CB1 Ligand AM251 Induces Weight Loss and Fat Reduction in Addition to Increased Systemic Inflammation in Diet-Induced Obesity
Abstract
:1. Introduction
2. Results
2.1. AM251 Decreases Fat Pad Weight and Alters Plasma Hormone and Cytokine Levels in an HFD Model
2.2. The Effect of AM251 on Skeletal Muscle in an HFD Rat Model
2.3. Effect of AM251 on Adipose Tissue Gene Expression
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Protocol
4.2. Rodent Model of Diet-Induced Obesity and AM251 Pharmacological Treatment
4.3. Physiological Measurements
4.4. Muscle Sample Preparations
4.5. RNA Extraction
4.6. Citrate Synthase Analysis
4.7. Plasma Hormone and Cytokine Analysis
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Després, J.-P.; Golay, A.; Sjöström, L. Effects of Rimonabant on Metabolic Risk Factors in Overweight Patients with Dyslipidemia. N. Engl. J. Med. 2005, 353, 2121–2134. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J.; Finer, N.; Hollander, P.; Jensen, M.D.; Van Gaal, L.F. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: A randomised controlled study. Lancet 2006, 368, 1660–1672. [Google Scholar] [CrossRef]
- Van Gaal, L.F.; Rissanen, A.M.; Scheen, A.J.; Ziegler, O.; Rössner, S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005, 365, 1389–1397. [Google Scholar] [CrossRef]
- Di Marzo, V.; Matias, I. Endocannabinoid control of food intake and energy balance. Nat. Neurosci. 2005, 8, 585–589. [Google Scholar] [CrossRef]
- Matias, I.; Petrosino, S.; Racioppi, A.; Capasso, R.; Izzo, A.A.; Di Marzo, V. Dysregulation of peripheral endocannabinoid levels in hyperglycemia and obesity: Effect of high fat diets. Mol. Cell. Endocrinol. 2008, 286, S66–S78. [Google Scholar] [CrossRef]
- Cavuoto, P.; McAinch, A.; Hatzinikolas, G.; Cameron-Smith, D.; Wittert, G. Effects of cannabinoid receptors on skeletal muscle oxidative pathways. Mol. Cell. Endocrinol. 2007, 267, 63–69. [Google Scholar] [CrossRef]
- Horder, J.; Browning, M.; Di Simplicio, M.; Cowen, P.J.; Harmer, C.J. Effects of 7 days of treatment with the cannabinoid type 1 receptor antagonist, rimonabant, on emotional processing. J. Psychopharmacol. 2011, 26, 125–132. [Google Scholar] [CrossRef]
- Mao, X.; Kikani, C.K.; Riojas, R.A.; Langlais, P.; Wang, L.; Ramos, F.J.; Fang, Q.; Christ-Roberts, C.Y.; Hong, J.Y.; Kim, R.Y.; et al. APPL1 binds to adiponectin receptors and mediates adiponectin signaling and function. Nat. Cell Biol. 2006, 8, 516–523. [Google Scholar] [CrossRef]
- Flamment, M.; Gueguen, N.; Wetterwald, C.; Simard, G.; Malthièry, Y.; Ducluzeau, P.-H. Effects of the cannabinoid CB1 antagonist rimonabant on hepatic mitochondrial function in rats fed a high-fat diet. Am. J. Physiol. Metab. 2009, 297, E1162–E1170. [Google Scholar] [CrossRef]
