Potential of Rhizobia Nodulating Anthyllis vulneraria L. from Ultramafic Soil as Plant Growth Promoting Bacteria Alleviating Nickel Stress in Arabidopsis thaliana L.
Abstract
:1. Introduction
2. Results
2.1. Rhizobia Identification, Characterization, and Screening for PGP Traits
2.2. Effect of Rhizobial Strains on Arabidopsis Growth under Normal versus Nickel Stress Conditions
2.3. Effect of Rhizobial Inoculants on Root Growth and Lateral Root Formation under Normal versus Nickel Stress Conditions
2.4. Effect of Rhizobial Inoculants on Gene Expression Level in Arabidopsis under Normal versus Nickel Stress Conditions
2.5. Effect of Rhizobial Strains on Nickel Concentration and Uptake under Normal versus Nickel Stress Conditions
2.6. Effect of Rhizobial Inoculants on Leaf Functional Anatomical Traits under Normal versus Nickel-Stress Conditions
2.7. Effect of Rhizobial Inoculants on Chloroplast Ultrastructure and Photosynthetic Pigment Content under Normal versus Nickel-Stress Conditions
2.8. Effect of Rhizobial Inoculants on Chlorophyll a Fluorescence Uptake under Normal versus Nickel-Stress Conditions
2.9. Effect of Rhizobial Inoculants on Reactive Oxygen Species (ROS) Accumulation and Cell Death under Normal versus Nickel-Stress Conditions
2.10. Effect of Rhizobial Inoculants on the Activity of Antioxidant Enzymes and Phenolic Accumulation under Normal versus Nickel-Stress Conditions
2.11. Arabidopsis Response to Inoculation with Rhizobial Strains and Ni-Stress—Results of the PCA
3. Discussion
3.1. Plant Growth-Promoting Rhizobia Nodulating Anthyllis Vulneraria on Ultramafic Soil
3.2. Arabidopsis Response to PGP Rhizobia Inoculation under Control Conditions
3.3. Arabidopsis Reactions to Rhizobia Inoculation under Ni-Stress
4. Materials and Methods
4.1. Study Site and Samples Collection
4.2. Rhizobia Isolation, Identification and Characterization
4.3. Rhizobia Tolerance to Nickel
4.4. Arabidopsis Root Growth Promotion under Ni Stress on Vertical Agar Plates
4.5. Jiffy Pots Experiment
4.6. Analysis of Ni Concentration
4.7. Examination of Leaf Anatomy and Chloroplast Ultrastructure
4.8. Photosynthetic Pigments Composition and Chlorophyll a Fluorescence
4.9. Hydrogen Peroxide Accumulation and ROS, and Cell Death Localization
4.10. Enzyme Activity Measurements
4.11. Phenols Concentration
4.12. RNA Isolation, cDNA Synthesis and qPCR Analysis
4.13. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brady, K.U.; Kruckeberg, A.R.; Bradshaw, H.D. Evolutionary ecology of plant adaptation to serpentine soils. Ann. Rev. Ecol. Evol. Syst. 2005, 36, 243–266. [Google Scholar] [CrossRef]
- Kazakou, E.; Dimitrakopoulos, P.G.; Baker, A.J.M.; Reeves, R.D.; Troumbis, A.Y. Hypotheses, mechanisms and tradeoffs of tolerance and adaptation to serpentine soils: From species to ecosystem level. Biol. Rev. 2008, 83, 495–508. [Google Scholar]
- Brooks, R.R. Serpentine and Its Vegetation: A Multidisciplinary Approach; Dioscorides Press: Portland, Oregon, 1987. [Google Scholar]
- Kruckeberg, A.R. Geology and Plant Life: The Effects of Land Forms and Rock Types on Plants; University of Washington Press: Seattle, WA, USA, 2002. [Google Scholar]
- Proctor, J.K. Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect. Plant Ecol. Evol. Syst. 2003, 6, 105–124. [Google Scholar] [CrossRef]
- Alexander, E.B.; Coleman, R.G.; Keeler-Wolf, T.; Harrison, S.P. Serpentine Geoecology of Western North America: Geology, Soils and Vegetation; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Reeves, R.D.; Baker, A.J.M.; Becquer, T.; Echevarria, G.; Miranda, Z.J.G. The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant Soil 2007, 293, 107–119. [Google Scholar] [CrossRef]
- Rajkumar, M.; Prasad, M.N.; Freitas, H.; Ae, N. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit. Rev. Biotechnol. 2009, 29, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Majorel, C.; Hannibal, L.; Ducousso, M.; Lebrun, M.; Jourand, P. Evidence of nickel (Ni) efflux in Ni-tolerant ectomycorhizal Pisolithus albus isolated from ultramafic soil. Environ. Microbiol. Rep. 2014, 6, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Vincent, B.; Juillot, F.; Fritsch, E.; Klonowska, A.; Gerbert, N.; Acherar, S.; Grangeteau, C.; Hannibal, L.; Galiana, A.; Ducousso, M.; et al. A leguminous species exploiting alpha- and beta rhizobia for adaptation to ultramafic and volcano-sedimentary soils: An endemic Acacia spirorbis model from New Caledonia. FEMS Microbiol. Ecol. 2019, 95, fiz099. [Google Scholar] [CrossRef]
