC (p < 0.001). | Positive correlation between % activated CD8+ T cells and SLEDAI (r = 0.27, p < 0.01) and BILAG (r = 0.38, p < 0.01). Decrease in CD8+ activated T cells in active patients after 24-week treatment with cyclophosphamide, mycophenolate mofetil, or calcineurin, in addition to high-dose glucocorticoids (p < 0.01). |
Comte D. et al., 2017 [29] | Cross-sectional | N = 45 SLE 41.3 (21–72) N = 41 HC ASM | No difference in % CD3+CD8+ T cells between SLE and HC. Decreased % CD8+ EM and CM in SLE vs. HC (p < 0.05). Increased % naïve CD8+ T cells in SLE vs. HC (p < 0.05). Reduction in perforin (p < 0.01) and granzyme B (p < 0.05) in SLE CD8+ T cells vs. HC. Reduced CD8+ T cell SLAMF7 expression in active SLE vs. HC (p < 0.001). | Decreased % CD8+ EM and CM T cells in active SLE vs. HC (p < 0.01 and p < 0.05, respectively). Increased % naïve CD8+ T cells in active SLE vs. HC (p < 0.001) and vs. inactive SLE (p < 0.05). Positive correlation between % naïve CD8+ T cells and SLEDAI score (r2 = 0.14, p = 0.01). Negative correlation between % TEMRA CCR7−CD45RA+ CD8+ T cells and SLEDAI score (r2 = 0.09, p = 0.05). |
Zabinska M. et al., 2016 [68] | Cross-sectional | N = 54 SLE with LN SLEDAI ≤ 5: 32.7 ± 9.1 SLEDAI > 5: 37.9 ± 14.9 N = 19 HC 38.3 ± 14.1 | Increased % and absolute counts of CD3+CD8+CD28− T cells in SLE vs. HC (p < 0.001). | Positive correlation between SLEDAI and % CD3+CD8+CD28− T cells (r = 0.281, p = 0.038). Increased % CD3+CD8+CD28− T cells in SLE with active vs. inactive LN (p = 0.022). |
Tulunay A. et al., 2008 [50] | Cross-sectional | N = 53 SLE 39 ± 12 N = 44 HC 37 ± 14 | No difference in % or absolute CD8+ T cell counts in SLE vs. HC or in absolute CD8+CD28+ or CD8+CD28− T cell counts. Decreased % CD28− of CD8+ T cells in SLE vs. HC (p < 0.01). Increased % CD28+ of CD8+ T cells in SLE vs. HC (p < 0.01). | No association between absolute numbers of CD8+CD28+ or CD8+CD28− T cells and SLEDAI or treatment. Increased % CD28− of CD8+ T cells in patients with higher SLEDAI, treated with HCQ and cyclophosphamide or AZA, in comparison to those only on HCQ and with lower SLEDAI (p < 0.05). |
Pavon E.J. et al., 2006 [56] | Cross-sectional | N = 51 SLE Age 38.1 (20–77) N = 36 HC Age 38.1 (20–77) | Increased % CD8+ T cells in SLE vs. HC (p < 0.0447). Decreased CD4/CD8 T cell ratio in SLE vs. HC (p < 0.0022). Increased CD38 expression on CD8+ T cells in SLE vs. HC (p < 0.002). | None reported. |
Blanco P. et al., 2005 [30] | Longitudinal prospective | N = 61 SLE Mean: 35.5 (13–70) N = 36 HC Age not specified | No difference in % of CD3+CD8+ T cells in SLE vs. HC. Increased % HLA-DR+, perforin+ and granzyme B+ CD8+ T cells in active SLE vs. inactive SLE (p = 0.02, p < 10−6, p < 10−6, respectively) and HC (p < 10−6). Decreased % naïve CD8+ T cells in active SLE vs. inactive SLE (p < 10−6). Increased % TEMRA and EM CD8+ T cells in active SLE vs. HC and inactive SLE (p < 10−6). | Positive correlation between SLEDAI score and % granzyme B+ (r = 0.733, p < 10−6) and perforin+ CD8+ T cells (r = 0.731, p < 10−6). |
3.1.2. SS
3.1.3. SSc
Author et al., Year [Ref] | Type of Study | N: Patients or Controls Age 1: Mean ± SD or Median (Range) or [IQR] | Altered CD8+ T Cell Phenotype | Clinical Relevance |
---|---|---|---|---|
Sjögren’s syndrome (SS) | ||||
Martin-Gutierrez L. et al., 2021 [73] | Longitudinal clinical data, cross-sectional phenotyping | N = 45 pSS Mean: 59 (30–78) N = 29 SLE Mean: 48 (21–72) N = 14 SLE/SS Mean: 55 (26–56) N = 31 HC Mean: 44 (20–77) | No differences in % CD8+ T cell populations in pSS vs. HC when adjusted for age and ethnicity. | Frequencies of CD8+ T cell subpopulations could be used to stratify patients with pSS, SLE, and SLE/SS and predict long-term disease activity and damage trajectories in those with low or no disease activity. |
Tasaki S. et al., 2017 [78] | Cross-sectional | N = 30 pSS 39.33 ± 9.44 N = 30 HC 61.07 ± 10.8 | Transcriptomic and proteomic differences in CD8+ T cells in pSS vs. HC used to derive a unique pSS disease signature. | Positive correlation between %CD8+ T cell TEMRA and levels of anti-Ro, anti-La antibodies and IgA. Positive correlation between % HLA-DR+ CD8+ T cells and anti-Ro antibody levels. |
Narkeviciute I. et al., 2016 [74] | Cross-sectional | N = 30 pSS Mean: 57 (32–78) N = 14 nSS Mean: 59 (44–91) | No difference in % or absolute count of total CD8+ T cells in pSS vs. nSS. Increased % memory CD8+CD57+CD27+CD45RA− T cells in pSS vs. nSS (p = 0.0028). Decreased % and absolute counts of cytotoxic effector CD8+CD57+CD27−CD45RA+ T cells and TEMRA CD8+CD57−CD27−CD45RA+ T cells in pSS vs. nSS (p = 0.0184 and p = 0.0436, respectively). | Negative correlation between % CD8+CD57−CD27+CD45RA− memory T cells and Schirmer’s I test (r = −0.429, p = 0.029) in pSS. |
Mingueneau M. et al., 2016 [76] | Cross-sectional | N = 49 pSS 54 [43.5–63.5] N = 45 HC or nSS 53 [32.5–62] | No difference in absolute CD8+ T cell count in SS vs. HC. Increased % of activated (HLA-DR+) CD8+ T cells in pSS vs. HC (p = 0.0007). | Positive correlation between disease activity and % activated HLA-DR+ CD8+ T cells (r = 0.51, p = 0.007). Positive correlation between % activated CD8+ T cells and serum anti-Ro/La antibodies (r = 0.57, p = 0.002) and rheumatoid factor (r = 0.43, p = 0.027). |
Smolenska Z. et al., 2012 [79] | Longitudinal prospective | N = 16 pSS 50 [39–60] N = 7 sSS 55 [45–70] N = 10 HC 48 [44–67] | Increased % CD8+ CD28− T cells in pSS vs. HC (p = 0.01) and sSS (p < 0.02). No difference in absolute number of CD8+CD28− T cells. | Negative correlation between % CD8+CD28− T cells and dryness/fatigue/pain in pSS (r = −0.44, −0.58, −0.71, p < 0.05 for all). Negative correlation between % CD8+CD28− T cells and total ESSDAI (r = −0.43, p < 0.05). Decrease in % CD8+CD28− T cells correlated with higher disease activity in the cutaneous (p = 0.04) and muscular (p = 0.02) ESSDAI domains. |
Systemic scleroderma (SSc) | ||||
Li G. et al., 2017 [86] | Cross-sectional | N = 65 SSc 49.1 ± 15.3 N = 35 HC (20–72) | Increased % CD8+CD28− T cells in SSc vs. HC (p < 0.0001). Increased % CD8+CD28− T cells in dcSSc vs. lcSSc (p < 0.0001). % CD8+CD28− T cells correlated with increasing age in SSc and HC (r = −0.51, p < 0.0001). % CD8+CD28− T cells significant predictor of SSc presence regardless of age (p = 0.04). | Positive correlation between % CD8+CD28− T cells and Rodnan fibrosis skin scores after adjusting for age (r = 0.72, p < 0.001). |
Fuschiotti P. et al., 2009 [85] | Cross-sectional | N = 53 SSc (22 lcSSc, 31 dcSSc) 48.6 ± 12.2 N = 33 HC, ASM | Increased % CD8+ TEMRA (CD45RA+CD27−) in SSc vs. HC (p < 0.01). Decreased % CM CD8+ (CD45RA-CD27+) T cells in SSc vs. HC (p < 0.01). | None reported. |
Polymyositis and Dermatomyositis (PM/DM) | ||||
Wang D.X. et al., 2012 [87] | Longitudinal prospective | N = 19 PM 48.00 ± 14.21 N = 70 DM 50.96 ± 14.01 N = 60 HC 47.63 ± 8.45 | Decreased absolute CD8+ T cell counts in active DM vs. HC (p < 0.05). No difference in % CD8+ T cells. | Positive correlation between low CD3+CD8+ T cell count in PM/DM and MYOACT-total disease activity score (p = 0.008) and immunosuppressive drug treatment (p = 0.034). CD3+CD8+ T cells count is an independent risk factor for death in PM/DM (p < 0.05). |
Fasth A.E. et al., 2009 [88] | Cross-sectional | N = 40 PM 61 (24–79) N = 24 DM 55 (28–74) N = 41 HC 52 (28–82) | Increased % CD8+CD28− T cells in PM vs. HC (p = 0.016). No significant difference in DM vs. HC; 98% of CD8+CD28− T cells contained perforin. | % CD8+CD28− T cells decreased with disease duration in PM/DM, partly compensated by increase in % CD8+CD28− T cells with age (p = 0.0184). |
Aleksza M. et al., 2005 [89] | Cross-sectional | N = 50 (13 active) PM 45.9 ±13.7 N = 49 (29 active) DM 46.9 ± 13.5 N = 32 HC 30.9 ± 9.1 | Decreased % CD8+ T cells in active DM vs. HC (p < 0.01) and inactive DM (p < 0.05). No difference in PM vs. HC. Increased % activated HLA-DR+ CD3+ T cells in PM, DM vs. HC, regardless of disease activity (p < 0.01). Decreased % IFN-γ+CD8+ T cells in active DM vs. HC and non-active DM (p < 0.01). | None reported. |
3.1.4. PM and DM
3.2. Altered CD8+ T Cell Phenotype in Children and Adolescents with CTD
3.2.1. JSLE
3.2.2. JDM
Author et al., Year [Ref] | Type of Study | N: Patients or Controls Age 1: Mean ± SD or Median (Range) or [IQR] | CD8+ T Cell Populations | Clinical Relevance |
---|---|---|---|---|
Juvenile Systemic Lupus Erythematosus (JSLE) | ||||
Lerkvaleekul B. et al., 2021 [92] | Longitudinal prospective | N = 60 JSLE 12.15 [9.95–14.45] N = 42 HC (10–15) | Increased % total CD8+ T cells in JSLE vs. HC (p = 0.0015). | Increase in % total CD8+ T cells associated with absence of LN (p = 0.0017), absence of vasculitis (p = 0.0119), and inactive disease (p = 0.0034). |
Robinson G. et al., 2020 [93] | Longitudinal clinical data, cross-sectional phenotyping | N = 67 JSLE 19 [13–25] N = 39 HC 18 [16–25] | Increased % total CD8+ T cells in JSLE vs. HC (p = 0.0006). Increased % CD8+ naïve T cells in JSLE vs. HC (p = 0.0005). Decreased % CD8+ CM (p = 0.0024), CD8+ EM (p = 0.016) and CD8+ TEMRA T cells (p = 0.038) in JSLE vs. HC. | Patients with elevated CD8+ and CD8+ EM T cells had more active disease over time, increased treatment with MMF and increased prevalence of LN. |