- Chambers, A.P.; Vemuri, V.K.; Peng, Y.; Wood, J.T.; Olszewska, T.; Pittman, Q.J.; Makriyannis, A.; Sharkey, K.A. A neutral CB1 receptor antagonist reduces weight gain in rat. Am. J. Physiol. Integr. Comp. Physiol. 2007, 293, R2185–R2193. [Google Scholar] [CrossRef]
- Merroun, I.; Sánchez-González, C.; Martínez, R.; López-Chaves, C.; Porres, J.M.; Aranda, P.; Llopis, J.; Galisteo, M.; Zarzuelo, A.; Errami, M.; et al. Novel effects of the cannabinoid inverse agonist AM 251 on parameters related to metabolic syndrome in obese Zucker rats. Metabolism 2013, 62, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Wagner, I.V.; Perwitz, N.; Drenckhan, M.; Lehnert, H.; Klein, J. Cannabinoid type 1 receptor mediates depot-specific effects on differentiation, inflammation and oxidative metabolism in inguinal and epididymal white adipocytes. Nutr. Diabetes 2011, 1, e16. [Google Scholar] [CrossRef] [PubMed]
- Jenkin, K.A.; O’Keefe, L.; Simcocks, A.C.; Grinfeld, E.; Mathai, M.L.; McAinch, A.J.; Hryciw, D.H. Chronic administration of AM251 improves albuminuria and renal tubular structure in obese rats. J. Endocrinol. 2015, 225, 113–124. [Google Scholar] [CrossRef]
- Evans, B.A.; Merlin, J.; Bengtsson, T.; Hutchinson, D.S. Adrenoceptors in white, brown, and brite adipocytes. Br. J. Pharmacol. 2019, 176, 2416–2432. [Google Scholar] [CrossRef]
- Iyer, M.S.; Paszkiewicz, R.L.; Bergman, R.N.; Richey, J.M.; Woolcott, O.O.; Asare-Bediako, I.; Wu, Q.; Kim, S.P.; Stefanovski, D.; Kolka, C.M.; et al. Activation of NPRs and UCP1-independent pathway following CB1R antagonist treatment is associated with adipose tissue beiging in fat-fed male dogs. Am. J. Physiol. Metab. 2019, 317, E535–E547. [Google Scholar] [CrossRef] [PubMed]
- Nedergaard, J.; Cannon, B. UCP1 mRNA does not produce heat. Biochim. Et Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2013, 1831, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Bajzer, M.; Olivieri, M.; Haas, M.K.; Pfluger, P.T.; Magrisso, I.J.; Foster, M.T.; Tschöp, M.H.; Krawczewski-Carhuatanta, K.A.; Cota, D.; Obici, S. Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice. Diabetologia 2011, 54, 3121–3131. [Google Scholar] [CrossRef]
- Zizzari, P.; He, R.; Falk, S.; Bellocchio, L.; Allard, C.; Clark, S.; Lesté-Lasserre, T.; Marsicano, G.; Clemmensen, C.; Perez-Tilve, D.; et al. CB1 and GLP-1 Receptors Cross Talk Provides New Therapies for Obesity. Diabetes 2020, 70, 415–422. [Google Scholar] [CrossRef]
- Crespillo, A.; Suárez, J.; Bermúdez-Silva, F.J.; Rivera, P.; Vida, M.; Alonso, M.; Palomino, A.; Lucena, M.A.; Serrano, A.; Pérez-Martín, M.; et al. Expression of the cannabinoid system in muscle: Effects of a high-fat diet and CB1 receptor blockade. Biochem. J. 2010, 433, 175–185. [Google Scholar] [CrossRef]
