Root-Related Genes in Crops and Their Application under Drought Stress Resistance—A Review
Abstract
:1. Introduction
2. Root Traits Associated with Drought Stress Tolerance
3. Current Status of Research on Genes Associated with Root Growth and Development
3.1. Genes Associated with Adventitious Root Growth and Development
3.2. Genes Associated with Primary Root Growth and Development
3.3. Genes Associated with Lateral Root Growth and Development
3.4. Genes Associated with Root Hair Growth and Development
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gleick, P.H. The World’s Water, 2000–2001, The Biennial Report on Freshwater Resources. Electron. Green J. 2002, 1, 210–212. [Google Scholar]
- FAO. Proactive Approaches to Drought Preparedness—Where Are We Now and Where do We Go from Here? FAO: Roam, Italy, 2019. [Google Scholar]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Koncagül, E.; Tran, M.; Connor, S.; Uhlenbrook, S. World Water Development Report 2020—Water and Climate Change (SC-2018/WS/5, UNESCO WWAP); UNESCO: Paris, France, 2018. [Google Scholar]
- Xoconostlecázares, B.; Ramírezortega, F.; Floreselenes, L.; Ruizmedrano, R. Drought Tolerance in Crop Plants. Am. J. Plant Physiol. 2010, 5, 241–256. [Google Scholar] [CrossRef]
- Supratim, B.; Venkategowda, R.; Anuj, K.; Pereira, A. Plant adaptation to drought stress. F1000 Res. 2016, 5, 1554. [Google Scholar]
- Tardieu, F.; Simonneau, T.; Muller, B. The Physiological Basis of Drought Tolerance in Crop Plants, A Scenario-Dependent Probabilistic Approach. Annu. Rev. Plant Biol. 2018, 69, 733–759. [Google Scholar] [CrossRef] [PubMed]
- Millet, E.J.; Welcker, C.; Kruijer, W.; Negro, S.; Coupel-Ledru, A.; Nicolas, S.D.; Laborde, J.; Bauland, C.; Praud, S.; Ranc, N.; et al. Genome-Wide Analysis of Yield in Europe, Allelic Effects Vary with Drought and Heat Scenarios. Plant Physiol. 2016, 172, 749–764. [Google Scholar]
- Tuberosa, R.; Salvi, S. Genomics approaches to improve drought tolerance in crops. Trends Plant Sci. 2006, 11, 405–412. [Google Scholar] [CrossRef]
- Ashraf, M.; Akram, N.A. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnol. Adv. 2009, 27, 744–752. [Google Scholar] [CrossRef]
- Ahmed, K.; Shabbir, G.; Ahmed, M.; Shah, K.N. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci. Total Environ. 2020, 729, 139082. [Google Scholar] [CrossRef]
- Hardigan, M.A.; Laimbeer, F.P.E.; Newton, L.; Crisovan, E.; Hamilton, J.P.; Vaillancourt, B.; Wiegert-Rininger, K.; Wood, J.C.; Douches, D.S.; Farré, E.M.; et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc. Natl. Acad. Sci. USA 2017, 114, E9999–E10008. [Google Scholar] [CrossRef]
- Li, Y.; Colleoni, C.; Zhang, J.; Liang, Q.; Hu, Y.; Ruess, H.; Simon, R.; Liu, Y.; Liu, H.; Yu, G.; et al. Genomic Analyses Yield Markers for Identifying Agronomically Important Genes in Potato. Mol. Plant 2018, 11, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liang, W.; Yan, K.; Xu, D.; Qin, T.; Fiaz, S.; Kear, P.; Bi, Z.; Liu, Y.; Liu, Z.; et al. Expression of Potato StDRO1 in Arabidopsis Alters Root Architecture and Drought Tolerance. Front. Plant Sci. 2022, 13, 836063. [Google Scholar] [CrossRef] [PubMed]
- Martínez, I.; Muñoz, M.; Acuña, I.; Uribe, M. Evaluating the Drought Tolerance of Seven Potato Varieties on Volcanic Ash Soils in a Medium-Term Trial. Front. Plant Sci. 2021, 12, 693060. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Chen, L.; Herrera-Estrella, L.; Cao, D.; Tran, L.-S.P. Altering Plant Architecture to Improve Performance and Resistance. Trends Plant Sci. 2020, 25, 1154–1170. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.-K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef]