Nehar-Belaid, D. et al., 2020 [96] | Cross-sectional | N = 33 JSLE Mean: 15.85 (10–19) N = 11 HC Mean: 12.27 (7–18) | scRNAseq clustering: CD8+ T cell subclusters expressing cytotoxic genes and IFN signature genes over-represented in JSLE vs. HC. Flow cytometry: 17 JSLE and 14 HC. Increased % granzyme B+ CD8+ cells in active (p = 0.029) and inactive JSLE (p = 0.035) vs. HC. Increased % perforin+ CD8+ T cells in active JSLE vs. HC (p = 0.044). | No association with disease severity or MMF use between patients stratified based on CD8+ T cell cluster. |
Zahran A. et al., 2016 [94] | Longitudinal Interventional | N = 20 JSLE 9.4 ± 3.7 N = 20 HC 9.0 ± 4.5 | No difference in % of CD8+ T cells in JSLE vs. HC. Decreased CD4/CD8 T cell ratio in JSLE vs. HC (p = 0.001). Decreased % of CD8+ Tregs (CD8+CD25+) (p < 0.001) and CD8+ Treg FoxP3 MFI (p = 0.016) in JSLE vs. HC. | Increase in CD8+ Tregs associated with decrease in SLEDAI (p = 0.01), CRP (p < 0.01), ESR (p = 0.004), protein in urine (p = 0.041), and improvement in clinical parameters (WBC (p = 0.018), C3 (p = 0.009), C4 (p = 0.014), albumin (p = 0.001), creatinine (p = 0.002)) upon royal jelly supplementation in JSLE. |
Miyamoto M. et al., 2011 [95] | Cross-sectional | N = 30 JSLE 13 ± 2 N = 14 HC 14 ± 3 | Decreased absolute CD8+ T cell counts in active (p = 0.01) and inactive (p = 0.02) JSLE vs. HC. No differences in % naïve, CM or EM CD8+ T cells in JSLE vs. HC. Decreased % TEMRA CD8+CD45RA+CCR7− T cells in JSLE vs. HC (p = 0.01). Increased number of CD38 molecules on CD8+ T cells in JSLE patients vs. HC (p = 0.01). Decreased % CD8+CD28+ T cells in JSLE vs. HC (p < 0.05). | No association between changes in CD8+ T cell subsets and disease activity. |
Juvenile Dermatomyositis (JDM) | ||||
Wilkinson M. et al., 2020 [90] | Cross-sectional | N = 15 JDM 21.48 [19.07–23.19] N = 15 HC 20.11 [17.40–22.28] | Decreased % CD8+ CM T cells (p = 0.0202) and % total CD8+ T cells in JDM vs. HC (p = 0.0168). | None reported. |
O’Gorman M.R. et al., 2000 [97] | Cross-sectional | N = 10 JDM 5.9 ± 0.9 N = 12 HC 7.9 ± 0.6 | Decreased % CD8+ T cells in JDM vs. HC (p = 0.01). | None reported. |
McDouall R.M. et al., 1990 [98] | Cross-sectional | N = 16 JDM (no age reported) N = 18 HC (no age reported) | Decreased absolute CD8+ T cell numbers in JDM vs. HC (p < 0.001). | None reported. |
3.3. Functional CD8+ T Cell Abnormalities in CTD across Age
Type of CD8+T Cell Functional Abnormality | Type of Disease [Ref] | Clinical Correlation |
---|---|---|
Increased functional cytotoxicity/cytotoxic capacity | SLE [30,99,100], SSc [101] | Associated with active disease in SLE and disease severity in SSc. |
Decreased functional cytotoxicity/cytotoxic capacity | SLE [29,102,103,104,105,106,107,108] | Expanded population of CD8+CD38high T cells (with reduced cytotoxicity) in patients with increased rates of infections. Decreased intracellular IFN-γ expression in CD8+ T cells of SLE patients with active disease. |
Impaired EBV-specific CD8+ T cell responses | SLE [109,110,111] | Both active and inactive patients have increased EBV viral load compared to HC and impaired EBV specific CD8+ T cell responses. |
CD8+ T cell exhaustion/activation | SLE [49,112,113], AAV [113] | Associated with better SLE clinical outcome (% patients with flare-free survival). No association with disease activity. |
Metabolic CD8+ T cell disfunction | SLE [114] | Genes belonging to mitochondria-induced apoptosis and DNA damage response pathways correlated with disease activity. |
Enhanced CD8+ T cell apoptosis and expression of pro-apoptotic proteins | SLE [51,69,115], JSLE [95,116], SSc [121] | Enhanced apoptosis of CD8+ T cells in active SLE. |
Dysregulation of costimulatory and activation pathways | SLE [117,118,119,120] | Arthritis and low CH50 more common in patients with CD86 expression on CD8+ T cells. Increased % CD40L+CD8+ T cells in both active patients and in remission. Higher absolute CD40L+CD8+ T cell numbers in active SLE. |
Upregulated pro-fibrotic IL-13 production | SSc [85,86,101,122,123] | Associated with higher levels of skin fibrosis, early disease, and ILD. |
Increased production of type 2 cytokines | SLE [124], SSc [125,126,127] | Associated with higher risk of progressive lung fibrosis and decline in lung capacity in SSc. High levels of IL-4 and IL-13 associated positively with presence of Scl-70 or anti-centromere antibodies and negatively with glucocorticoid treatment in SSc. Associated with active disease in SLE. |
Type 1 Interferon gene signature | SLE [128], SSc [129], pSS [78], PM [130], DM [130] | IGS correlated with disease activity scores, CD8+ TEMRA and HLA-DR+ CD8+ normalized T cell counts in pSS. |
3.4. Organ-Specific CD8+ T Cell Profiles
3.4.1. SLE
Organ Involvement | CD8+ T Cell Signatures [Ref] | Clinical Relevance |
---|---|---|
Lupus nephritis (kidney biopsy) | CD8+ T cell clusters identified in transcriptomic analysis of kidney tissue. No upregulation of CD8+ T cell exhaustion markers [133]. | None reported. |
CD8+ T cells are the predominant kidney infiltrating cells [62,72,135,136,137]. | Renal CD8+ T cell infiltration correlates with the renal activity index (r = 0.63, p = 0.0007) [136] high serum creatinine levels (r = 0.75, p = 0.0001) [136,137], SLEDAI (r = 0.14, p < 0.05) [137], proteinuria (r = 0.11, p < 0.05), glomerulosclerosis (r = 0.42, p < 0.001), and degree of tubulointerstitial inflammation (r = 0.46, p < 0.001) [137]. CD8+ T cell infiltrates associated with poor response to induction therapy [136] and ESRD progression (p < 0.001) [137]. | |
Elevated number of CD8+CD103+ Trm cells in LN kidney compared to healthy kidney tissue (p < 0.01) [134]. | None reported. | |
Lupus nephritis (urine) | Elevated CD8+ T cell numbers in SLE with active renal disease vs. HC (p < 0.005) [62] and SLE without active renal disease (p < 0.001) [62], (p < 0.005) [135], (p < 0.0001) [138]. Nearly 70% of urinary CD8+T cells express the EM phenotype [62]. | Increased CD8+T cell counts/mL in urine associated with active renal disease and correlated with SLEDAI (r = 0.68, p < 0.001) [62], (r = 0.7641, p < 0.0001) [138]. Urine CD8+ T cell counts used to discriminate patients with active LN and inactive LN and active LN vs. no renal involvement [135,138]. No correlation between urinary T-cell counts and renal activity index [135]. |
T cells present in non-LN patients are predominantly CD8+ [139]. | Positive correlation between urinary CD4/CD8 T cell ratio and SLEDAI (r = 0.38, p = 0.0047). Elevated CD4/CD8 T cell ratio associated with LN. | |
Cutaneous (skin biopsy) | CD8+ T cells are dominant infiltrating cells in majority of SLE patients [141], express granzyme B [142], and are elevated in central lesion sites vs. peripheral sites (p < 0.01) [143]. | None reported. |
Cutaneous (oral lesions) | CD8+ T cells present in oral lesions in SLE though CD4+ T cells predominate [144]. | None reported. |
Pulmonary (BALF) | No difference in % or absolute CD8+ T cell number or CD4/CD8 T cell ratio in BALF. Elevated % of CD8+HLA-DR+ T cells in BALF compared to blood [145]. | No correlation with disease activity (Liang score). Tendencies for inverse correlations between % or number of CD8+ T cells with lung function parameters: transfer factor for carbon monoxide (r = −0.47, p = 0.07) and diffusing capacity of the alveolocapillary membrane (r = −0.47, p = 0.06). |
Neuropsychiatric (PBMC) | IFN-γ secreting myelin-specific CD8+ T cells detected in peripheral blood in SLE with neuropsychiatric lupus without APS, but with white matter lesions [146]. | None reported. |
3.4.2. SS
3.4.3. SSc
3.4.4. PM and DM
Organ Involvement | CD8+ T Cell Signatures [Ref] | Clinical Relevance |
---|---|---|
Sjögren’s syndrome (salivary gland biopsy) | Increased CD8+ T cell counts (p = 0.007) and frequency of activated CD8+HLA-DR+ T cells in pSS vs. non pSS in labial gland biopsy (p = 0.0097) [76]. | None reported. |
CD8+ T cells are localized to acinar epithelial cells in lacrimal and salivary glands and express integrin CD103, which facilitates epithelial cell apoptosis via Fas expressed on acinar epithelial cells and perforin/granzyme cytotoxicity [147,148]. | None reported. | |
No difference in acinar or ductal CD8+ T cell counts in pSS or sSS compared to HC, few apoptotic cells present in tissue sections [149]. | None reported. | |
CD8+ infiltrating labial T cells express BAFF [151] and exhibit JNK cascade activation [150]. | None reported. | |
Systemic sclerosis (muscle biopsy) | CD8+ T cells present in perivascular and perimysial sites and are predominant infiltrating cell type in perimysium [152]. | None reported. |
Systemic sclerosis (skin biopsy) | CD8+ T cells in skin of patients with early dcSSc are mostly CD28-(72.3 ± 13.8%). Skin CD8+CD28− express Trm marker CD69. Few cells express CD103 [86]. | None reported. |
Elevated infiltrating CD8+ vs. CD4+ T cell numbers in early-stage systemic sclerosis (p < 0.0001). This is reversed in late-stage biopsies. No CD8+ T cells found in normal skin [153]. | None reported. | |
No detectable CD8+, CD4+ or total T cell clonal expansion in long-standing SSc [82]. | None reported. | |
Systemic sclerosis (BALF) | Elevated CD8+ T cell count in SSc vs. HC (p < 0.05) [83], (p < 0.01) [125]. CD8+ T cells in BALF of SSc made type 2 cytokine mRNA (IL-4 and or IL-5) while HC did not [125]. | Number of CD8+ T cells in BALF correlates with FVC (forced vital capacity) (r = 0.4, p < 0.05) [83] Patients whose BAL cells made type 2 cytokine mRNA had decreased FVC over time post BAL (p = 0.04) [125]. |
Transcriptomic analysis of BALF CD8+ T cells identified a subset of SSc patients with CD8+ T cell activation, a type 2 cytokine phenotype, reduced activation-induced cell death, and production of profibrotic factors [127]. | Patients in this subset had higher risk of progressive lung disease. | |