- Kasowska, D.; Koszelnik-Leszek, A. Ecological features of spontaneous vascular flora of serpentine post-mining sites in Lower Silesia. Arch. Environ. Prot. 2014, 40, 33–52. [Google Scholar] [CrossRef]
- Sujkowska-Rybkowska, M.; Ważny, R. Metal resistant rhizobia and ultrastructure of Anthyllis vulneraria nodules from zinc and lead contaminated tailing in Poland. Int. J. Phytorem. 2018, 20, 709–720. [Google Scholar] [CrossRef]
- Sujkowska-Rybkowska, M.; Kasowska, D.; Gediga, K.; Banasiewicz, J.; Stępkowski, T. Lotus corniculatus-rhizobia symbiosis under Ni, Co and Cr stress on ultramafic soil. Plant Soil. 2020, 451, 459–484. [Google Scholar] [CrossRef]
- Oleńska, E.; Małek, W.; Sujkowska-Rybkowska, M.; Szopa, S.; Włostowski, T.; Aleksandrowicz, O.; Święcicka, I.; Wójcik, M.; Thijs, S.; Vangronsveld, J. An alliance of Trifolium repens-Rhizobium leguminosarum bv. trifolii mycorrhizal fungi from an old Zn-Pb-Cd rich waste heap as a promising tripartite system for phytostabilization of metal polluted soils. Front. Microbiol. 2022, 13, 853407. [Google Scholar] [CrossRef] [PubMed]
- Berg, G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef]
- Oldroyd, G.E.; Murray, J.D.; Poole, P.S.; Downie, J.A. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 2011, 45, 119–144. [Google Scholar] [CrossRef] [PubMed]
- Shokri, D.; Emtiazi, G. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr. Microbiol. 2010, 61, 217–225. [Google Scholar] [CrossRef]
- Bal, H.B.; Das, S.; Dangar, T.K.; Adhya, T.K. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J. Basic Microbiol. 2013, 53, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Flores-Felix, J.D.; Menendez, E.; Rivera, L.P.; Marcos-Garcia, M.; Martinez-Hidalgo, P.; Mateos, P.F.; Martinez-Molina, E.; Velazquez, M.D.; Garcia-Fraile, P.; Rivas, R. Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J. Plant Nutr. Soil Sci. 2013, 176, 876–882. [Google Scholar] [CrossRef]
- Antoun, H.; Beauchamp, C.J.; Goussard, N.; Chabot, R.; Lalande, R. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant Soil 1998, 204, 57–67. [Google Scholar] [CrossRef]
- Biswas, J.C.; Ladha, J.K.; Dazzo, F.B. Rhizobial inoculation influences seedling vigor and yield of rice. Agron. J. 2000, 92, 880–886. [Google Scholar] [CrossRef]
- Gutiérrez-Zamora, M.L.; Martínez-Romero, E. Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J. Biotechnol. 2001, 91, 117–126. [Google Scholar] [CrossRef]
- Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
- García-Fraile, P.; Carro, L.; Robledo, M.; Ramírez-Bahena, M.H.; Flores-Félix, J.D.; Fernández, M.T.; Mateos, P.F.; Rivas, R.; Igual, J.M.; Martínez-Molina, E.; et al. Rhizobium promotes non-legumes growth and quality in several production steps: Towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 2012, 7, e38122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanni, Y.G.; Dazzo, F.B.; Squartini, A.; Zanardo, M.; Zidan, M.I.; Elsadany, A.E.Y. Assessment of the natural endophytic association between Rhizobium and wheat and its ability to increase wheat production in the Nile delta. Plant Soil 2016, 407, 367–383. [Google Scholar] [CrossRef]
- Poitout, A.; Martinière, A.; Kucharczyk, B.; Queruel, N.; Silva-Andia, J.; Mashkoor, S.; Gamet, L.; Varoquaux, F.; Paris, N.; Sentenac, H.; et al. Local signalling pathways regulate the Arabidopsis root developmental response to Mesorhizobium loti inoculation. J. Exp. Bot. 2017, 68, 1199–1211. [Google Scholar] [CrossRef]
- Dakora, F.; Matiru, V.; Kanu, A. Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front. Plant Sci. 2015, 6, 700. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Sathya, A.; Vijayabharathi, R.; Varshney, R.K.; Gowda, C.L.L.; Krishnamurthy, L. Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech 2015, 5, 355–377. [Google Scholar] [CrossRef] [PubMed]
- Fagorzi, C.; Checcucci, A.; di Cenzo, G.C.; Debiec-Andrzejewska, K.; Dziewit, Ł.; Pini, F.; Mengoni, A. Harnessing Rhizobia to improve heavy-metal phytoremediation by legumes. Genes 2018, 9, 542. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.K.; Mohammed, M.; Ibny, F.Y.I.; Dakora, F.D. Rhizobia as a source of plant growth-promoting molecules: Potential applications and possible operational mechanisms. Front. Sustain. Food Syst. 2021, 4, 619676. [Google Scholar] [CrossRef]
- Mir, M.I.; Kumar, B.K.; Gopalakrishnan, S.; