D121 Located within the DRY Motif of P2Y12 Is Essential for P2Y12-Mediated Platelet Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antibodies and Reagents
2.2. Preparation of Human Platelets
2.3. Platelet Aggregation and ATP Secretion
2.4. Western Blotting
2.5. Whole Blood Flow over a Collagen-Coated Surface
2.6. Animal Housing and Production
2.7. Tail Bleeding Assay
2.8. Preparation of Mouse Platelets
2.9. Carotid Artery Injury
2.10. Statistics
3. Results
3.1. ADP-Mediated Platelet Aggregation Is Disrupted in an Otherwise Healthy Human Subject
3.2. Defective VASP Phosphorylation and GTP-Rap1b Formation in Platelets from PDS25
3.3. Signaling Downstream of Gi-Coupled P2Y12 Is Inhibited in Platelets from PDS25
3.4. Thrombus Formation Is Reduced in Whole Blood from PDS25
3.5. P2Y12 from PDS25 Contains a Novel SNP That Results in a D > N Substitution at Position 121
3.6. Reactivity to 2-MeSADP Is Altered in D127N P2Y12 Knock-In Mouse Platelets
3.7. Hemostasis and Thrombosis Are both Interrupted in P2Y12 D127N Knock-In Mice
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Packham, M.A. Role of platelets in thrombosis and hemostasis. Can. J. Physiol. Pharmacol. 1994, 72, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Brass, L. Understanding and evaluating platelet function. Hematol. Am. Soc. Hematol. Educ. Program 2010, 2010, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. Introduction: P2 receptors. Curr. Top. Med. Chem. 2004, 4, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Abbracchio, M.P.; Boeynaems, J.M.; Barnard, E.A.; Boyer, J.L.; Kennedy, C.; Miras-Portugal, M.T.; King, B.F.; Gachet, C.; Jacobson, K.A.; Weisman, G.A.; et al. Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol. Sci. 2003, 24, 52–55. [Google Scholar] [CrossRef]
- Jin, J.; Kunapuli, S.P. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc. Natl. Acad. Sci. USA 1998, 95, 8070–8074. [Google Scholar] [CrossRef]
- Jin, J.; Quinton, T.M.; Zhang, J.; Rittenhouse, S.E.; Kunapuli, S.P. Adenosine diphosphate (ADP)-induced thromboxane A(2) generation in human platelets requires coordinated signaling through integrin alpha(IIb)beta(3) and ADP receptors. Blood 2002, 99, 193–198. [Google Scholar] [CrossRef]
- Dangelmaier, C.; Jin, J.; Smith, J.B.; Kunapuli, S.P. Potentiation of thromboxane A2-induced platelet secretion by Gi signaling through the phosphoinositide-3 kinase pathway. Thromb. Haemost. 2001, 85, 341–348. [Google Scholar] [CrossRef]
- Kim, S.; Jin, J.; Kunapuli, S.P. Akt activation in platelets depends on Gi signaling pathways. J. Biol. Chem. 2004, 279, 4186–4195. [Google Scholar] [CrossRef]
- Kim, S.; Kunapuli, S.P. P2Y12 receptor in platelet activation. Platelets 2011, 22, 56–60. [Google Scholar] [CrossRef]
- Stefanini, L.; Paul, D.S.; Robledo, R.F.; Chan, E.R.; Getz, T.M.; Campbell, R.A.; Kechele, D.O.; Casari, C.; Piatt, R.; Caron, K.M.; et al. RASA3 is a critical inhibitor of RAP1-dependent platelet activation. J. Clin. Investig. 2015, 125, 1419–1432. [Google Scholar] [CrossRef] [Green Version]