Dermatomyositis (skin biopsy) | CD8+ T cells present in infiltrates and their distribution across muscle sites is similar in ADM and JDM [163]. | No correlation with clinical parameters. |
Myositis (muscle biopsy) | CD8+ T cells present in muscle and vessel infiltrates in DM and PM. CD8+ T cell numbers vary in DM across muscle connective tissue sites. Elevated number of CD8+ T cells in endomysium in PM vs. DM [154]. | None reported. |
CD8+ T cells were predominant cell type infiltrating non-necrotic muscle fibres in PM [152] and are present in endomysial, perivascular and perimysial sites in PM in greater number than CD4+ T cells. [156] Positive gradient for % of CD8+ T cells in DM and PM between perivascular and endomysial sites. Increased % of CD8+ T cells and % activated T cells in endomysium in PM vs. DM [152]. | None reported. | |
Perivascular CD8+ T cells in PM and DM [155] and endomysial CD8+ T cells in PM are predominantly CD45RO+ [157]. Elevated % CD8+CD45RO+ T cells in muscle biopsies compared to peripheral blood of HC. T cells surrounding invaded muscle fibres were mostly CD8+ [155]. | No correlation with age, duration of illness, or serum CK [157]. | |
CD8+, Granzyme B+, and perforin+ T cells predominate in endomysium in PM. Rare in endomysium in DM. [158,159,162]. CD8+ T cells and Granzyme B+ T cells cluster around apoptotic myonuclei in muscle fibres in PM [160]. | None reported. | |
Infiltrating CD8+ T cells in PM and DM are predominantly CD8+CD28−. [88] CD8+CD28− T cell myotoxicity in PM is mediated via perforin, granzyme B and IFN-γ [161]. | Positive correlation between % CD8+CD28− T cells and global disease activity (r = 0.90, p = 0.01) [88]. | |
Myositis (lung biopsy) | CD8+ T cells diffusely distributed across lung biopsies in DM and PM patients with interstitial pneumonia. CD8+ T cells predominate over CD4+ T cells. No difference between DM and PM [164]. | None reported. |
4. Discussion
4.1. Commonalities in CD8+ T Cells and Subpopulations in Peripheral Blood across Adult CTDs
4.2. Shared CD8+ T Cell Activation and Cytotoxic Cell Profiles
4.3. CD8+CD28− T Cell Phenotype across CTDs
4.4. Impact of Age on CD8+ T Cell Phenotype
4.5. Absence of Common CD8+ T Cell Peripheral Blood Immunophenotype across Juvenile CTDs
4.6. Reasons for Variability in Investigations of Peripheral Blood Phenotypes
4.7. Commonalities in CD8+ T Cell Function across CTDs
4.8. Disease-Specific CD8+ T Cell Organ Profiles
4.9. Patient Stratification: Predictive Powers of CD8+ T Cells
4.10. Targeting CD8+ T Cells in CTDs
4.11. Regulatory CD8+ T Cell Therapies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rosenblum, M.D.; Remedios, K.A.; Abbas, A.K. Mechanisms of human autoimmunity. J. Clin. Investig. 2015, 125, 2228–2233. [Google Scholar] [CrossRef] [PubMed]
- Walter, U.; Santamaria, P. CD8+ T cells in autoimmunity. Curr. Opin. Immunol. 2005, 17, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J.; Teichgräber, V.; Becker, T.C.; Masopust, D.; Kaech, S.M.; Antia, R.; von Andrian, U.H.; Ahmed, R. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 2003, 4, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Mahnke, Y.D.; Brodie, T.M.; Sallusto, F.; Roederer, M.; Lugli, E. The who’s who of T-cell differentiation: Human memory T-cell subsets. Eur. J. Immunol. 2013, 43, 2797–2809. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.H.; Schrama, D.; Thor Straten, P.; Becker, J.C. Cytotoxic T cells. J. Investig. Dermatol. 2006, 126, 32–41. [Google Scholar] [CrossRef] [PubMed]
- St. Paul, M.; Ohashi, P.S. The Roles of CD8+ T Cell Subsets in Antitumor Immunity. Trends Cell Biol. 2020, 30, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Kaech, S.M.; Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 2012, 12, 749–761. [Google Scholar] [CrossRef]
- Kemp, R.A.; Bäckström, B.T.; Ronchese, F. The phenotype of type 1 and type 2 CD8+ T cells activated in vitro is affected by culture conditions and correlates with effector activity. Immunology 2005, 115, 315–324. [Google Scholar] [CrossRef]
- Tang, Y.; Guan, S.P.; Chua, B.Y.; Zhou, Q.; Ho, A.W.; Wong, K.H.; Wong, K.L.; Wong, W.S.; Kemeny, D.M. Antigen-specific effector CD8 T cells regulate allergic responses via IFN-γ and dendritic cell function. J. Allergy Clin. Immunol. 2012, 129, 1611–1620.e1614. [Google Scholar] [CrossRef]
- Omori, M.; Yamashita, M.; Inami, M.; Ukai-Tadenuma, M.; Kimura, M.; Nigo, Y.; Hosokawa, H.; Hasegawa, A.; Taniguchi, M.; Nakayama, T. CD8 T cell-specific downregulation of histone hyperacetylation and gene activation of the IL-4 gene locus by ROG, repressor of GATA. Immunity 2003, 19, 281–294. [Google Scholar] [CrossRef] [Green Version]
- Visekruna, A.; Ritter, J.; Scholz, T.; Campos, L.; Guralnik, A.; Poncette, L.; Raifer, H.; Hagner, S.; Garn, H.; Staudt, V.; et al. Tc9 cells, a new subset of CD8(+) T cells, support Th2-mediated airway inflammation. Eur. J. Immunol. 2013, 43, 606–618. [Google Scholar] [CrossRef]
- Lu, Y.; Hong, B.; Li, H.; Zheng, Y.; Zhang, M.; Wang, S.; Qian, J.; Yi, Q. Tumor-specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proc. Natl. Acad. Sci. USA 2014, 111, 2265–2270. [Google Scholar] [CrossRef]
- Hamada, H.; Garcia-Hernandez Mde, L.; Reome, J.B.; Misra, S.K.; Strutt, T.M.; McKinstry, K.K.; Cooper, A.M.; Swain, S.L.; Dutton, R.W. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J. Immunol. 2009, 182, 3469–3481. [Google Scholar] [CrossRef]
- Huber, M.; Heink, S.; Grothe, H.; Guralnik, A.; Reinhard, K.; Elflein, K.; Hünig, T.; Mittrücker, H.-W.; Brüstle, A.; Kamradt, T.; et al. A Th17-like developmental process leads to CD8+ Tc17 cells with reduced cytotoxic activity. Eur. J. Immunol. 2009, 39, 1716–1725. [Google Scholar] [CrossRef]
- Nanjappa, S.G.; Heninger, E.; Wüthrich, M.; Gasper, D.J.; Klein, B.S. Tc17 cells mediate vaccine immunity against lethal fungal pneumonia in immune deficient hosts lacking CD4+ T cells. PLoS Pathog. 2012, 8, e1002771. [Google Scholar] [CrossRef]
- Niederlova, V.; Tsyklauri, O.; Chadimova, T.; Stepanek, O. CD8+ Tregs revisited: A heterogeneous population with different phenotypes and properties. Eur. J. Immunol. 2021, 51, 512–530. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, X.; Gong, R.; Zhu, J.; Wei, L.; Yao, J. Recent advances in CD8(+) regulatory T cell research. Oncol. Lett. 2018, 15, 8187–8194. [Google Scholar] [CrossRef]
- Robb, R.J.; Lineburg, K.E.; Kuns, R.D.; Wilson, Y.A.; Raffelt, N.C.; Olver, S.D.; Varelias, A.; Alexander, K.A.; Teal, B.E.; Sparwasser, T.; et al. Identification and expansion of highly suppressive CD8(+)FoxP3(+) regulatory T cells after experimental allogeneic bone marrow transplantation. Blood 2012, 119, 5898–5908. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, Q.; Lu, L.; Chen, M.; Xia, Z.; Ma, J.; Wang, J.; Fan, H.; Shen, Y.; Ryffel, B.; et al. Phenotypic and functional characteristic of a newly identified CD8+ Foxp3- CD103+ regulatory T cells. J. Mol. Cell. Biol. 2014, 6, 81–92. [Google Scholar] [CrossRef]
- Qureshi, O.S.; Zheng, Y.; Nakamura, K.; Attridge, K.; Manzotti, C.; Schmidt, E.M.; Baker, J.; Jeffery, L.E.; Kaur, S.; Briggs, Z.; et al. Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell-Extrinsic Function of CTLA-4. Science 2011, 332, 600–603. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Ciubotariu, R.; Manavalan, J.S.; Yuan, J.; Colovai, A.I.; Piazza, F.; Lederman, S.; Colonna, M.; Cortesini, R.; Dalla-Favera, R.; et al. Tolerization of dendritic cells by TS cells: The crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol. 2002, 3, 237–243. [Google Scholar] [CrossRef]
- Kim, H.J.; Verbinnen, B.; Tang, X.; Lu, L.; Cantor, H. Inhibition of follicular T-helper cells by CD8(+) regulatory T cells is essential for self tolerance. Nature 2010, 467, 328–332. [Google Scholar] [CrossRef]
- Mueller, S.N.; Gebhardt, T.; Carbone, F.R.; Heath, W.R. Memory T Cell Subsets, Migration Patterns, and Tissue Residence. Annu. Rev. Immunol. 2013, 31, 137–161. [Google Scholar] [CrossRef]
- Gebhardt, T.; Wakim, L.M.; Eidsmo, L.; Reading, P.C.; Heath, W.R.; Carbone, F.R. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 2009, 10, 524–530. [Google Scholar] [CrossRef]
- Wakim, L.M.; Woodward-Davis, A.; Bevan, M.J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl. Acad. Sci. USA 2010, 107, 17872–17879. [Google Scholar] [CrossRef]
- Tsokos, G.C. Systemic lupus erythematosus. N. Engl. J. Med. 2011, 365, 2110–2121. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.B.; Uribe, A.G.; Fernández, M.; Vilá, L.M.; McGwin, G.; Apte, M.; Fessler, B.J.; Bastian, H.M.; Reveille, J.D.; Alarcón, G.S. Adolescent onset of lupus results in more aggressive disease and worse outcomes: Results of a nested matched case-control study within LUMINA, a multiethnic US cohort (LUMINA LVII). Lupus 2008, 17, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Livingston, B.; Bonner, A.; Pope, J. Differences in autoantibody profiles and disease activity and damage scores between childhood- and adult-onset systemic lupus erythematosus: A meta-analysis. Semin. Arthritis Rheum. 2012, 42, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Comte, D.; Karampetsou, M.P.; Yoshida, N.; Kis-Toth, K.; Kyttaris, V.C.; Tsokos, G.C. Signaling Lymphocytic Activation Molecule Family Member 7 Engagement Restores Defective Effector CD8+ T Cell Function in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2017, 69, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.; Pitard, V.; Viallard, J.-F.; Taupin, J.-L.; Pellegrin, J.-L.; Moreau, J.-F. Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2005, 52, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-M.; Tsokos, G.C. The role of CD8+ T-cell systemic lupus erythematosus pathogenesis: An update. Curr. Opin. Rheumatol. 2021, 33, 586–591. [Google Scholar] [CrossRef]