- Ramachandran, P.; Augstein, F.; Nguyen, V.; Carlsbecker, A. Coping with Water Limitation: Hormones That Modify Plant Root Xylem Development. Front Plant Sci. 2020, 11, 570. [Google Scholar] [CrossRef]
- Steffens, B.; Wang, J.; Sauter, M. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 2006, 223, 604–612. [Google Scholar] [CrossRef]
- Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N.; et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013, 45, 1097–1102. [Google Scholar] [CrossRef]
- Caldeira, C.F.; Jeanguenin, L.; Chaumont, F. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance. Nat. Commun. 2014, 5, 5365. [Google Scholar] [CrossRef]
- Orman-Ligeza, B.; Morris, E.C.; Parizot, B.; Lavigne, T.; Babé, A.; Ligeza, A.; Klein, S.; Sturrock, C.; Xuan, W.; Novák, O.; et al. The Xerobranching Response Represses Lateral Root Formation When Roots Are not in Contact with Water. Curr. Biol. 2018, 28, 3165–3173. [Google Scholar] [CrossRef]
- Maurel, C.; Nacry, P. Root architecture and hydraulics converge for acclimation to changing water availability. Nat. Plants 2020, 6, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Zia, R.; Nawaz, M.S.; Siddique, M.J.; Hakim, S.; Imran, A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol. Res. 2021, 242, 126626. [Google Scholar] [CrossRef] [PubMed]
- Andrés, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Rellán-Álvarez, R.; Lobet, G.; Dinneny, J.R. Environmental Control of Root System Biology. Annu. Rev. Plant Biol. 2016, 67, 619–642. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, D.; Pang, L.; Kobayashi, A.; Fozard, J.A.; Boudolf, V.; Bhosale, R.; Antoni, R.; Nguyen, T.; Hiratsuka, S.; Fujii, N.; et al. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat. Plants 2017, 3, 17057. [Google Scholar] [CrossRef] [PubMed]
- Scharwies, J.D.; Dinneny, J.R. Water transport, perception, and response in plants. J. Plant Res. 2019, 132, 311–324. [Google Scholar] [CrossRef]
- Buckley, T.N. How do stomata respond to water status. New Phytol. 2019, 224, 21–36. [Google Scholar] [CrossRef]
- Qaseem, M.; Qureshi, R.; Shaheen, H. Effects of Pre-Anthesis Drought, Heat and Their Combination on the Growth, Yield and Physiology of diverse Wheat (Triticum aestivum L.) Genotypes Varying in Sensitivity to Heat and drought stress. Sci. Rep. 2019, 9, 6955. [Google Scholar] [CrossRef]
- Di Gioia, F.; Aprile, A.; Sabella, E.; Santamaria, P.; Pardossi, A.; Miceli, A.; De Bellis, L.; Nutricati, E. Grafting response to excess boron and expression analysis of genes coding boron transporters in tomato. Plant Biol. 2017, 19, 728–735. [Google Scholar] [CrossRef]
- Schumacher, C.; Thümecke, S.; Schilling, F.; Köhl, K.; Kopka, J.; Sprenger, H.; Hincha, D.K.; Walther, D.; Seddig, S.; Peters, R.; et al. Genome-Wide Approach to Identify Quantitative Trait Loci for Drought Tolerance in Tetraploid Potato (Solanum tuberosum L.). Int. J. Mol. Sci. 2021, 22, 6123. [Google Scholar] [CrossRef]
- Potocka, I.; Szymanowska-Pulka, J. Morphological responses of plant roots to mechanical stress. Ann. Bot. 2018, 122, 711–723. [Google Scholar] [CrossRef]