- Bertoni, A.; Tadokoro, S.; Eto, K.; Pampori, N.; Parise, L.V.; White, G.C.; Shattil, S.J. Relationships between Rap1b, affinity modulation of integrin alpha IIbbeta 3, and the actin cytoskeleton. J. Biol. Chem. 2002, 277, 25715–25721. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Lim, C.J.; Watanabe, N.; Soriani, A.; Ratnikov, B.; Calderwood, D.A.; Puzon-McLaughlin, W.; Lafuente, E.M.; Boussiotis, V.A.; Shattil, S.J.; et al. Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Curr. Biol. 2006, 16, 1796–1806. [Google Scholar] [CrossRef] [PubMed]
- Chrzanowska-Wodnicka, M.; Smyth, S.S.; Schoenwaelder, S.M.; Fischer, T.H.; White, G.C., 2nd. Rap1b is required for normal platelet function and hemostasis in mice. J. Clin. Investig. 2005, 115, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.E.; Dawood, B.B.; Lester, W.A.; Peake, I.R.; Rodeghiero, F.; Goodeve, A.C.; Makris, M.; Wilde, J.T.; Mumford, A.D.; Watson, S.P.; et al. Identification and characterization of a novel P2Y 12 variant in a patient diagnosed with type 1 von Willebrand disease in the European MCMDM-1VWD study. Blood 2009, 113, 4110–4113. [Google Scholar] [CrossRef]
- Nisar, S.; Daly, M.E.; Federici, A.B.; Artoni, A.; Mumford, A.D.; Watson, S.P.; Mundell, S.J. An intact PDZ motif is essential for correct P2Y12 purinoceptor traffic in human platelets. Blood 2011, 118, 5641–5651. [Google Scholar] [CrossRef]
- Lecchi, A.; Razzari, C.; Paoletta, S.; Dupuis, A.; Nakamura, L.; Ohlmann, P.; Gachet, C.; Jacobson, K.A.; Zieger, B.; Cattaneo, M. Identification of a new dysfunctional platelet P2Y12 receptor variant associated with bleeding diathesis. Blood 2015, 125, 1006–1013. [Google Scholar] [CrossRef]
- Patel, Y.M.; Lordkipanidze, M.; Lowe, G.C.; Nisar, S.P.; Garner, K.; Stockley, J.; Daly, M.E.; Mitchell, M.; Watson, S.P.; Austin, S.K.; et al. A novel mutation in the P2Y12 receptor and a function-reducing polymorphism in protease-activated receptor 1 in a patient with chronic bleeding. J. Thromb. Haemost. 2014, 12, 716–725. [Google Scholar] [CrossRef]
- Cattaneo, M. Inherited platelet-based bleeding disorders. J. Thromb. Haemost. 2003, 1, 1628–1636. [Google Scholar] [CrossRef]
- Hollopeter, G.; Jantzen, H.M.; Vincent, D.; Li, G.; England, L.; Ramakrishnan, V.; Yang, R.B.; Nurden, P.; Nurden, A.; Julius, D.; et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001, 409, 202–207. [Google Scholar] [CrossRef]
- Shiraga, M.; Miyata, S.; Kato, H.; Kashiwagi, H.; Honda, S.; Kurata, Y.; Tomiyama, Y.; Kanakura, Y. Impaired platelet function in a patient with P2Y12 deficiency caused by a mutation in the translation initiation codon. J. Thromb. Haemost. 2005, 3, 2315–2323. [Google Scholar] [CrossRef]
- Kostyak, J.C.; Mauri, B.; Patel, A.; Dangelmaier, C.; Reddy, H.; Kunapuli, S.P. Phosphorylation of protein kinase Cdelta positively regulates thromboxane generation in platelets. J. Biol. Chem. 2021, 296, 100720. [Google Scholar] [CrossRef] [PubMed]
- Kostyak, J.C.; Mauri, B.R.; Dangelmaier, C.; Patel, A.; Zhou, Y.; Eble, J.A.; Tsygankov, A.Y.; McKenzie, S.E.; Kunapuli, S.P. TULA-2 Deficiency Enhances Platelet Functional Responses to CLEC-2 Agonists. TH Open 2018, 2, e411–e419. [Google Scholar] [CrossRef]
- Patel, A.; Kostyak, J.; Dangelmaier, C.; Badolia, R.; Bhavanasi, D.; Aslan, J.E.; Merali, S.; Kim, S.; Eble, J.A.; Goldfinger, L.; et al. ELMO1 deficiency enhances platelet function. Blood Adv. 2019, 3, 575–587. [Google Scholar] [CrossRef]