- Brito-Zeron, P.; Baldini, C.; Bootsma, H.; Bowman, S.J.; Jonsson, R.; Mariette, X.; Sivils, K.; Theander, E.; Tzioufas, A.; Ramos-Casals, M. Sjogren syndrome. Nat. Rev. Dis. Primers 2016, 2, 16047. [Google Scholar] [CrossRef]
- Kassan, S.S.; Moutsopoulos, H.M. Clinical manifestations and early diagnosis of Sjogren syndrome. Arch. Intern. Med. 2004, 164, 1275–1284. [Google Scholar] [CrossRef]
- Doolan, G.; Faizal, N.M.; Foley, C.; Al-Obaidi, M.; Jury, E.C.; Price, E.; Ramanan, A.V.; Lieberman, S.M.; Ciurtin, C. Treatment strategies for Sjogren’s syndrome with childhood onset: A systematic review of the literature. Rheumatology 2022, 61, 892–912. [Google Scholar] [CrossRef]
- Virdee, S.; Greenan-Barrett, J.; Ciurtin, C. A systematic review of primary Sjogren’s syndrome in male and paediatric populations. Clin. Rheumatol. 2017, 36, 2225–2236. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, J.; Tian, J.; Wang, S. CD8+ T Lymphocytes: Crucial Players in Sjögren’s Syndrome. Front. Immunol. 2021, 11, 602823. [Google Scholar] [CrossRef]
- Allanore, Y.; Simms, R.; Distler, O.; Trojanowska, M.; Pope, J.; Denton, C.P.; Varga, J. Systemic sclerosis. Nat. Rev. Dis. Primers 2015, 1, 15002. [Google Scholar] [CrossRef]
- Vasquez-Canizares, N.; Li, S.C. Juvenile Localized Scleroderma: Updates and Differences from Adult-Onset Disease. Rheum. Dis. Clin. N. Am. 2021, 47, 737–755. [Google Scholar] [CrossRef]
- Martini, G.; Foeldvari, I.; Russo, R.; Cuttica, R.; Eberhard, A.; Ravelli, A.; Lehman, T.J.; de Oliveira, S.K.; Susic, G.; Lyskina, G.; et al. Systemic sclerosis in childhood: Clinical and immunologic features of 153 patients in an international database. Arthritis Rheum. 2006, 54, 3971–3978. [Google Scholar] [CrossRef]
- Fuschiotti, P. Current perspectives on the role of CD8+ T cells in systemic sclerosis. Immunol. Lett. 2018, 195, 55–60. [Google Scholar] [CrossRef]
- Dalakas, M.C.; Hohlfeld, R. Polymyositis and dermatomyositis. Lancet 2003, 362, 971–982. [Google Scholar] [CrossRef]
- Shah, M.; Mamyrova, G.; Targoff, I.N.; Huber, A.M.; Malley, J.D.; Rice, M.M.; Miller, F.W.; Rider, L.G.; with the Childhood Myositis Heterogeneity Collaborative Study, G. The clinical phenotypes of the juvenile idiopathic inflammatory myopathies. Medicine 2013, 92, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Collier, J.L.; Weiss, S.A.; Pauken, K.E.; Sen, D.R.; Sharpe, A.H. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nat. Immunol. 2021, 22, 809–819. [Google Scholar] [CrossRef]
- Liblau, R.S.; Wong, F.S.; Mars, L.T.; Santamaria, P. Autoreactive CD8 T Cells in Organ-Specific Autoimmunity: Emerging Targets for Therapeutic Intervention. Immunity 2002, 17, 1–6. [Google Scholar] [CrossRef]
- Deng, Q.; Luo, Y.; Chang, C.; Wu, H.; Ding, Y.; Xiao, R. The Emerging Epigenetic Role of CD8+T Cells in Autoimmune Diseases: A Systematic Review. Front. Immunol. 2019, 10, 856. [Google Scholar] [CrossRef]
- Dinesh, R.K.; Skaggs, B.J.; La Cava, A.; Hahn, B.H.; Singh, R.P. CD8+ Tregs in lupus, autoimmunity, and beyond. Autoimmun. Rev. 2010, 9, 560–568. [Google Scholar] [CrossRef]
- Ceeraz, S.; Thompson, C.R.; Beatson, R.; Choy, E.H. Harnessing CD8+CD28− Regulatory T Cells as a Tool to Treat Autoimmune Disease. Cells 2021, 10, 2973. [Google Scholar] [CrossRef]
- Rocamora-Reverte, L.; Melzer, F.L.; Würzner, R.; Weinberger, B. The Complex Role of Regulatory T Cells in Immunity and Aging. Front. Immunol. 2021, 11, 616949. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.; Treviño-Tello, F.; Atisha-Fregoso, Y.; Llorente, L.; Fragoso-Loyo, H.; Jakez-Ocampo, J. Exhausted T cells in systemic lupus erythematosus patients in long-standing remission. Clin. Exp. Immunol. 2021, 204, 285–295. [Google Scholar] [CrossRef]
- Tulunay, A.; Yavuz, S.; Direskeneli, H.; Eksioglu-Demiralp, E. CD8+CD28-, suppressive T cells in systemic lupus erythematosus. Lupus 2008, 17, 630–637. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Ji, X.; Yang, X.; Sun, K.; Liu, X.; Shen, Y. The abnormal apoptosis of T cell subsets and possible involvement of IL-10 in systemic lupus erythematosus. Cell. Immunol. 2005, 235, 117–121. [Google Scholar] [CrossRef]
- Wouters, C.H.P.; Diegenant, C.; Ceuppens, J.L.; Degreef, H.; Stevens, E.A.M. The circulating lymphocyte profiles in patients with discoid lupus erythematosus and systemic lupus erythematosus suggest a pathogenetic relationship. Br. J. Dermatol. 2004, 150, 693–700. [Google Scholar] [CrossRef]
- Lu, Z.; Li, J.; Ji, J.; Gu, Z.; Da, Z. Altered peripheral lymphocyte subsets in untreated systemic lupus erythematosus patients with infections. Braz. J. Med. Biol. Res. 2019, 52, e8131. [Google Scholar] [CrossRef]
- Mortezagholi, S.; Babaloo, Z.; Rahimzadeh, P.; Ghaedi, M.; Namdari, H.; Assar, S.; Azimi Mohamadabadi, M.; Salehi, E. Evaluation of PBMC Distribution and TLR9 Expression in Patients with Systemic Lupus Erythematosus. Iran. J. Allergy Asthma Immunol. 2016, 15, 229–236. [Google Scholar]
- Suárez-Fueyo, A.; Barber, D.F.; Martínez-Ara, J.; Zea-Mendoza, A.C.; Carrera, A.C. Enhanced Phosphoinositide 3-Kinase δ Activity Is a Frequent Event in Systemic Lupus Erythematosus That Confers Resistance to Activation-Induced T Cell Death. J. Immunol. 2011, 187, 2376–2385. [Google Scholar] [CrossRef]
- Pavón, E.J.; Muñoz, P.; Navarro, M.-d.-C.; Raya-Alvarez, E.; Callejas-Rubio, J.-L.; Navarro-Pelayo, F.; Ortego-Centeno, N.; Sancho, J.; Zubiaur, M. Increased association of CD38 with lipid rafts in T cells from patients with systemic lupus erythematosus and in activated normal T cells. Mol. Immunol. 2006, 43, 1029–1039. [Google Scholar] [CrossRef]
- Hu, S.; Tao, D.; He, P. Immunophenotyping of lymphocyte T and B in the peripheral blood of systemic lupus erythematosus. J. Tongji Med. Univ. 2001, 21, 108–109. [Google Scholar] [CrossRef]
- Shah, D.; Aggarwal, A.; Bhatnagar, A.; Kiran, R.; Wanchu, A. Association between T lymphocyte sub-sets apoptosis and peripheral blood mononuclear cells oxidative stress in systemic lupus erythematosus. Free Radic. Res. 2011, 45, 559–567. [Google Scholar] [CrossRef]
- Gao, H.; Ma, J.; Wang, X.; Lv, T.; Liu, J.; Ren, Y.; Li, Y.; Zhang, Y. Preliminary study on the changes of ovarian reserve, menstruation, and lymphocyte subpopulation in systemic lupus erythematosus (SLE) patients of childbearing age. Lupus 2018, 27, 445–453. [Google Scholar] [CrossRef]
- Böhm, I. Quantification of absolute peripheral white blood cells and their subsets in patients with lupus erythematosus: Comparison with other inflammatory diseases with and without autoimmune background. Biomed. Pharmacother. 2006, 60, 92–95. [Google Scholar] [CrossRef]
- Lai, Z.-W.; Kelly, R.; Winans, T.; Marchena, I.; Shadakshari, A.; Yu, J.; Dawood, M.; Garcia, R.; Tily, H.; Francis, L.; et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: A single-arm, open-label, phase 1/2 trial. Lancet 2018, 391, 1186–1196. [Google Scholar] [CrossRef]
- Dolff, S.; Abdulahad, W.H.; van Dijk, M.C.R.F.; Limburg, P.C.; Kallenberg, C.G.M.; Bijl, M. Urinary T cells in active lupus nephritis show an effector memory phenotype. Ann. Rheum. Dis. 2010, 69, 2034–2041. [Google Scholar] [CrossRef]
- Manjarrez-Orduño, N.; Menard, L.C.; Carman, J.A.; Suchard, S.J.; Casano, F.; Lee, D.; Daouti, S.; Habte, S.; Kansal, S.; Jiang, C.; et al. A Systemic Lupus Erythematosus Endophenotype Characterized by Increased CD8 Cytotoxic Signature Associates with Renal Involvement. ImmunoHorizons 2017, 1, 124–132. [Google Scholar] [CrossRef]
- McKinney, E.F.; Lyons, P.A.; Carr, E.J.; Hollis, J.L.; Jayne, D.R.W.; Willcocks, L.C.; Koukoulaki, M.; Brazma, A.; Jovanovic, V.; Kemeny, D.M.; et al. A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat. Med. 2010, 16, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Kubo, S.; Nakayamada, S.; Yoshikawa, M.; Miyazaki, Y.; Sakata, K.; Nakano, K.; Hanami, K.; Iwata, S.; Miyagawa, I.; Saito, K.; et al. Peripheral Immunophenotyping Identifies Three Subgroups Based on T Cell Heterogeneity in Lupus Patients. Arthritis Rheumatol. 2017, 69, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Li, W.; Tang, Y.; Da, Z.; Li, X. Lymphocyte subset clustering analysis in treatment-naive patients with systemic lupus erythematosus. Clin. Rheumatol. 2021, 40, 1835–1842. [Google Scholar] [CrossRef]
- Viallard, J.F.; Bloch-Michel, C.; Neau-Cransac, M.; Taupin, J.L.; Garrigue, S.; Miossec, V.; Mercie, P.; Pellegrin, J.L.; Moreau, J.F. HLA-DR expression on lymphocyte subsets as a marker of disease activity in patients with systemic lupus erythematosus. Clin. Exp. Immunol. 2001, 125, 485–491. [Google Scholar] [CrossRef]
- Żabińska, M.; Krajewska, M.; Kościelska-Kasprzak, K.; Klinger, M. CD3(+)CD8(+)CD28(-) T Lymphocytes in Patients with Lupus Nephritis. J. Immunol. Res. 2016, 2016, 1058165. [Google Scholar] [CrossRef]
- Minning, S.; Xiaofan, Y.; Anqi, X.; Bingjie, G.; Dinglei, S.; Mingshun, Z.; Juan, X.; Xiaohui, J.; Huijuan, W. Imbalance between CD8+CD28+ and CD8+CD28− T-cell subsets and its clinical significance in patients with systemic lupus erythematosus. Lupus 2019, 28, 1214–1223. [Google Scholar] [CrossRef]