- Chen, M.B.; McAinch, A.J.; Macaulay, S.L.; Castelli, L.A.; O’brien, P.E.; Dixon, J.B.; Cameron-Smith, D.; Kemp, B.E.; Steinberg, G.R. Impaired Activation of AMP-Kinase and Fatty Acid Oxidation by Globular Adiponectin in Cultured Human Skeletal Muscle of Obese Type 2 Diabetics. J. Clin. Endocrinol. Metab. 2005, 90, 3665–3672. [Google Scholar] [CrossRef] [Green Version]
- McAinch, A.; Steinberg, G.; Mollica, J.; O’brien, P.E.; Dixon, J.B.; Macaulay, S.L.; Kemp, B.; Cameron-Smith, D. Differential Regulation of Adiponectin Receptor Gene Expression by Adiponectin and Leptin in Myotubes Derived from Obese and Diabetic Individuals. Obesity 2006, 14, 1898–1904. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-N.; Wang, L.; Zhang, R.-G.; Chen, Y.-C.; Liu, L.; Gao, F.; Nie, H.; Hou, W.-G.; Peng, Z.-W.; Tan, Q. Anti-depressive mechanism of repetitive transcranial magnetic stimulation in rat: The role of the endocannabinoid system. J. Psychiatr. Res. 2014, 51, 79–87. [Google Scholar] [CrossRef] [PubMed]
- McAinch, A.J.; Cameron-Smith, D. Adiponectin decreases pyruvate dehydrogenase kinase 4 gene expression in obese- and diabetic-derived myotubes. Diabetes Obes. Metab. 2009, 11, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Asterholm, I.W.; Tao, C.; Morley, T.S.; Wang, Q.A.; Delgado-Lopez, F.; Wang, Z.V.; Scherer, P.E. Adipocyte Inflammation Is Essential for Healthy Adipose Tissue Expansion and Remodeling. Cell Metab. 2014, 20, 103–118. [Google Scholar]
- Bougoulia, M.; Triantos, A.; Koliakos, G. Plasma interleukin-6 levels, glutathione peroxidase and isoprostane in obese women before and after weight loss. Association with cardiovascular risk factors. Hormones 2006, 5, 192–199. [Google Scholar] [CrossRef]
- Tajik, N.; Keshavarz, S.A.; Masoudkabir, F.; Djalali, M.; Sadrzadeh-Yeganeh, H.H.; Eshraghian, M.R.; Chamary, M.; Ahmadivand, Z.; Yazdani, T.; Javanbakht, M.H. Effect of diet-induced weight loss on inflammatory cytokines in obese women. J. Endocrinol. Investig. 2012, 36, 211–215. [Google Scholar] [CrossRef]
- Miranda, K.; Mehrpouya-Bahrami, P.; Nagarkatti, P.S.; Nagarkatti, M. Cannabinoid Receptor 1 Blockade Attenuates Obesity and Adipose Tissue Type 1 Inflammation Through miR-30e-5p Regulation of Delta-Like-4 in Macrophages and Consequently Downregulation of Th1 Cells. Front. Immunol. 2019, 10, 1049. [Google Scholar] [CrossRef]
- Bruun, J.M.; Stallknecht, B.M.; Helge, J.; Richelsen, B. Interleukin-18 in plasma and adipose tissue: Effects of obesity, insulin resistance, and weight loss. Eur. J. Endocrinol. 2007, 157, 465–471. [Google Scholar] [CrossRef]