- Jing, H.; Strader, L.C. Interplay of Auxin and Cytokinin in Lateral Root Development. Int. J. Mol. Sci. 2019, 20, 486. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, A.; Huynh, H.D.; Endo, T.; Watanabe, K. Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato. Breed Sci. 2015, 65, 85–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achar, D.; Awati, M.G.; Udayakumar, M.; Prasad, T.G. Identification of Putative Molecular Markers Associated with Root Traits in Coffea canephora Pierre ex Froehner. Mol. Biol. Int. 2015, 2015, 532386. [Google Scholar] [CrossRef]
- Joshi, M.; Fogelman, E.; Belausov, E.; Ginzberg, I. Potato root system development and factors that determine its architecture. J. Plant Physiol. 2016, 205, 113–123. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Motte, H.; Vanneste, S.; Beeckman, T. Molecular and Environmental Regulation of Root Development. Annu Rev. Plant Biol. 2019, 70, 465–488. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, Y.; Dai, M.; Huang, L.; Zhou, D.-X. The WUSCHEL-Related Homeobox Gene WOX11 Is Required to Activate Shoot-Borne Crown Root Development in Rice. Plant Cell 2009, 21, 736–748. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, S.; Song, Y.; Huang, Y.; Zhou, S.; Lui, Z.; Zhou, D.-X. The Interaction between Rice ERF3 and WOX11 Promotes Crown Root Development by Regulating Gene Expression Involved in Cytokinin Signaling. Plant Cell 2015, 2469–2483. [Google Scholar] [CrossRef]
- Xu, C.; Tai, H.; Saleem, M.; Ludwig, Y.; Majer, C.; Berendzen, K.; Nagel, K.A.; Wojciechowski, T.; Meeley, R.B.; Taramino, G.; et al. Cooperative action of the paralogous maize lateral organ boundaries (LOB) domain proteins RTCS and RTCL in shoot-borne root formation. New Phytol. 2015, 207, 1123–1133. [Google Scholar] [CrossRef]
- Blilou, I.; Xu, J.; Wildwater, M.; Willemsen, V.; Paponov, I.; Friml, J.; Heidstra, R.; Aida, M.; Palme, K.; Scheres, B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 2005, 433, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Feraru, E.; Feraru, M.I.; Kleine-Vehn, J.; Martinière, A.; Mouille, G.; Vanneste, S.; Vernhettes, S.; Runions, J.; Friml, J. PIN polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 2011, 21, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhu, L.; Shou, H.; Wu, P.A. PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol. 2005, 46, 1674–1681. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, Y.; Lin, J.; Wu, Y.; Guo, H.; Shao, Y.; Wang, F.; Wang, X.; Mo, X.; Zheng, S.; et al. CRD1, an Xpo1 domain protein, regulates miRNA accumulation and crown root development in rice. Plant J. 2019, 100, 328–342. [Google Scholar] [CrossRef]
- Bari, V.K.; Nassar, J.A.; Kheredin, S.M.; Gal-On, A.; Ron, M.; Britt, A.; Steele, D.; Yoder, J.; Aly, R. CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Sci. Rep. 2019, 9, 11438. [Google Scholar] [CrossRef]
- Lahlou, O.; Ledent, J.-F. Root mass and depth, stolons and roots formed on stolons in four cultivars of potato under water stress. Eur. J. Agron. 2005, 22, 159–173. [Google Scholar] [CrossRef]
- Joshi, M.; Ginzberg, I. Adventitious root formation in crops-Potato as an example. Physiol. Plant 2021, 172, 124–133. [Google Scholar] [CrossRef]
- Jia, Z.; Giehl, R.F.H.; Meyer, R.C.; Altmann, T.; von Wiren, N. Natural variation of BSK3 tunes brassinosteroid signaling to regulate root foraging under low nitrogen. Nat. Commun. 2019, 10, 2378. [Google Scholar] [CrossRef]
- Tsukagoshi, H.; Busch, W.; Benfey, P.N. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 2010, 143, 606–616. [Google Scholar] [CrossRef]