- Shah, D.; Kiran, R.; Wanchu, A.; Bhatnagar, A. Soluble granzyme B and cytotoxic T lymphocyte activity in the pathogenesis of systemic lupus erythematosus. Cell. Immunol. 2011, 269, 16–21. [Google Scholar] [CrossRef]
- Kim, J.-S.; Cho, B.-A.; Sim, J.H.; Shah, K.; Woo, C.M.; Lee, E.B.; Lee, D.-S.; Kang, J.S.; Lee, W.J.; Park, C.-G.; et al. IL-7Rαlow memory CD8+ T cells are significantly elevated in patients with systemic lupus erythematosus. Rheumatology 2012, 51, 1587–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiechmann, A.; Wilde, B.; Tyczynski, B.; Amann, K.; Abdulahad, W.H.; Kribben, A.; Lang, K.S.; Witzke, O.; Dolff, S. CD107a+ (LAMP-1) Cytotoxic CD8+ T-Cells in Lupus Nephritis Patients. Front. Med. 2021, 8, 556776. [Google Scholar] [CrossRef] [PubMed]
- Martin-Gutierrez, L.; Peng, J.; Thompson, N.L.; Robinson, G.A.; Naja, M.; Peckham, H.; Wu, W.; J’bari, H.; Ahwireng, N.; Waddington, K.E.; et al. Stratification of Patients With Sjögren’s Syndrome and Patients With Systemic Lupus Erythematosus According to Two Shared Immune Cell Signatures, With Potential Therapeutic Implications. Arthritis Rheumatol. 2021, 73, 1626–1637. [Google Scholar] [CrossRef] [PubMed]
- Narkeviciute, I.; Sudzius, G.; Mieliauskaite, D.; Mackiewicz, Z.; Butrimiene, I.; Viliene, R.; Dumalakiene, I. Are cytotoxic effector cells changes in peripheral blood of patients with Sjogren’s syndrome related to persistent virus infection: Suggestions and conundrums. Cell Immunol. 2016, 310, 123–130. [Google Scholar] [CrossRef]
- Sudzius, G.; Mieliauskaite, D.; Siaurys, A.; Viliene, R.; Butrimiene, I.; Characiejus, D.; Dumalakiene, I. Distribution of Peripheral Lymphocyte Populations in Primary Sjögren’s Syndrome Patients. J. Immunol. Res. 2015, 2015, 854706. [Google Scholar] [CrossRef]
- Mingueneau, M.; Boudaoud, S.; Haskett, S.; Reynolds, T.L.; Nocturne, G.; Norton, E.; Zhang, X.; Constant, M.; Park, D.; Wang, W.; et al. Cytometry by time-of-flight immunophenotyping identifies a blood Sjogren’s signature correlating with disease activity and glandular inflammation. J. Allergy Clin. Immunol. 2016, 137, 1809–1821.e1812. [Google Scholar] [CrossRef]
- Fauchais, A.L.; Boumediene, A.; Lalloue, F.; Gondran, G.; Loustaud-Ratti, V.; Vidal, E.; Jauberteau, M.O. Brain-derived neurotrophic factor and nerve growth factor correlate with T-cell activation in primary Sjogren’s syndrome. Scand. J. Rheumatol. 2009, 38, 50–57. [Google Scholar] [CrossRef]
- Tasaki, S.; Suzuki, K.; Nishikawa, A.; Kassai, Y.; Takiguchi, M.; Kurisu, R.; Okuzono, Y.; Miyazaki, T.; Takeshita, M.; Yoshimoto, K.; et al. Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren’s syndrome. Ann. Rheum. Dis. 2017, 76, 1458–1466. [Google Scholar] [CrossRef]
- Smolenska, Z.; Pawlowska, J.; Zdrojewski, Z.; Daca, A.; Bryl, E. Increased percentage of CD8+CD28- T cells correlates with clinical activity in primary Sjogren’s syndrome. Cell Immunol. 2012, 278, 143–151. [Google Scholar] [CrossRef]
- Wu, C.; Yang, P.; Liu, H.; Xiao, W.; Zhao, L. Increased frequency of CCR7(+)CD4(+) T cells from patients with primary Sjogren’s syndrome: An indicator of disease activity rather than of damage severity. Cytokine 2018, 110, 9–17. [Google Scholar] [CrossRef]
- Tsuji-Yamada, J.; Nakazawa, M.; Minami, M.; Sasaki, T. Increased frequency of interleukin 4 producing CD4+ and CD8+ cells in peripheral blood from patients with systemic sclerosis. J. Rheumatol. 2001, 28, 1252–1258. [Google Scholar]
- Tiev, K.P.; Abriol, J.; Burland, M.C.; Antonelli, D.; Klatzmann, D.; Cabane, J.; Boyer, O. T cell repertoire in patients with stable scleroderma. Clin. Exp. Immunol. 2005, 139, 348–354. [Google Scholar] [CrossRef]
- Hussein, M.R.; Hassan, H.I.; Hofny, E.R.; Elkholy, M.; Fatehy, N.A.; Abd Elmoniem, A.E.; Ezz El-Din, A.M.; Afifi, O.A.; Rashed, H.G. Alterations of mononuclear inflammatory cells, CD4/CD8+ T cells, interleukin 1beta, and tumour necrosis factor alpha in the bronchoalveolar lavage fluid, peripheral blood, and skin of patients with systemic sclerosis. J. Clin. Pathol. 2005, 58, 178–184. [Google Scholar] [CrossRef]
- Gambichler, T.; Tigges, C.; Burkert, B.; Höxtermann, S.; Altmeyer, P.; Kreuter, A. Absolute count of T and B lymphocyte subsets is decreased in systemic sclerosis. Eur. J. Med. Res. 2010, 15, 44. [Google Scholar] [CrossRef]
- Fuschiotti, P.; Medsger, T.A., Jr.; Morel, P.A. Effector CD8+ T cells in systemic sclerosis patients produce abnormally high levels of interleukin-13 associated with increased skin fibrosis. Arthritis Rheum. 2009, 60, 1119–1128. [Google Scholar] [CrossRef]
- Li, G.; Larregina, A.T.; Domsic, R.T.; Stolz, D.B.; Medsger, T.A., Jr.; Lafyatis, R.; Fuschiotti, P. Skin-Resident Effector Memory CD8(+)CD28(−) T Cells Exhibit a Profibrotic Phenotype in Patients with Systemic Sclerosis. J. Investig. Dermatol. 2017, 137, 1042–1050. [Google Scholar] [CrossRef]
- Wang, D.X.; Lu, X.; Zu, N.; Lin, B.; Wang, L.Y.; Shu, X.M.; Ma, L.; Wang, G.C. Clinical significance of peripheral blood lymphocyte subsets in patients with polymyositis and dermatomyositis. Clin. Rheumatol. 2012, 31, 1691–1697. [Google Scholar] [CrossRef]
- Fasth, A.E.; Dastmalchi, M.; Rahbar, A.; Salomonsson, S.; Pandya, J.M.; Lindroos, E.; Nennesmo, I.; Malmberg, K.J.; Soderberg-Naucler, C.; Trollmo, C.; et al. T cell infiltrates in the muscles of patients with dermatomyositis and polymyositis are dominated by CD28null T cells. J. Immunol. 2009, 183, 4792–4799. [Google Scholar] [CrossRef]
- Aleksza, M.; Szegedi, A.; Antal-Szalmas, P.; Irinyi, B.; Gergely, L.; Ponyi, A.; Hunyadi, J.; Sipka, S.; Zeher, M.; Szegedi, G.; et al. Altered cytokine expression of peripheral blood lymphocytes in polymyositis and dermatomyositis. Ann. Rheum. Dis. 2005, 64, 1485–1489. [Google Scholar] [CrossRef]
- Wilkinson, M.G.L.; Radziszewska, A.; Wincup, C.; Ioannou, Y.; Isenberg, D.A.; Manson, J.J.; Jury, E.C. Using peripheral blood immune signatures to stratify patients with adult and juvenile inflammatory myopathies. Rheumatology 2020, 59, 194–204. [Google Scholar] [CrossRef]
- Benveniste, O.; Cherin, P.; Maisonobe, T.; Merat, R.; Chosidow, O.; Mouthon, L.; Guillevin, L.; Flahault, A.; Burland, M.C.; Klatzmann, D.; et al. Severe perturbations of the blood T cell repertoire in polymyositis, but not dermatomyositis patients. J. Immunol. 2001, 167, 3521–3529. [Google Scholar] [CrossRef] [PubMed]
- Lerkvaleekul, B.; Apiwattanakul, N.; Tangnararatchakit, K.; Jirapattananon, N.; Srisala, S.; Vilaiyuk, S. Associations of lymphocyte subpopulations with clinical phenotypes and long-term outcomes in juvenile-onset systemic lupus erythematosus. PLoS ONE 2022, 17, e0263536. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.A.; Peng, J.; Dönnes, P.; Coelewij, L.; Naja, M.; Radziszewska, A.; Wincup, C.; Peckham, H.; Isenberg, D.A.; Ioannou, Y.; et al. Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: Patient stratification using a machine-learning approach. Lancet Rheumatol. 2020, 2, e485–e496. [Google Scholar] [CrossRef]
- Zahran, A.M.; Elsayh, K.I.; Saad, K.; Eloseily, E.M.A.; Osman, N.S.; Alblihed, M.A.; Badr, G.; Mahmoud, M.H. Effects of royal jelly supplementation on regulatory T cells in children with SLE. Food Nutr. Res. 2016, 60, 32963. [Google Scholar] [CrossRef]
- Miyamoto, M.; Ono, E.; Barbosa, C.; Terreri, M.; Hilário, M.; Salomão, R.; Moraes-Pinto, M.d. Vaccine antibodies and T- and B-cell interaction in juvenile systemic lupus erythematosus. Lupus 2011, 20, 736–744. [Google Scholar] [CrossRef]
- Nehar-Belaid, D.; Hong, S.; Marches, R.; Chen, G.; Bolisetty, M.; Baisch, J.; Walters, L.; Punaro, M.; Rossi, R.J.; Chung, C.-H.; et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 2020, 21, 1094–1106. [Google Scholar] [CrossRef]
- O’Gorman, M.R.; Bianchi, L.; Zaas, D.; Corrochano, V.; Pachman, L.M. Decreased levels of CD54 (ICAM-1)-positive lymphocytes in the peripheral blood in untreated patients with active juvenile dermatomyositis. Clin. Diagn. Lab. Immunol. 2000, 7, 693–697. [Google Scholar] [CrossRef]
- McDouall, R.M.; Dunn, M.J.; Dubowitz, V. Nature of the mononuclear infiltrate and the mechanism of muscle damage in juvenile dermatomyositis and Duchenne muscular dystrophy. J. Neurol. Sci. 1990, 99, 199–217. [Google Scholar] [CrossRef]
- Hou, H.; Zhou, Y.; Yu, J.; Mao, L.; Bosco, M.J.; Wang, J.; Lu, Y.; Mao, L.; Wu, X.; Wang, F.; et al. Establishment of the Reference Intervals of Lymphocyte Function in Healthy Adults Based on IFN-γ Secretion Assay upon Phorbol-12-Myristate-13-Acetate/Ionomycin Stimulation. Front. Immunol. 2018, 9, 172. [Google Scholar] [CrossRef]
- Harigai, M.; Kawamoto, M.; Hara, M.; Kubota, T.; Kamatani, N.; Miyasaka, N. Excessive production of IFN-gamma in patients with systemic lupus erythematosus and its contribution to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-13B. J. Immunol. 2008, 181, 2211–2219. [Google Scholar] [CrossRef]
- Ayano, M.; Tsukamoto, H.; Kohno, K.; Ueda, N.; Tanaka, A.; Mitoma, H.; Akahoshi, M.; Arinobu, Y.; Niiro, H.; Horiuchi, T.; et al. Increased CD226 Expression on CD8+ T Cells Is Associated with Upregulated Cytokine Production and Endothelial Cell Injury in Patients with Systemic Sclerosis. J. Immunol. 2015, 195, 892–900. [Google Scholar] [CrossRef]
- Katsuyama, E.; Suarez-Fueyo, A.; Bradley, S.J.; Mizui, M.; Marin, A.V.; Mulki, L.; Krishfield, S.; Malavasi, F.; Yoon, J.; Sui, S.J.H.; et al. The CD38/NAD/SIRTUIN1/EZH2 Axis Mitigates Cytotoxic CD8 T Cell Function and Identifies Patients with SLE Prone to Infections. Cell Rep. 2020, 30, 112–123.e114. [Google Scholar] [CrossRef] [Green Version]