- Hung, J.; McQuillan, B.; Thompson, P.L.; Beilby, J. Circulating adiponectin levels associate with inflammatory markers, insulin resistance and metabolic syndrome independent of obesity. Int. J. Obes. 2008, 32, 772–779. [Google Scholar] [CrossRef]
- Sathyapalan, T.; Javed, Z.; Kilpatrick, E.S.; Coady, A.M.; Atkin, S.L. Endocannabinoid receptor blockade increases vascular endothelial growth factor and inflammatory markers in obese women with polycystic ovary syndrome. Clin. Endocrinol. 2016, 86, 384–387. [Google Scholar] [CrossRef]
- Manigrasso, M.R.; Ferroni, P.; Santilli, F.; Taraborelli, T.; Guagnano, M.T.; Michetti, N.; Davì, G. Association between Circulating Adiponectin and Interleukin-10 Levels in Android Obesity: Effects of Weight Loss. J. Clin. Endocrinol. Metab. 2005, 90, 5876–5879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, K.; Becker, W.; Busbee, P.B.; Dopkins, N.; Abdulla, O.A.; Zhong, Y.; Zhang, J.; Nagarkatti, M.; Nagarkatti, P.S. Yin and yang of cannabinoid CB1 receptor: CB1 deletion in immune cells causes exacerbation while deletion in non-immune cells attenuates obesity. iScience 2022, 25, 104994. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.; Le Foll, B. Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules 2020, 10, 855. [Google Scholar] [CrossRef] [PubMed]
- Soethoudt, M.; Grether, U.; Fingerle, J.; Grim, T.W.; Fezza, F.; De Petrocellis, L.; Ullmer, C.; Rothenhäusler, B.; Perret, C.; Van Gils, N.; et al. Cannabinoid CB2 receptor ligand profiling reveals biased signaling and off-target activity. Nat. Commun. 2017, 8, 13958. [Google Scholar] [CrossRef] [PubMed]
- Leo, L.M.; Abood, M.E. CB1 Cannabinoid Receptor Signaling and Biased Signaling. Molecules 2021, 26, 5413. [Google Scholar] [CrossRef]
- Cirera, S. Highly efficient method for isolation of total RNA from adipose tissue. BMC Res. Notes 2013, 6, 472. [Google Scholar] [CrossRef]
- Srere, P.A. [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1969; pp. 3–11. [Google Scholar]
- Betik, A.C.; Baker, D.J.; Krause, D.J.; McConkey, M.J.; Hepple, R.T. Exercise training in late middle-aged male Fischer 344 × Brown Norway F1-hybrid rats improves skeletal muscle aerobic function. Exp. Physiol. 2008, 93, 863–871. [Google Scholar] [CrossRef]
- Simcocks, A.; O’Keefe, L.; Jenkin, K.; Cornall, L.; Grinfeld, E.; Mathai, M.; Hryciw, D.; McAinch, A. The Role of Atypical Cannabinoid Ligands O-1602 and O-1918 on Skeletal Muscle Homeostasis with a Focus on Obesity. Int. J. Mol. Sci. 2020, 21, 5922. [Google Scholar] [CrossRef]
Organ Weight (g) | Vehicle | AM251 |
---|---|---|
Heart | 1.60 ± 0.08 | 1.61 ± 0.04 |
Liver | 22.27 ± 0.84 | 20.79 ± 0.76 |