- Ballif, J.; Endo, S.; Kotani, M.; MacAdam, J.; Wu, Y. Over-expression of HAP3b enhances primary root elongation in Arabidopsis. Plant Physiol. Biochem. 2011, 49, 79–583. [Google Scholar] [CrossRef]
- Luxán-Hernández, C.; Lohmann, J.; Hellmeyer, W.; Seanpong, S.; Wöltje, K.; Magyar, Z.; Pettkó-Szandtner, A.; Pélissier, T.; De Jaeger, G.; Hoth, S.; et al. PP7L is essential for MAIL1-mediated transposable element silencing and primary root growth. Plant J. 2020, 102, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Ühlken, C.; Horvath, B.; Stadler, R.; Sauer, N.; Weingartner, M. MAIN-LIKE1 is a crucial factor for correct cell division and differentiation in Arabidopsis thaliana. Plant J. 2014, 78, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Lu, X.; Zi, Q.; Xun, Q.; Zhang, J.; Wu, Y.; Shi, H.; Wei, Z.; Zhao, B.; Zhang, X.; et al. RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res. 2016, 26, 686–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inukai, Y.; Miwa, M.; Nagato, Y.; Kitano, H.; Yamauchi, A. RRL1, RRL2 and CRL2 loci regulating root elogation in rice. Breed. Sci. 2001, 51, 231–239. [Google Scholar] [CrossRef]
- Sun, C.; Li, D.; Gao, Z.; Gao, L.; Shang, L.; Wang, M.; Qiao, J.; Ding, S.; Li, C.; Geisler, M.; et al. OsRLR4 binds to the OsAUX1 promoter to negatively regulate primary root development in rice. J. Integr. Plant Biol. 2022, 64, 118–134. [Google Scholar] [CrossRef]
- Zhuang, X.; Xu, Y.; Chong, K.; Lan, L.; Xu, Z.; Xue, Y. OsAGAP, an ARF-GAP from rice, regulates root development mediated by auxin in Arabidopsis. Plant Cell Environ. 2010, 28, 147–156. [Google Scholar] [CrossRef]
- Li, J.; Zhu, S.; Song, X.; Shen, Y.; Chen, H.; Yu, J.; Yi, K.; Liu, Y.; Karplus, V.J.; Wu, P.; et al. A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem. Plant Cell 2006, 18, 340–349. [Google Scholar] [CrossRef]
- Jia, L.; Wu, Z.; Hao, X.; Carrie, C.; Zheng, L.; Whelan, J.; Wu, Y.; Wang, S.; Wu, P.; Mao, C. Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in Oryza sativa. New Phytol. 2011, 189, 843–855. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Xu, L.; Wu, Y.-R.; Chen, X.-A.; Liu, Y.; Zhu, S.-H.; Ding, W.-N.; Wu, P.; Yi, K.-K. OsGLU3, a Putative Membrane-Bound Endo-1,4-Beta-Glucanase, Is Required for Root Cell Elongation and Division in Rice (Oryza sativa L.). Mol. Plant 2012, 5, 176–186. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, Y.; Jian, G.; Wang, W.; Zhang, H.; Lui, Y.; Wu, P. OsDGL1, a Homolog of an Oligosaccharyltransferase Complex Subunit, is Involved in N-Glycosylation and Root Development in Rice. Plant Cell Physiol. 2013, 1, 129–137. [Google Scholar]
- Liu, H.; Liu, B.; Chen, X.; Zhu, H.; Zou, C.; Men, S. AUX1 acts upstream of PIN2 in regulating root gravitropism. Biochem. Biophys. Res. Commun. 2018, 507, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zhihui, C.; Huanwen, M.; Tang, X. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression. Front. Plant Sci. 2016, 7, 1199. [Google Scholar]
- Kaur, R.; Singh, K.; Singh, J. A root-specific wall-associated kinase gene, HvWAK1, regulates root growth and is highly divergent in barley and other cereals. Funct. Integr. Genom. 2013, 13, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.; Aguirre, J.; Singh, J. Genome-wide analysis of wall associated kinase (WAK) gene family in barley. Genomics 2021, 113, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Risueno, M.A.; Van Norman, J.M.; Moreno, A.; Zhang, J.; Ahnert, S.E.; Benfey, P.N. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 2010, 329, 1306–1317. [Google Scholar] [CrossRef] [Green Version]