- Glenn, J.R.; Dovlatova, N.; White, A.E.; Dhillon, K.; Heptinstall, S.; Fox, S.C. “VASPFix” for measurement of VASP phosphorylation in platelets and for monitoring effects of P2Y12 antagonists. Thromb. Haemost. 2014, 111, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Keularts, I.M.; van Gorp, R.M.; Feijge, M.A.; Vuist, W.M.; Heemskerk, J.W. Alpha(2A)-adrenergic receptor stimulation potentiates calcium release in platelets by modulating cAMP levels. J. Biol. Chem. 2000, 275, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Rovati, G.E.; Capra, V.; Neubig, R.R. The highly conserved DRY motif of class A G protein-coupled receptors: Beyond the ground state. Mol. Pharmacol. 2007, 71, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Capra, V.; Veltri, A.; Foglia, C.; Crimaldi, L.; Habib, A.; Parenti, M.; Rovati, G.E. Mutational analysis of the highly conserved ERY motif of the thromboxane A2 receptor: Alternative role in G protein-coupled receptor signaling. Mol. Pharmacol. 2004, 66, 880–889. [Google Scholar] [CrossRef]
- Scheer, A.; Fanelli, F.; Costa, T.; De Benedetti, P.G.; Cotecchia, S. Constitutively active mutants of the alpha 1B-adrenergic receptor: Role of highly conserved polar amino acids in receptor activation. EMBO J. 1996, 15, 3566–3578. [Google Scholar] [CrossRef]
- Favre, N.; Fanelli, F.; Missotten, M.; Nichols, A.; Wilson, J.; di Tiani, M.; Rommel, C.; Scheer, A. The DRY motif as a molecular switch of the human oxytocin receptor. Biochemistry 2005, 44, 9990–10008. [Google Scholar] [CrossRef] [PubMed]
- Scheer, A.; Fanelli, F.; Costa, T.; De Benedetti, P.G.; Cotecchia, S. The activation process of the alpha1B-adrenergic receptor: Potential role of protonation and hydrophobicity of a highly conserved aspartate. Proc. Natl. Acad. Sci. USA 1997, 94, 808–813. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, M.; Zighetti, M.L.; Lombardi, R.; Martinez, C.; Lecchi, A.; Conley, P.B.; Ware, J.; Ruggeri, Z.M. Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a patient with congenital bleeding. Proc. Natl. Acad. Sci. USA 2003, 100, 1978–1983. [Google Scholar] [CrossRef]
- Mundell, S.J.; Rabbolini, D.; Gabrielli, S.; Chen, Q.; Aungraheeta, R.; Hutchinson, J.L.; Kilo, T.; Mackay, J.; Ward, C.M.; Stevenson, W.; et al. Receptor homodimerization plays a critical role in a novel dominant negative P2RY12 variant identified in a family with severe bleeding. J. Thromb. Haemost. 2018, 16, 44–53. [Google Scholar] [CrossRef]
- Scavone, M.; Femia, E.A.; Cattaneo, M. P2Y(1)(2) receptor gene mutations associated with bleeding. Platelets 2017, 28, 421–423. [Google Scholar] [CrossRef] [PubMed]
- Ohlmann, P.; Lecchi, A.; El-Tayeb, A.; Muller, C.E.; Cattaneo, M.; Gachet, C. The platelet P2Y(12) receptor under normal and pathological conditions. Assessment with the radiolabeled selective antagonist [(3)H]PSB-0413. Purinergic Signal. 2013, 9, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Franke, R.R.; Sakmar, T.P.; Graham, R.M.; Khorana, H.G. Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J. Biol. Chem. 1992, 267, 14767–14774. [Google Scholar] [CrossRef]