- Kis-Toth, K.; Comte, D.; Karampetsou, M.P.; Kyttaris, V.C.; Kannan, L.; Terhorst, C.; Tsokos, G.C. Selective Loss of Signaling Lymphocytic Activation Molecule Family Member 4-Positive CD8+ T Cells Contributes to the Decreased Cytotoxic Cell Activity in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2016, 68, 164–173. [Google Scholar] [CrossRef]
- Amel-Kashipaz, M.R.; Huggins, M.L.; Lanyon, P.; Robins, A.; Todd, I.; Powell, R.J. Quantitative and Qualitative Analysis of the Balance Between Type 1 and Type 2 Cytokine-producing CD8−and CD8+T Cells in Systemic Lupus Erythematosus. J. Autoimmun. 2001, 17, 155–163. [Google Scholar] [CrossRef]
- Chen, S.; Hu, D.; Shi, X.; Shen, N.; Gu, Y.; Bao, C. The relationship between Th1/Th2-type cells and disease activity in patients with systemic lupus erythematosus. Chin. Med. J. 2000, 113, 877–880. [Google Scholar]
- Stohl, W. Impaired polyclonal T cell cytolytic activity. A possible risk factor for systemic lupus erythematosus. Arthritis Rheum. 1995, 38, 506–516. [Google Scholar] [CrossRef]
- Stohl, W.; Elliott, J.E.; Li, L.; Podack, E.R.; Lynch, D.H.; Jacob, C.O. Impaired nonrestricted cytolytic activity in systemic lupus erythematosus: Involvement of a pathway independent of Fas, tumor necrosis factor, and extracellular ATP that is associated with little detectable perforin. Arthritis Rheum. 1997, 40, 1130–1137. [Google Scholar] [CrossRef]
- Stohl, W.; Hamilton, A.S.; Deapen, D.M.; Mack, T.M.; Horwitz, D.A. Impaired cytotoxic T lymphocyte activity in systemic lupus erythematosus following in vitro polyclonal T cell stimulation: A contributory role for non-T cells. Lupus 1999, 8, 293–299. [Google Scholar] [CrossRef]
- Larsen, M.; Sauce, D.; Deback, C.; Arnaud, L.; Mathian, A.; Miyara, M.; Boutolleau, D.; Parizot, C.; Dorgham, K.; Papagno, L.; et al. Exhausted cytotoxic control of Epstein-Barr virus in human lupus. PLoS Pathog. 2011, 7, e1002328. [Google Scholar] [CrossRef]
- Berner, B.R.; Tary-Lehmann, M.; Yonkers, N.L.; Askari, A.D.; Lehmann, P.V.; Anthony, D.D. Phenotypic and functional analysis of EBV-specific memory CD8 cells in SLE. Cell. Immunol. 2005, 235, 29–38. [Google Scholar] [CrossRef]
- Kang, I.; Quan, T.; Nolasco, H.; Park, S.-H.; Hong, M.S.; Crouch, J.; Pamer, E.G.; Howe, J.G.; Craft, J. Defective Control of Latent Epstein-Barr Virus Infection in Systemic Lupus Erythematosus. J. Immunol. 2004, 172, 1287–1294. [Google Scholar] [CrossRef]
- Smith, M.A.; Chiang, C.-C.; Zerrouki, K.; Rahman, S.; White, W.I.; Streicher, K.; Rees, W.A.; Schiffenbauer, A.; Rider, L.G.; Miller, F.W.; et al. Using the circulating proteome to assess type I interferon activity in systemic lupus erythematosus. Sci. Rep. 2020, 10, 4462. [Google Scholar] [CrossRef] [PubMed]
- McKinney, E.F.; Lee, J.C.; Jayne, D.R.W.; Lyons, P.A.; Smith, K.G.C. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 2015, 523, 612–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buang, N.; Tapeng, L.; Gray, V.; Sardini, A.; Whilding, C.; Lightstone, L.; Cairns, T.D.; Pickering, M.C.; Behmoaras, J.; Ling, G.S.; et al. Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus. Nat. Commun. 2021, 12, 1980. [Google Scholar] [CrossRef]
- Habib, H.M.; Taher, T.E.; Isenberg, D.A.; Mageed, R.A. Enhanced propensity of T lymphocytes in patients with systemic lupus erythematosus to apoptosis in the presence of tumour necrosis factor alpha. Scand. J. Rheumatol. 2009, 38, 112–120. [Google Scholar] [CrossRef]
- Liphaus, B.L.; Kiss, M.H.; Carrasco, S.; Goldenstein-Schainberg, C. Increased Fas and Bcl-2 expression on peripheral blood T and B lymphocytes from juvenile-onset systemic lupus erythematosus, but not from juvenile rheumatoid arthritis and juvenile dermatomyositis. Clin. Dev. Immunol. 2006, 13, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, M.; Kis-Toth, K.; Thai, T.-H.; Terhorst, C.; Tsokos, G.C. SLAMF6-driven co-stimulation of human peripheral T cells is defective in SLE T cells. Autoimmunity 2011, 44, 211–218. [Google Scholar] [CrossRef]
- Crispin, J.C.; Martínez, A.; de Pablo, P.; Velasquillo, C.; Alcocer-Varela, J. Participation of the CD69 antigen in the T-cell activation process of patients with systemic lupus erythematosus. Scand. J. Immunol. 1998, 48, 196–200. [Google Scholar] [CrossRef]
- Desai-Mehta, A.; Lu, L.; Ramsey-Goldman, R.; Datta, S.K. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J. Clin. Investig. 1996, 97, 2063–2073. [Google Scholar] [CrossRef]
- Abe, K.; Takasaki, Y.; Ushiyama, C.; Asakawa, J.; Fukazawa, T.; Seki, M.; Hirashima, M.; Ogaki, M.; Hashimoto, H. Expression of CD80 and CD86 on Peripheral Blood T Lymphocytes in Patients with Systemic Lupus Erythematosus. J. Clin. Immunol. 1999, 19, 58–66. [Google Scholar] [CrossRef]
- Kessel, A.; Rosner, I.; Rozenbaum, M.; Zisman, D.; Sagiv, A.; Shmuel, Z.; Sabo, E.; Toubi, E. Increased CD8+ T cell apoptosis in scleroderma is associated with low levels of NF-kappa B. J. Clin. Immunol. 2004, 24, 30–36. [Google Scholar] [CrossRef]
- Cascio, S.; Medsger, T.A., Jr.; Hawse, W.F.; Watkins, S.C.; Milcarek, C.; Moreland, L.W.; Lafyatis, R.A.; Fuschiotti, P. 14-3-3z sequesters cytosolic T-bet, upregulating IL-13 levels in TC2 and CD8(+) lymphocytes from patients with scleroderma. J. Allergy Clin. Immunol. 2018, 142, 109–119.e106. [Google Scholar] [CrossRef]
- Medsger, T.A., Jr.; Ivanco, D.E.; Kardava, L.; Morel, P.A.; Lucas, M.R.; Fuschiotti, P. GATA-3 up-regulation in CD8+ T cells as a biomarker of immune dysfunction in systemic sclerosis, resulting in excessive interleukin-13 production. Arthritis Rheum. 2011, 63, 1738–1747. [Google Scholar] [CrossRef]
- Sen, Y.; Chunsong, H.; Baojun, H.; Linjie, Z.; Qun, L.; San, J.; Qiuping, Z.; Junyan, L.; Zhang, X.; Jinquan, T. Aberration of CCR7 CD8 memory T cells from patients with systemic lupus erythematosus: An inducer of T helper type 2 bias of CD4 T cells. Immunology 2004, 112, 274–289. [Google Scholar] [CrossRef]
- Atamas, S.P.; Yurovsky, V.V.; Wise, R.; Wigley, F.M.; Goter Robinson, C.J.; Henry, P.; Alms, W.J.; White, B. Production of type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. Arthritis Rheumatol. 1999, 42, 1168–1178. [Google Scholar] [CrossRef]
- Klein, M.; Schmalzing, M.; Almanzar, G.; Benoit, S.; Hamm, H.; Tony, H.P.; Goebeler, M.; Prelog, M. Contribution of CD8+ T cells to inflammatory cytokine production in systemic sclerosis (SSc). Autoimmunity 2016, 49, 532–546. [Google Scholar] [CrossRef]
- Luzina, I.G.; Atamas, S.P.; Wise, R.; Wigley, F.M.; Choi, J.; Xiao, H.Q.; White, B. Occurrence of an activated, profibrotic pattern of gene expression in lung CD8+ T cells from scleroderma patients. Arthritis Rheum. 2003, 48, 2262–2274. [Google Scholar] [CrossRef]
- Lyons, P.A.; McKinney, E.F.; Rayner, T.F.; Hatton, A.; Woffendin, H.B.; Koukoulaki, M.; Freeman, T.C.; Jayne, D.R.W.; Chaudhry, A.N.; Smith, K.G.C. Novel expression signatures identified by transcriptional analysis of separated leucocyte subsets in systemic lupus erythematosus and vasculitis. Ann. Rheum. Dis. 2010, 69, 1208–1213. [Google Scholar] [CrossRef]
- Ding, W.; Pu, W.; Wang, L.; Jiang, S.; Zhou, X.; Tu, W.; Yu, L.; Zhang, J.; Guo, S.; Liu, Q.; et al. Genome-Wide DNA Methylation Analysis in Systemic Sclerosis Reveals Hypomethylation of IFN-Associated Genes in CD4(+) and CD8(+) T Cells. J. Investig. Dermatol. 2018, 138, 1069–1077. [Google Scholar] [CrossRef]
- Houtman, M.; Ekholm, L.; Hesselberg, E.; Chemin, K.; Malmstrom, V.; Reed, A.M.; Lundberg, I.E.; Padyukov, L. T-cell transcriptomics from peripheral blood highlights differences between polymyositis and dermatomyositis patients. Arthritis Res. 2018, 20, 188. [Google Scholar] [CrossRef]
- Muskardin, T.L.W.; Niewold, T.B. Type I interferon in rheumatic diseases. Nat. Rev. Rheumatol. 2018, 14, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Cooles, F.A.H.; Isaacs, J.D. The interferon gene signature as a clinically relevant biomarker in autoimmune rheumatic disease. Lancet Rheumatol. 2022, 4, e61–e72. [Google Scholar] [CrossRef]
- Arazi, A.; Rao, D.A.; Berthier, C.C.; Davidson, A.; Liu, Y.; Hoover, P.J.; Chicoine, A.; Eisenhaure, T.M.; Jonsson, A.H.; Li, S.; et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 2019, 20, 902–914. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Guo, C.; Li, X.; Huang, Y.; Li, M.; Zhang, T.; Zhao, S.; Wang, S.; Zhang, H.; Yang, N. JAK/STAT signaling controls the fate of CD8(+)CD103(+) tissue-resident memory T cell in lupus nephritis. J. Autoimmun. 2020, 109, 102424. [Google Scholar] [CrossRef] [PubMed]
- Dolff, S.; Abdulahad, W.H.; Arends, S.; van Dijk, M.C.; Limburg, P.C.; Kallenberg, C.G.; Bijl, M. Urinary CD8+ T-cell counts discriminate between active and inactive lupus nephritis. Arthritis Res. 2013, 15, R36. [Google Scholar] [CrossRef] [PubMed]
- Couzi, L.; Merville, P.; Deminière, C.; Moreau, J.F.; Combe, C.; Pellegrin, J.L.; Viallard, J.F.; Blanco, P. Predominance of CD8+ T lymphocytes among periglomerular infiltrating cells and link to the prognosis of class III and class IV lupus nephritis. Arthritis Rheum. 2007, 56, 2362–2370. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, M.; Zhang, J.; Feng, X.; Liu, Z.; Cheng, Z. Association between tubulointerstitial CD8+T cells and renal prognosis in lupus nephritis. Int. Immunopharmacol. 2021, 99, 107877. [Google Scholar] [CrossRef]