- Xuan, W.; Band, L.R.; Kumpf, R.P.; Van Damme, D.; Parizot, B.; De Rop, G.; Opdenacker, D.; Möller, B.K.; Skorzinski, N.; Njo, M.F.; et al. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science 2016, 351, 384–391. [Google Scholar] [CrossRef]
- De Smet, I.; Lau, S.; Voß, U.; Vanneste, S.; Benjamins, R.; Rademacher, E.H.; Schlereth, A.; De Rybel, B.; Vassileva, V.; Grunewald, W.; et al. Bimodular auxin response controls organogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2010, 107, 2705–2710. [Google Scholar] [CrossRef]
- De Ryble, B.; Vassileva, V.; Parizot, B.; Demeulenaere, M.; Grunewald, W.; Audenaert, D.; Van Campenhout, J.; Overvoorde, P.; Jansen, L.; Vanneste, S.; et al. A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr. Biol. 2010, 20, 1697–1706. [Google Scholar] [CrossRef]
- Fernandez, A.I.; Vangheluwe, N.; Xu, K.; Jourquin, J.; Claus, L.A.N.; Morales, S.; Parizot, B.; De Gernier, H.; Yu, Q.; Drozdzecki, A.; et al. GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation. Nat. Plants 2020, 6, 533–543. [Google Scholar] [CrossRef]
- Huang, K.-L.; Ma, G.-J.; Zhang, M.-L.; Xiong, H.; Wu, H.; Zhao, C.-Z.; Liu, C.-S.; Jia, H.-X.; Chen, L.; Kjorven, J.O.; et al. The ARF7 and ARF19 Transcription Factors Positively Regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis Roots. Plant Physiol. 2018, 178, 413–427. [Google Scholar] [CrossRef]
- Yu, J.; Xie, Q.; Li, C.; Dong, Y.; Zhu, S.; Chen, J. Comprehensive characterization and gene expression patterns of LBD gene family in Gossypium. Planta 2020, 251, 81. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Cheng, Y.; Feng, L. Genome-Wide Identification of LATERAL ORGAN BOUNDARIES DOMAIN (LBD) Transcription Factors and Screening of Salt Stress Candidates of Rosa rugosa Thunb. Biology 2021, 10, 992. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Tao, W.; Sun, R.; Wang, J.; Li, C.; Kong, X.; Tian, H.; Ding, Z. Correction: PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana. PLoS Genet. 2022, 18, e1010125. [Google Scholar] [CrossRef] [PubMed]
- Goh, T.; Toyokura, K.; Wells, D.M.; Swarup, K.; Yamamoto, M.; Mimura, T.; Weijers, D.; Fukaki, H.; Laplaze, L.; Bennett, M.J.; et al. Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor. Development 2016, 143, 3363–3371. [Google Scholar] [PubMed]
- Wangenheim, D.; Fangerau, J.; Schmitz, A.; Smith, R.; Leitte, H.; Stelzer, E.H.; Maizel, A. Rules and self-organizing properties of post-embryonic plant organ cell division patterns. Curr. Biol. 2016, 26, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Okushima, Y.; Fukaki, H.; Onoda, M.; Theologis, A.; Tasaka, M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 2007, 19, 118–130. [Google Scholar] [CrossRef]
- Goh, T.; Joi, S.; Mimura, T.; Fukaki, H. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development 2012, 139, 883–893. [Google Scholar] [CrossRef]
- Hirota, A.; Kato, T.; Fukaki, H.; Aida, M.; Tasaka, M. The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell 2007, 19, 2156–2168. [Google Scholar] [CrossRef]
- Lavenus, J.; Goh, T.; Guyomarc’H, S.; Hill, K.; Lucas, M.; Voss, U.; Kenobi, K.; Wilson, M.; Farcot, E.; Hagen, G.; et al. Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones. Plant Cell 2015, 27, 1368–1388. [Google Scholar] [CrossRef]