Epididymal Fat Pad | 10.32 ± 0.77 | 6.73 ± 0.82 * |
Peri-renal Fat Pad | 11.90 ± 1.15 | 8.50 ± 1.13 * |
Brown Fat Pad | 1.08 ± 0.10 | 0.66 ± 0.07 * |
Cytokine | Vehicle | AM251 |
---|---|---|
EPO | 583.5 ± 109.0 | 1176 ± 151.6 * |
G-CSF | 23.3 ± 6.1 | 36.4 ± 9.5 |
GM-CSF | 147.2 ± 55.7 | 270.6 ± 82.9 |
GRO/KC | 261.5 ± 87.0 | 241.7 ± 41.5 |
IFN-γ | 194.5 ± 46.8 | 681.5 ± 154.2 * |
IL-1α | 154.2 ± 44.2 | 415.4 ± 62.7 * |
IL-1β | 4098 ± 1179 | 13,083 ± 3027 * |
IL-2 | 338.7 ± 66.4 | 850.5 ± 95.8 * |
IL-4 | 196.1 ± 63.2 | 440.2 ± 77.0 * |
IL-5 | 357 ± 69.4 | 604.1 ± 95.0 |
IL-6 | 163.2 ± 73.0 | 537.5 ± 98.7 * |
IL-10 | 1161 ± 324.4 | 1579 ± 295.5 |
IL-12p70 | 235.4 ± 79.4 | 646.2 ± 128.4 * |
IL-13 | 102.4 ± 29.5 | 221.7 ± 51.1 |
IL-17α | 104.8 ± 27.4 | 262.9 ± 43.4 * |
IL-18 | 3430 ± 703.7 | 6796 ± 920.4 * |
MCSF | 477.8 ± 23.0 | 478.3 ± 48.3 |
MCP-1 | 957.4 ± 151.4 | 1514 ± 212.2 |
MIP-3α | 105.7 ± 27.2 | 183.3 ± 26.1 |
RANTES | 296.2 ± 70.1 | 645.3 ± 114.9 * |
TNF-α | 155.9 ± 51.7 | 274.9 ± 69.8 |
VEGF | 51.1 ± 14.8 | 117.4 ± 29.2 |
Gene | Skeletal Muscle | Vehicle + Adiponectin Vehicle | Vehicle + Acute Adiponectin Treatment | AM251 + Adiponectin Vehicle | AM251 + Acute Adiponectin Treatment |
---|---|---|---|---|---|
ADIPOR1 | (a) Soleus | 0.156 ± 0.119 | 0.095 ± 0.074 | 0.627 ± 0.349 | 0.144 ± 0.107 |
(b) EDL | 0.055 ± 0.014 | 0.037 ± 0.011 | 0.069 ± 0.025 | 0.145 ± 0.098 | |
ADIPOR2 | (a) Soleus | 0.062 ± 0.018 | 0.061 ± 0.013 | 0.091 ± 0.029 | 0.068 ± 0.020 |
(b) EDL | 0.085 ± 0.037 | 0.086 ± 0.017 | 0.070 ± 0.023 | 0.030 ± 0.010 | |
APPL1 | (a) Soleus | 0.033 ± 0.011 | 0.095 ± 0.048 | 0.413 ± 0.184 | 0.094 ± 0.040 |
(b) EDL | 0.054 ± 0.024 | 0.044 ± 0.009 | 0.112 ± 0.039 | 0.053 ± 0.020 | |
APPL2 | (a) Soleus | 0.005 ± 0.001 | 0.006 ± 0.002 | 0.006 ± 0.003 | 0.006 ± 0.002 |
(b) EDL | 0.013 ± 0.007 | 0.026 ± 0.016 | 0.045 ± 0.031 | 0.011 ± 0.007 | |
FATCD/36 | (a) Soleus | 0.698 ± 0.344 | 1.033 ± 0.330 | 0.373 ± 0.104 | 0.649 ± 0.173 |
(b) EDL | 0.260 ± 0.083 | 0.369 ± 0.104 | 0.627 ± 0.198 | 0.192 ± 0.048 | |
AMPK | (a) Soleus | 0.037 ± 0.012 | 0.134 ± 0.047 | 0.053 ± 0.026 | 0.098 ± 0.041 |
(b) EDL | 0.569 ± 0.237 | 0.871 ± 0.325 | 0.150 ± 0.055 | 0.165 ± 0.079 | |
PDK4 | (a) Soleus | 0.663 ± 0.261 | 0.372 ± 0.121 | 0.432 ± 0.151 | 0.855 ± 0.415 |
(b) EDL | 0.141 ± 0.076 | 0.592 ± 0.461 | 0.266 ± 0.154 | 0.093 ± 0.037 | |
PGC-1α | (a) Soleus | 0.573 ± 0.284 | 0.248 ± 0.132 | 0.398 ± 0.157 | 0.685 ± 0.392 |
(b) EDL | 0.111 ± 0.067 | 0.094 ± 0.053 | 0.345 ± 0.120 | 0.077 ± 0.033 |
Genes | Accession Number | Forward Primer | Reverse Primer |
---|---|---|---|
AdipoR1 | NM_207587.1 | TGAGGTACCAGCCAGATGTC | CGTGTCCGCTTCTCTGTTAC |