- Cohen, G.B.; Yang, T.; Robinson, P.R.; Oprian, D.D. Constitutive activation of opsin: Influence of charge at position 134 and size at position 296. Biochemistry 1993, 32, 6111–6115. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Karnik, S.S. Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin. J. Biol. Chem. 1996, 271, 25406–25411. [Google Scholar] [CrossRef]
- Ge, H.; Scheinin, M.; Kallio, J. Constitutive precoupling to G(i) and increased agonist potency in the alpha(2B)-adrenoceptor. Biochem. Biophys. Res. Commun. 2003, 306, 959–965. [Google Scholar] [CrossRef]
- Lu, Z.L.; Curtis, C.A.; Jones, P.G.; Pavia, J.; Hulme, E.C. The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: Mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signaling. Mol. Pharmacol. 1997, 51, 234–241. [Google Scholar] [CrossRef]
- Burstein, E.S.; Spalding, T.A.; Brann, M.R. The second intracellular loop of the m5 muscarinic receptor is the switch which enables G-protein coupling. J. Biol. Chem. 1998, 273, 24322–24327. [Google Scholar] [CrossRef] [Green Version]
- Arora, K.K.; Cheng, Z.; Catt, K.J. Mutations of the conserved DRS motif in the second intracellular loop of the gonadotropin-releasing hormone receptor affect expression, activation, and internalization. Mol. Endocrinol. 1997, 11, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.A.; Wade, S.M.; Fowler, C.B.; Woods, D.D.; Abada, P.B.; Mosberg, H.I.; Neubig, R.R. Mutagenesis and peptide analysis of the DRY motif in the alpha2A adrenergic receptor: Evidence for alternate mechanisms in G protein-coupled receptors. Biochem. Biophys. Res. Commun. 2002, 293, 1233–1241. [Google Scholar] [CrossRef]
Parameter | WT | Heterozygous D127N | Homozygous D127N |
---|---|---|---|
WBC (K/mL) | 5.67 ± 1.25 | 6.04 ± 0.80 | 5.06 ± 0.80 |
NE (K/mL) | 0.83 ± 0.23 | 0.59 ± 0.08 | 0.69 ± 0.09 |
LY (K/mL) | 4.50 ± 1.00 | 4.86 ± 0.66 | 3.61 ± 0.70 |
MO (K/mL) | 0.44 ± 0.11 | 0.59 ± 0.10 | 0.54 ± 0.12 |
RBC (106/mL) | 9.05 ± 0.20 | 9.29 ± 0.25 | 9.30 ± 0.48 |
Hct (%) | 38.76 ± 0.94 | 40.60 ± 1.14 | 40.28 ± 1.81 |
Plt (K/mL) | 761 ± 29 | 721 ± 33 | 720 ± 56 |
MPV (fL) | 4.17 ± 0.06 | 4.12 ± 0.02 | 4.22 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dangelmaier, C.; Mauri, B.; Patel, A.; Kunapuli, S.P.; Kostyak, J.C. D121 Located within the DRY Motif of P2Y12 Is Essential for P2Y12-Mediated Platelet Function. Int. J. Mol. Sci. 2022, 23, 11519. https://doi.org/10.3390/ijms231911519
Dangelmaier C, Mauri B, Patel A, Kunapuli SP, Kostyak JC. D121 Located within the DRY Motif of P2Y12 Is Essential for P2Y12-Mediated Platelet Function. International Journal of Molecular Sciences. 2022; 23(19):11519. https://doi.org/10.3390/ijms231911519
Chicago/Turabian StyleDangelmaier, Carol, Benjamin Mauri, Akruti Patel, Satya P. Kunapuli, and John C Kostyak. 2022. "D121 Located within the DRY Motif of P2Y12 Is Essential for P2Y12-Mediated Platelet Function" International Journal of Molecular Sciences 23, no. 19: 11519. https://doi.org/10.3390/ijms231911519
APA StyleDangelmaier, C., Mauri, B., Patel, A., Kunapuli, S. P., & Kostyak, J. C. (2022). D121 Located within the DRY Motif of P2Y12 Is Essential for P2Y12-Mediated Platelet Function. International Journal of Molecular Sciences, 23(19), 11519. https://doi.org/10.3390/ijms231911519