- Goh, T.; Toyokura, K.; Yamaguchi, N.; Okamoto, Y.; Uehara, T.; Kaneko, S.; Takebayashi, Y.; Kasahara, H.; Ikeyama, Y.; Okashima, Y.; et al. Lateral root initiation requires the sequential induction of transcription factors LBD16 and PUCHI in Arabidopsis thaliana. New Phytol. 2019, 224, 749–760. [Google Scholar] [CrossRef]
- Sun, C.-H.; Yu, J.-Q.; Wen, L.-Z.; Guo, Y.-H.; Sun, X.; Hao, Y.-J.; Hu, D.-G.; Zheng, C.-H. Chrysanthemum MADS-box transcription factor CmANR1 modulates lateral root development via homo-/heterodimerization to influence auxin accumulation in Arabidopsis. Plant Sci. 2018, 266, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-H.; Yu, J.-Q.; Duan, X.; Wang, J.-H.; Zhang, Q.-Y.; Gu, K.-D.; Hu, D.-G.; Zheng, C.-S. The MADS transcription factor CmANR1 positively modulates root system development by directly regulating CmPIN2 in chrysanthemum. Hortic Res. 2018, 5, 52. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zheng, R.; He, J.; Zhou, Z.; Wang, J.; Xiong, Y.; Xu, T. Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc. Natl. Acad. Sci. USA 2019, 116, 21285–21290. [Google Scholar] [CrossRef] [PubMed]
- Guseman, J.; Webb, K.; Srinivasan, C.; Dardick, C. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J. 2017, 89, 1093–1105. [Google Scholar] [CrossRef]
- Yoshihara, T.; Spalding, E.; Iino, M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J. 2013, 74, 267–279. [Google Scholar] [CrossRef]
- Bin, Q.; Huiqiong, Z. Modulation of root-skewing responses by KNAT1 in Arabidopsis thaliana. Plant J. 2013, 76, 380–392. [Google Scholar]
- Liu, S.; Wang, J.; Wang, L.; Wang, X.; Xue, Y.; Wu, P.; Shou, H. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res. 2009, 19, 1110–1119. [Google Scholar] [CrossRef]
- Nakamura, A.; Umemura, I.; Gomi, K.; Hasegawa, Y.; Kitano, H.; Sazuka, T. Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. Plant J. 2010, 46, 297–306. [Google Scholar] [CrossRef]
- Mangano, S.; Denita-Juarez, S.; Marzol, E.; Borassi, C.; Estevez, J.M. High Auxin and High Phosphate Impact on RSL2 Expression and ROS-Homeostasis Linked to Root Hair Growth in Arabidopsis thaliana. Front. Plant Sci. 2018, 9, 1164. [Google Scholar] [CrossRef]
- Datta, S.; Prescott, H.; Dolan, L. Intensity of a pulse of RSL4 transcription factor synthesis determines Arabidopsis root hair cell size. Nat. Plants 2015, 1, 15138. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, L.; Yan, A.; Liu, Y.; Liu, B.; Yu, C.; Zhang, A.; Schiefelbein, J.; Gan, Y. Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis. J. Exp. Bot. 2016, 67, 6363–6372. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, R.; Giri, J.; Pandey, B.K.; Giehl, R.F.H.; Hartmann, A.; Traini, R.; Truskina, J.; Leftley, N.; Hanlon, M.; Swarup, K.; et al. A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nat. Commun. 2018, 9, 1409. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, J.M.; Ranocha, P.; Kasulin, L.; Fusari, C.M.; Servi, L.; Aptekmann, A.A.; Gabarain, V.B.; Peralta, J.M.; Borassi, C.; Marzol, E.; et al. Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature. Nat. Commun. 2022, 13, 1310. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Konno, H.; Takeda, S.; Dolan, L.; Kato, M.; Aoyama, T.; Higaki, T.; Takigawa-Imamura, H.; Sato, M.H. PtdIns (3,5) P2 mediates root hair shank hardening in Arabidopsis. Nat. Plants 2018, 4, 888–897. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Zhou, Z.; Sun, L.; Yan, A.; Xi, W.; Yu, N.; Cai, W.; Chen, X.; Yu, H.; Schiefelbein, J.; et al. A zinc finger protein gene ZFP5 integrates phytohormone signaling to control root hair development in Arabidopsis. Plant J. 2012, 72, 474–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Barron, C.; Schiefelbein, J.; Chen, J.