AdipoR2 | NM_001037979.1 | TCCATGGAGTCTCAACCTG | GGAGAGTATCACAGCCATC |
AMPK subunit alpha 2 (Prkaa2) | NM_023991.1 | ACTCTGCTGATGCACATGT | AGGGGTCTTCAGGAGAGG |
APPL1 | XR_007603 | TCACTCCTTCCCCATCTTTC | TAGAGGAGGCAGCCAAAT |
APPL2 | NM_001108741 | TGCTCGGGCTATTCACAA | AAACAGGCCCGTGACACT |
β-Actin | NM_031144 | CTAAGGCCAACCGTGAAA TGA | CCAGAGGCATACAGGGAC AAC |
Cyclophilin | NM_017101.1 | CTGATGGCGAGCCCTTG | TCTGCTGTCTTTGGAACTTTGTC |
FAT/CD36 | NM_031561.2 | GACCATCGGCGATGAGAAA | CCAGGCCCAGGAGCTTTATT |
GAPDH | NM_017008.3 | AGTTCAACGCACATCAAG | GTGGTGAAGACGCCTAGA |
PDK4 | NM_053551.1 | GGGATCTCGCCTGGCACTTT | CACACATTCACGAAGCAGCA |
PGC-1α | NM_013261.3 | ACCCACAGATCAGAACAAACC | GACAAATGCTCTGCTTTATTGC |
Genes | Exon Boundary | Taqman Catalogue Number | Amplicon Length |
---|---|---|---|
ADRB3 (β3-AR) | 2–3 | Rn01478698_g1 | 131 |
CNR1 (CB1) | 1–2 | Rn00562880_m1 | 81 |
CNR2 (CB2) | 1–2 | Rn01637601_m1 | 68 |
CPT1B | 11–12 | Rn00682395_m1 | 83 |
HOXC9 | 1–2 | Rn01532842_m1 | 94 |
HPRT1 | 8–9 | Rn01527840_m1 | 64 |
IL-1β | 5–6 | Rn00580432_m1 | 74 |
PRDM16 | 5–6 | Rn01516224_m1 | 65 |
SLC2A1 (GLUT 1) | 8–9 | Rn01417099_m1 | 73 |
SLC2A4 (GLUT 4) | 9–10 | Rn00562597_m1 | 75 |
TCF21 | 1–2 | Rn01537344_m1 | 95 |
TNF-α | 2–3 | Rn99999017_m1 | 108 |
UCP-1 | 2–3 | Rn00562126_m1 | 69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O'Keefe, L.; Vu, T.; Simcocks, A.C.; Jenkin, K.A.; Mathai, M.L.; Hryciw, D.H.; Hutchinson, D.S.; McAinch, A.J. CB1 Ligand AM251 Induces Weight Loss and Fat Reduction in Addition to Increased Systemic Inflammation in Diet-Induced Obesity. Int. J. Mol. Sci. 2022, 23, 11447. https://doi.org/10.3390/ijms231911447
O'Keefe L, Vu T, Simcocks AC, Jenkin KA, Mathai ML, Hryciw DH, Hutchinson DS, McAinch AJ. CB1 Ligand AM251 Induces Weight Loss and Fat Reduction in Addition to Increased Systemic Inflammation in Diet-Induced Obesity. International Journal of Molecular Sciences. 2022; 23(19):11447. https://doi.org/10.3390/ijms231911447
Chicago/Turabian StyleO'Keefe, Lannie, Teresa Vu, Anna C. Simcocks, Kayte A. Jenkin, Michael L. Mathai, Deanne H. Hryciw, Dana S. Hutchinson, and Andrew J. McAinch. 2022. "CB1 Ligand AM251 Induces Weight Loss and Fat Reduction in Addition to Increased Systemic Inflammation in Diet-Induced Obesity" International Journal of Molecular Sciences 23, no. 19: 11447. https://doi.org/10.3390/ijms231911447
APA StyleO'Keefe, L., Vu, T., Simcocks, A. C., Jenkin, K. A., Mathai, M. L., Hryciw, D. H., Hutchinson, D. S., & McAinch, A. J. (2022). CB1 Ligand AM251 Induces Weight Loss and Fat Reduction in Addition to Increased Systemic Inflammation in Diet-Induced Obesity. International Journal of Molecular Sciences, 23(19), 11447. https://doi.org/10.3390/ijms231911447