- Kopetschke, K.; Klocke, J.; Grießbach, A.S.; Humrich, J.Y.; Biesen, R.; Dragun, D.; Burmester, G.R.; Enghard, P.; Riemekasten, G. The cellular signature of urinary immune cells in Lupus nephritis: New insights into potential biomarkers. Arthritis Res. 2015, 17, 94. [Google Scholar] [CrossRef]
- Scott, E.; Dooley, M.A.; Vilen, B.J.; Clarke, S.H. Immune cells and type 1 IFN in urine of SLE patients correlate with immunopathology in the kidney. Clin. Immunol. 2016, 168, 16–24. [Google Scholar] [CrossRef]
- Uva, L.; Miguel, D.; Pinheiro, C.; Freitas, J.P.; Marques Gomes, M.; Filipe, P. Cutaneous Manifestations of Systemic Lupus Erythematosus. Autoimmune Dis. 2012, 2012, 834291. [Google Scholar] [CrossRef]
- Magro, C.M.; Segal, J.P.; Crowson, A.N.; Chadwick, P. The phenotypic profile of dermatomyositis and lupus erythematosus: A comparative analysis. J. Cutan. Pathol. 2010, 37, 659–671. [Google Scholar] [CrossRef]
- Grassi, M.; Capello, F.; Bertolino, L.; Seia, Z.; Pippione, M. Identification of granzyme B-expressing CD-8-positive T cells in lymphocytic inflammatory infiltrate in cutaneous lupus erythematosus and in dermatomyositis. Clin. Exp. Dermatol. 2009, 34, 910–914. [Google Scholar] [CrossRef]
- Furukawa, F.; Kanauchi, H.; Imamura, S. Susceptibility to UVB light in cultured keratinocytes of cutaneous lupus erythematosus. Dermatology 1994, 189 (Suppl. S1), 18–23. [Google Scholar] [CrossRef]
- Lourenço, S.V.; de Carvalho, F.R.; Boggio, P.; Sotto, M.N.; Vilela, M.A.; Rivitti, E.A.; Nico, M.M. Lupus erythematosus: Clinical and histopathological study of oral manifestations and immunohistochemical profile of the inflammatory infiltrate. J. Cutan. Pathol. 2007, 34, 558–564. [Google Scholar] [CrossRef]
- Groen, H.; Aslander, M.; Bootsma, H.; van der Mark, T.W.; Kallenberg, C.G.; Postma, D.S. Bronchoalveolar lavage cell analysis and lung function impairment in patients with systemic lupus erythematosus (SLE). Clin. Exp. Immunol. 1993, 94, 127–133. [Google Scholar] [CrossRef]
- Contin-Bordes, C.; Lazaro, E.; Richez, C.; Jacquemin, C.; Caubet, O.; Douchet, I.; Viallard, J.F.; Moreau, J.F.; Pellegrin, J.L.; Blanco, P. Expansion of myelin autoreactive CD8+ T lymphocytes in patients with neuropsychiatric systemic lupus erythematosus. Ann. Rheum. Dis. 2011, 70, 868–871. [Google Scholar] [CrossRef]
- Fujihara, T.; Fujita, H.; Tsubota, K.; Saito, K.; Tsuzaka, K.; Abe, T.; Takeuchi, T. Preferential localization of CD8+ alpha E beta 7+ T cells around acinar epithelial cells with apoptosis in patients with Sjogren’s syndrome. J. Immunol. 1999, 163, 2226–2235. [Google Scholar]
- Kong, L.; Ogawa, N.; Nakabayashi, T.; Liu, G.T.; D’Souza, E.; McGuff, H.S.; Guerrero, D.; Talal, N.; Dang, H. Fas and Fas ligand expression in the salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum. 1997, 40, 87–97. [Google Scholar] [CrossRef]
- Ohlsson, M.; Skarstein, K.; Bolstad, A.I.; Johannessen, A.C.; Jonsson, R. Fas-induced apoptosis is a rare event in Sjogren’s syndrome. Lab. Investig. 2001, 81, 95–105. [Google Scholar] [CrossRef]
- Soejima, K.; Nakamura, H.; Tamai, M.; Kawakami, A.; Eguchi, K. Activation of MKK4 (SEK1), JNK, and c-Jun in labial salivary infiltrating T cells in patients with Sjogren’s syndrome. Rheumatol. Int. 2007, 27, 329–333. [Google Scholar] [CrossRef]
- Lavie, F.; Miceli-Richard, C.; Quillard, J.; Roux, S.; Leclerc, P.; Mariette, X. Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjogren’s syndrome. J. Pathol. 2004, 202, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Arahata, K.; Engel, A.G. Monoclonal antibody analysis of mononuclear cells in myopathies. I: Quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells. Ann. Neurol. 1984, 16, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Fuschiotti, P.; Larregina, A.T.; Ho, J.; Feghali-Bostwick, C.; Medsger, T.A., Jr. Interleukin-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis Rheum. 2013, 65, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Tucci, M.; Quatraro, C.; Dammacco, F.; Silvestris, F. Interleukin-18 overexpression as a hallmark of the activity of autoimmune inflammatory myopathies. Clin. Exp. Immunol. 2006, 146, 21–31. [Google Scholar] [CrossRef] [PubMed]
- De Bleecker, J.L.; Engel, A.G. Immunocytochemical study of CD45 T cell isoforms in inflammatory myopathies. Am. J. Pathol. 1995, 146, 1178–1187. [Google Scholar] [PubMed]
- Lemoine, N.R.; Ryan, J.F.; Cox, E.L.; Mayston, V.; Revell, P.A.; Swash, M. Immunohistochemical analysis of mononuclear cell subsets in inflammatory and non-inflammatory myopathies. J. Clin. Pathol. 1986, 39, 271–274. [Google Scholar] [CrossRef]
- Tateyama, M.; Fujihara, K.; Misu, T.; Feng, J.; Onodera, Y.; Itoyama, Y. Expression of CCR7 and its ligands CCL19/CCL21 in muscles of polymyositis. J. Neurol. Sci. 2006, 249, 158–165. [Google Scholar] [CrossRef]
- Cherin, P.; Herson, S.; Crevon, M.C.; Hauw, J.J.; Cervera, P.; Galanaud, P.; Emilie, D. Mechanisms of lysis by activated cytotoxic cells expressing perforin and granzyme-B genes and the protein TIA-1 in muscle biopsies of myositis. J. Rheumatol. 1996, 23, 1135–1142. [Google Scholar]
- Orimo, S.; Koga, R.; Goto, K.; Nakamura, K.; Arai, M.; Tamaki, M.; Sugita, H.; Nonaka, I.; Arahata, K. Immunohistochemical analysis of perforin and granzyme A in inflammatory myopathies. Neuromuscul. Disord. 1994, 4, 219–226. [Google Scholar] [CrossRef]
- Danielsson, O.; Haggqvist, B.; Grontoft, L.; Ollinger, K.; Ernerudh, J. Apoptosis in idiopathic inflammatory myopathies with partial invasion; a role for CD8+ cytotoxic T cells? PLoS ONE 2020, 15, e0239176. [Google Scholar] [CrossRef]
- Pandya, J.M.; Venalis, P.; Al-Khalili, L.; Shahadat Hossain, M.; Stache, V.; Lundberg, I.E.; Malmstrom, V.; Fasth, A.E. CD4+ and CD8+ CD28(null) T Cells Are Cytotoxic to Autologous Muscle Cells in Patients With Polymyositis. Arthritis Rheumatol. 2016, 68, 2016–2026. [Google Scholar] [CrossRef]
- Goebels, N.; Michaelis, D.; Engelhardt, M.; Huber, S.; Bender, A.; Pongratz, D.; Johnson, M.A.; Wekerle, H.; Tschopp, J.; Jenne, D.; et al. Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. J. Clin. Investig. 1996, 97, 2905–2910. [Google Scholar] [CrossRef]
- Shinjo, S.K.; Sallum, A.M.E.; Oba-Shinjo, S.M.; Silva, M.G.; Silva, C.A.; Marie, S.K.N. Comparison between treatment naive juvenile and adult dermatomyositis muscle biopsies: Difference of inflammatory cells phenotyping. Adv. Rheumatol. 2018, 58, 37. [Google Scholar] [CrossRef]
- Yamadori, I.; Fujita, J.; Kajitani, H.; Bandoh, S.; Tokuda, M.; Ohtsuki, Y.; Yoshinouchi, T.; Okahara, M.; Yamaji, Y.; Tanimoto, Y.; et al. Lymphocyte subsets in lung tissues of interstitial pneumonia associated with untreated polymyositis/dermatomyositis. Rheumatol. Int. 2001, 21, 89–93. [Google Scholar] [CrossRef]
- Winchester, R.J.; Kunkel, H.G. The Human la System. In Advances in Immunology; Dixon, F.J., Kunkel, H.G., Eds.; Academic Press: New York, NY, USA, 1980; Volume 28, pp. 221–292. [Google Scholar]
- Reddy, M.; Eirikis, E.; Davis, C.; Davis, H.M.; Prabhakar, U. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: An in vitro model to monitor cellular immune function. J. Immunol. Methods 2004, 293, 127–142. [Google Scholar] [CrossRef]
- Vallejo, A.N. CD28 extinction in human T cells: Altered functions and the program of T-cell senescence. Immunol. Rev. 2005, 205, 158–169. [Google Scholar] [CrossRef]
- Psianou, K.; Panagoulias, I.; Papanastasiou, A.D.; de Lastic, A.-L.; Rodi, M.; Spantidea, P.I.; Degn, S.E.; Georgiou, P.; Mouzaki, A. Clinical and immunological parameters of Sjögren’s syndrome. Autoimmun. Rev. 2018, 17, 1053–1064. [Google Scholar] [CrossRef]
- Fagnoni, F.F.; Vescovini, R.; Mazzola, M.; Bologna, G.; Nigro, E.; Lavagetto, G.; Franceschi, C.; Passeri, M.; Sansoni, P. Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology 1996, 88, 501–507. [Google Scholar] [CrossRef]
- Amadori, A.; Zamarchi, R.; De Silvestro, G.; Forza, G.; Cavatton, G.; Danieli, G.A.; Clementi, M.; Chieco-Bianchi, L. Genetic control of the CD4/CD8 T-cell ratio in humans. Nat. Med. 1995, 1, 1279–1283. [Google Scholar] [CrossRef]
- Li, M.; Yao, D.; Zeng, X.; Kasakovski, D.; Zhang, Y.; Chen, S.; Zha, X.; Li, Y.; Xu, L. Age related human T cell subset evolution and senescence. Immun. Ageing 2019, 16, 24. [Google Scholar] [CrossRef]
- Kverneland, A.H.; Streitz, M.; Geissler, E.; Hutchinson, J.; Vogt, K.; Boës, D.; Niemann, N.; Pedersen, A.E.; Schlickeiser, S.; Sawitzki, B. Age and gender leucocytes variances and references values generated using the standardized ONE-Study protocol. Cytom. Part A 2016, 89, 543–564. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Jury, E.C.; Dönnes, P.; Ciurtin, C. Machine Learning Techniques for Personalised Medicine Approaches in Immune-Mediated Chronic Inflammatory Diseases: Applications and Challenges. Front. Pharmacol. 2021, 12, 720694. [Google Scholar] [CrossRef]
- Robinson, G.A.; Waddington, K.E.; Coelewij, L.; Peng, J.; Naja, M.; Wincup, C.; Radziszewska, A.; Peckham, H.; Isenberg, D.A.; Ioannou, Y.; et al. Increased apolipoprotein-B:A1 ratio predicts cardiometabolic risk in patients with juvenile onset SLE. EBioMedicine 2021, 65, 103243. [Google Scholar] [CrossRef] [PubMed]
- Banchereau, R.; Hong, S.; Cantarel, B.; Baldwin, N.; Baisch, J.; Edens, M.; Cepika, A.-M.; Acs, P.; Turner, J.; Anguiano, E.; et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell 2016, 165, 551–565. [Google Scholar] [CrossRef]