-G. Distinct relationships between GLABRA2 and single-repeat R3 MYB transcription factors in the regulation of trichome and root hair patterning in Arabidopsis. New Phytologist 2010, 185, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Rishmawi, L.; Pesch, M.; Juengst, C.; Schauss, A.C.; Schrader, A.; Hülskamp, M. Non-Cell-Autonomous Regulation of Root Hair Patterning Genes by WRKY75 in Arabidopsis. Plant Physiol. 2014, 165, 186–195. [Google Scholar] [CrossRef]
- Moro, C.; Gaspar, M.; Silva, F.; Pattathil, S.; Hahn, M.; Salgado, I.; Braga, M.R. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana. New Phytol. 2017, 213, 1771–1786. [Google Scholar] [CrossRef]
- Takahisa, Y.; Masanori, T.; Masahiko, I.; Taketa, S. Molecular cloning of a root hairless gene rth1 in rice. Breed. Sci. 2009, 59, 13–20. [Google Scholar]
- Kim, C.M.; Park, S.H.; Je, B.I.; Park, S.H.; Park, S.J.; Piao, H.L.; Eun, M.Y.; Dolan, L.; Han, C.-D. OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol. 2007, 143, 1220–1230. [Google Scholar] [CrossRef]
- You, T.; Shiotani, K.; Shitsukawa, N.; Miyao, A.; Hirochika, H.; Ichii, M.; Taketa, S. Root hairless 2 (rth2) mutant represents a loss-of-function allele of the cellulose synthase-like gene OsCSLD1 in rice (Oryza sativa L.). Breed. Sci. 2012, 61, 225–233. [Google Scholar]
- Ding, W.-N.; Huang, W.; Ning, Y.-Q.; Zhu, S.-H. Genetic Analysis and Mapping of a Novel Short Root Hair Gene OsSRH3 in Rice. Acta Agron. Sin. 2012, 38, 240–244. [Google Scholar] [CrossRef]
- Ding, W.; Tong, Y.; Ning, Y.; Zhu, S. Phenotypic analysis and gene mapping of a short root hair mutant Ossrh2 in rice (Oryza sativa). Chin. Bull. Bot. 2011, 46, 625–631. [Google Scholar]
- Ding, W.; Tong, Y.; Wu, J.; Zhu, S. Identification and gene mapping of a novel short root hair mutant in rice. Sci. Agric. Sin. 2011, 44, 4333–4339. [Google Scholar]
- Won, S.; Kumari, S.; Choi, S.; Cho, M.; Lee, S.; Cho, H. Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs. Mol. Cells 2010, 30, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Bo, K.; He, X.; Lv, S.; Bai, Y.; Ding, W.; Chen, M.; Cho, H.-T.; Wu, P. Root hair-specific expansins modulate root hair elongation in rice. Plant J. 2011, 66, 725–734. [Google Scholar]
- Li, L.; Hey, S.; Liu, S.; Liu, Q.; McNinch, C.; Hu, H.-C.; Wen, T.-J.; Marcon, C.; Paschold, A.; Bruce, W.; et al. Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Sci. Rep. 2016, 6, 34395. [Google Scholar] [CrossRef]
- Carminati, A.; Vetterlein, D. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources. Ann. Bot. 2013, 112, 277–290. [Google Scholar] [CrossRef]
- Nardini, A.; Casolo, V.; Borgo, A.; Savi, T.; Stenni, B.; Bertoncin, P.; Zini, L.; McDowell, N.G. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant Cell Environ. 2016, 39, 618–627. [Google Scholar] [CrossRef]
- Griffiths, M.; York, L. Targeting Root Ion Uptake Kinetics to Increase Plant Productivity and Nutrient Use Efficiency. Plant Physiol. 2020, 182, 1854–1868. [Google Scholar] [CrossRef]
- de Vries, F.T.; Griffiths, R.I.; Knight, C.G.; Nicolitch, O.; Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 2020, 368, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Gervais, T.; Creelman, A.; Li, X.-Q.; Bizimungu, B.; De Koeyer, D.; Dahal, K. Potato Response to Drought Stress: Physiological and Growth Basis. Front. Plant Sci. 2021, 12, 698060. [Google Scholar] [CrossRef] [PubMed]
Root Type | Plant Species | Genes |
---|---|---|
Adventitious root | Arabidopsis thaliana | PIN1/3, ARF7/17/19, MDR1, SHR, SOS3, WOX5/12 |
Oryza sativa L. | PIN1/2, RAA1, AGAP, GNOM1, MT2b, NAL1, PIN3t, RCC3, CRL1, CAND1, LOB16, CKX4, IAA3, TIR1, WOX11 | |
Zea mays L. | RTCL1, RTCS1, LOB6, RTCS | |
Solanum lycopersicum | CCD8 | |
Capsicum annuum L. | CaNAC46, CaDSR6 | |
Gossypium hirsutum | PIN2 | |
Lateral root | Arabidopsis thaliana | GLV6/10, ARF7/19, EXP4, ASA1, GATA23, PIN3, SCR, PLT1/2, BRX, PYL8, ALF4, DRO1, LAZY1, KNAT1, ABI3/4, AFB2/3, AGL21/44, ALF1/3/4, ARF7/8/19, AUX1, AXR1/4, BARK1, CEG, CRF2/3, DFL1, E2FA, EIR1, ETR1, FUS3, GNOM, IAA18/19/28, IQM3, KNAT1/3, KRP1/2, LAX3, LBD13/14, LEC2, MDR1, MIZ1, MKK6, MPK13, MUL, MUS, MYB44, NAC1/2, PGP1/4, PHB, PHV, PIN3/7, PLC5, PRE3, PUCHI, PYL8/9, REV, RML2, SGT1B, SHR, SOS3, SWP1, TIR1,WOX7/9, WRKY46, XBAT32, YUCCA4 |
Oryza sativa L. | GNOM, CYP2, ORC3, MT2b, AUX1, NAC9/10, IAA3/11/13, LAZY1, DRO1, CML16, EXPA8, GRXC12, MADS25, NAR2.1, RCc3, WRKY28 | |
Zea mays L. | NAC1, Rum1, ARF34, LA1, IRT1, SLR1/2 | |
Gossypium hirsutum | NAC9, EXP4 | |
Glycine max | LBD12, WRKY13, NAC1, EXPB2, WNK1 | |
Triticum aestivum L. | WRKY51 | |
Solanum lycopersicum | EXP4, IAA7, ARF2, DGT, MBP9 | |
Primary root | Arabidopsis thaliana | KNAT5, HAP3b, DGL1, MAIN, MAIL, RGS1, RGF1, PERK4, ABA2, AFB3, AGL12/14, ARF2, CKX7, DWF4, EIN3, ERF1, GNOM, HYD1, IQM3, MAIL1, MED12, MRP5, PERK4/8, PIN1/2, PLC5, RML1/2, SHR, WOX9/14, UPB1, BSK3 |
Oryza sativa L. | GNA1, GLU3, SPR1, PIN3t, AGAP, ARF12, GLR3.1, DGL1, SOR1, AGAP, AKT1, CML16, CRL2, DGL1, EXPA8, MADS25, MOGS, RAA1, RCc3, RRL1/2 | |
Zea mays L. | AUX1, EXPB2 | |
Solanum lycopersicum | EXP1, EXPB2 | |
Glycine max | WAK1 | |
Root hair | Arabidopsis thaliana | COW1, RHD6, IAA7, CTR1, BRI1, AKT1, AXR2, COW1, CPC, CPL3, ETC1/2, EXPA7, FH8, GL1, GLV4, HDG11, IAA17, KOJAK, LRX1/2, MED12/13, MRH1, PERK13, PGP4, PLC5, PRP3, RHD1, ROP2, SOS4, TIP1, TRH1, TTG, WRKY75, ZFP5 |
Oryza sativa L. | APY2, CSLD1, EXPB5, RHL1, SRH1/3, EXP17, YUCCA1, EXPA30, FH1, NOX3, XXT1 | |
Zea mays L. | RTH1/2 | |
Hordeum vulgare L. | EXPB1/7 | |
Gossypium hirsutum | EXPA4 | |
Triticum aestivum L. | RSL2/4 | |
Solanum lycopersicum | LKT1, SlTRY, SlGL3 | |
Glycine max | EXPB2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, T.; Kazim, A.; Wang, Y.; Richard, D.; Yao, P.; Bi, Z.; Liu, Y.; Sun, C.; Bai, J. Root-Related Genes in Crops and Their Application under Drought Stress Resistance—A Review. Int. J. Mol. Sci. 2022, 23, 11477. https://doi.org/10.3390/ijms231911477
Qin T, Kazim A, Wang Y, Richard D, Yao P, Bi Z, Liu Y, Sun C, Bai J. Root-Related Genes in Crops and Their Application under Drought Stress Resistance—A Review. International Journal of Molecular Sciences. 2022; 23(19):11477. https://doi.org/10.3390/ijms231911477
Chicago/Turabian StyleQin, Tianyuan, Ali Kazim, Yihao Wang, Dormatey Richard, Panfeng Yao, Zhenzhen Bi, Yuhui Liu, Chao Sun, and Jiangping Bai. 2022. "Root-Related Genes in Crops and Their Application under Drought Stress Resistance—A Review" International Journal of Molecular Sciences 23, no. 19: 11477. https://doi.org/10.3390/ijms231911477
APA StyleQin, T., Kazim, A., Wang, Y., Richard, D., Yao, P., Bi, Z., Liu, Y., Sun, C., & Bai, J. (2022). Root-Related Genes in Crops and Their Application under Drought Stress Resistance—A Review. International Journal of Molecular Sciences, 23(19), 11477. https://doi.org/10.3390/ijms231911477