- Soret, P.; Le Dantec, C.; Desvaux, E.; Foulquier, N.; Chassagnol, B.; Hubert, S.; Jamin, C.; Barturen, G.; Desachy, G.; Devauchelle-Pensec, V.; et al. A new molecular classification to drive precision treatment strategies in primary Sjögren’s syndrome. Nat. Commun. 2021, 12, 3523. [Google Scholar] [CrossRef]
- Noviani, M.; Chellamuthu, V.R.; Albani, S.; Low, A.H.L. Toward Molecular Stratification and Precision Medicine in Systemic Sclerosis. Front. Med. 2022, 9, 911977. [Google Scholar] [CrossRef]
- Liu, M.; Yu, Y.; Hu, S. A review on applications of abatacept in systemic rheumatic diseases. Int. Immunopharmacol. 2021, 96, 107612. [Google Scholar] [CrossRef] [PubMed]
- Meiners, P.M.; Vissink, A.; Kroese, F.G.; Spijkervet, F.K.; Smitt-Kamminga, N.S.; Abdulahad, W.H.; Bulthuis-Kuiper, J.; Brouwer, E.; Arends, S.; Bootsma, H. Abatacept treatment reduces disease activity in early primary Sjögren’s syndrome (open-label proof of concept ASAP study). Ann. Rheum. Dis. 2014, 73, 1393–1396. [Google Scholar] [CrossRef]
- Tsuboi, H.; Matsumoto, I.; Hagiwara, S.; Hirota, T.; Takahashi, H.; Ebe, H.; Yokosawa, M.; Yagishita, M.; Takahashi, H.; Kurata, I.; et al. Effectiveness of abatacept for patients with Sjögren’s syndrome associated with rheumatoid arthritis. An open label, multicenter, one-year, prospective study: ROSE (Rheumatoid Arthritis with Orencia Trial toward Sjögren’s syndrome Endocrinopathy) trial. Mod. Rheumatol. 2016, 26, 891–899. [Google Scholar] [CrossRef]
- Van Nimwegen, J.F.; Mossel, E.; van Zuiden, G.S.; Wijnsma, R.F.; Delli, K.; Stel, A.J.; van der Vegt, B.; Haacke, E.A.; Olie, L.; Los, L.I.; et al. Abatacept treatment for patients with early active primary Sjögren’s syndrome: A single-centre, randomised, double-blind, placebo-controlled, phase 3 trial (ASAP-III study). Lancet Rheumatol. 2020, 2, e153–e163. [Google Scholar] [CrossRef]
- Baer, A.N.; Gottenberg, J.-E.; St Clair, E.W.; Sumida, T.; Takeuchi, T.; Seror, R.; Foulks, G.; Nys, M.; Mukherjee, S.; Wong, R.; et al. Efficacy and safety of abatacept in active primary Sjögren’s syndrome: Results of a phase III, randomised, placebo-controlled trial. Ann. Rheum. Dis. 2020, 80, 339–348. [Google Scholar] [CrossRef]
- Castellví, I.; Elhai, M.; Bruni, C.; Airò, P.; Jordan, S.; Beretta, L.; Codullo, V.; Montecucco, C.M.; Bokarewa, M.; Iannonne, F.; et al. Safety and effectiveness of abatacept in systemic sclerosis: The EUSTAR experience. Semin. Arthritis Rheum. 2020, 50, 1489–1493. [Google Scholar] [CrossRef]
- Khanna, D.; Spino, C.; Johnson, S.; Chung, L.; Whitfield, M.L.; Denton, C.P.; Berrocal, V.; Franks, J.; Mehta, B.; Molitor, J.; et al. Abatacept in Early Diffuse Cutaneous Systemic Sclerosis: Results of a Phase II Investigator-Initiated, Multicenter, Double-Blind, Randomized, Placebo-Controlled Trial. Arthritis Rheumatol. 2020, 72, 125–136. [Google Scholar] [CrossRef]
- Tjärnlund, A.; Tang, Q.; Wick, C.; Dastmalchi, M.; Mann, H.; Tomasová Studýnková, J.; Chura, R.; Gullick, N.J.; Salerno, R.; Rönnelid, J.; et al. Abatacept in the treatment of adult dermatomyositis and polymyositis: A randomised, phase IIb treatment delayed-start trial. Ann. Rheum. Dis. 2018, 77, 55–62. [Google Scholar] [CrossRef]
- Tang, Q.; Ramsköld, D.; Krystufkova, O.; Mann, H.F.; Wick, C.; Dastmalchi, M.; Lakshmikanth, T.; Chen, Y.; Mikes, J.; Alexanderson, H.; et al. Effect of CTLA4-Ig (abatacept) treatment on T cells and B cells in peripheral blood of patients with polymyositis and dermatomyositis. Scand. J. Immunol. 2019, 89, e12732. [Google Scholar] [CrossRef] [Green Version]
- Pimentel-Quiroz, V.R.; Ugarte-Gil, M.F.; Alarcón, G.S. Abatacept for the treatment of systemic lupus erythematosus. Expert Opin. Investig. Drugs 2016, 25, 493–499. [Google Scholar] [CrossRef]
- Merrill, J.T.; Burgos-Vargas, R.; Westhovens, R.; Chalmers, A.; D’Cruz, D.; Wallace, D.J.; Bae, S.C.; Sigal, L.; Becker, J.C.; Kelly, S.; et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: Results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010, 62, 3077–3087. [Google Scholar] [CrossRef]
- Furie, R.; Nicholls, K.; Cheng, T.-T.; Houssiau, F.; Burgos-Vargas, R.; Chen, S.-L.; Hillson, J.L.; Meadows-Shropshire, S.; Kinaszczuk, M.; Merrill, J.T. Efficacy and Safety of Abatacept in Lupus Nephritis: A Twelve-Month, Randomized, Double-Blind Study. Arthritis Rheumatol. 2014, 66, 379–389. [Google Scholar] [CrossRef]
- Welcher, A.A.; Boedigheimer, M.; Kivitz, A.J.; Amoura, Z.; Buyon, J.; Rudinskaya, A.; Latinis, K.; Chiu, K.; Oliner, K.S.; Damore, M.A.; et al. Blockade of Interferon-γ Normalizes Interferon-Regulated Gene Expression and Serum CXCL10 Levels in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol. 2015, 67, 2713–2722. [Google Scholar] [CrossRef]
- Boedigheimer, M.J.; Martin, D.A.; Amoura, Z.; Sánchez-Guerrero, J.; Romero-Diaz, J.; Kivitz, A.; Aranow, C.; Chan, T.M.; Chong, Y.B.; Chiu, K.; et al. Safety, pharmacokinetics and pharmacodynamics of AMG 811, an anti-interferon-γ monoclonal antibody, in SLE subjects without or with lupus nephritis. Lupus Sci. Med. 2017, 4, e000226. [Google Scholar] [CrossRef]
- Haile, Y.; Carmine-Simmen, K.; Olechowski, C.; Kerr, B.; Bleackley, R.C.; Giuliani, F. Granzyme B-inhibitor serpina3n induces neuroprotection in vitro and in vivo. J. Neuroinflamm. 2015, 12, 157. [Google Scholar] [CrossRef]
- Hiroyasu, S.; Zeglinski, M.R.; Zhao, H.; Pawluk, M.A.; Turner, C.T.; Kasprick, A.; Tateishi, C.; Nishie, W.; Burleigh, A.; Lennox, P.A.; et al. Granzyme B inhibition reduces disease severity in autoimmune blistering diseases. Nat. Commun. 2021, 12, 302. [Google Scholar] [CrossRef]
- Song, L.; Wang, Y.; Zhang, J.; Song, N.; Xu, X.; Lu, Y. The risks of cancer development in systemic lupus erythematosus (SLE) patients: A systematic review and meta-analysis. Arthritis Res. 2018, 20, 270. [Google Scholar] [CrossRef]
- Brito-Zerón, P.; Kostov, B.; Fraile, G.; Caravia-Durán, D.; Maure, B.; Rascón, F.-J.; Zamora, M.; Casanovas, A.; Lopez-Dupla, M.; Ripoll, M.; et al. Characterization and risk estimate of cancer in patients with primary Sjögren syndrome. J. Hematol. Oncol. 2017, 10, 90. [Google Scholar] [CrossRef]
- Onishi, A.; Sugiyama, D.; Kumagai, S.; Morinobu, A. Cancer Incidence in Systemic Sclerosis: Meta-Analysis of Population-Based Cohort Studies. Arthritis Rheum. 2013, 65, 1913–1921. [Google Scholar] [CrossRef]
- Oldroyd, A.G.S.; Allard, A.B.; Callen, J.P.; Chinoy, H.; Chung, L.; Fiorentino, D.; George, M.D.; Gordon, P.; Kolstad, K.; Kurtzman, D.J.B.; et al. A systematic review and meta-analysis to inform cancer screening guidelines in idiopathic inflammatory myopathies. Rheumatology 2021, 60, 2615–2628. [Google Scholar] [CrossRef]
- Joseph, C.G.; Darrah, E.; Shah, A.A.; Skora, A.D.; Casciola-Rosen, L.A.; Wigley, F.M.; Boin, F.; Fava, A.; Thoburn, C.; Kinde, I.; et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 2014, 343, 152–157. [Google Scholar] [CrossRef]
- Khan, S.; Gerber, D.E. Autoimmunity, checkpoint inhibitor therapy and immune-related adverse events: A review. Semin. Cancer Biol. 2020, 64, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Sullivan, R.J.; Ott, P.A.; Carlino, M.S.; Khushalani, N.I.; Ye, F.; Guminski, A.; Puzanov, I.; Lawrence, D.P.; Buchbinder, E.I.; et al. Ipilimumab Therapy in Patients With Advanced Melanoma and Preexisting Autoimmune Disorders. JAMA Oncol. 2016, 2, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Konya, C.; Goronzy, J.J.; Weyand, C.M. Treating autoimmune disease by targeting CD8(+) T suppressor cells. Expert Opin. Biol. 2009, 9, 951–965. [Google Scholar] [CrossRef]
- Flippe, L.; Bézie, S.; Anegon, I.; Guillonneau, C. Future prospects for CD8(+) regulatory T cells in immune tolerance. Immunol. Rev. 2019, 292, 209–224. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Chung, C.H.; Lin, K.T.; Lin, C.S.; Chen, J.H.; Chen, H.C.; Huang, R.Y.; Wu, C.T.; Liu, F.C.; Chien, W.C. Predictable biomarkers of developing lymphoma in patients with Sjögren syndrome: A nationwide population-based cohort study. Oncotarget 2017, 8, 50098–50108. [Google Scholar] [CrossRef] [Green Version]
Subset | Effector Molecules | Transcription Factors | Function | Cytotoxicity | Ref |
---|---|---|---|---|---|
Tc1 | IFN-γ, TNF-α, perforin, granzyme B | Tbet, EOMES, STAT4 | Immunity against intracellular pathogens and tumours | Yes | [7,8] |
Tc2 | IL-4, IL-5, IL-13, granzyme B | GATA-3, STAT6 | Maintenance of allergy responses | Yes | [8,9,10] |
Tc9 | IL-9 | IRF-4, STAT6 | Maintenance of allergy responses | No | [11,12] |
Tc17 | IL-17, IL-21, IL-22 | RORyT, IRF-4, STAT3 | Propagation of autoimmunity, immunity against fungal pathogens, anti-tumour response | No | [13,14,15] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radziszewska, A.; Moulder, Z.; Jury, E.C.; Ciurtin, C. CD8+ T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease. Int. J. Mol. Sci. 2022, 23, 11431. https://doi.org/10.3390/ijms231911431
Radziszewska A, Moulder Z, Jury EC, Ciurtin C. CD8+ T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease. International Journal of Molecular Sciences. 2022; 23(19):11431. https://doi.org/10.3390/ijms231911431
Chicago/Turabian StyleRadziszewska, Anna, Zachary Moulder, Elizabeth C. Jury, and Coziana Ciurtin. 2022. "CD8+ T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease" International Journal of Molecular Sciences 23, no. 19: 11431. https://doi.org/10.3390/ijms231911431
APA StyleRadziszewska, A., Moulder, Z., Jury, E. C., & Ciurtin, C. (2022). CD8+ T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease. International Journal of Molecular Sciences, 23(19), 11431. https://doi.org/10.3390/ijms231911431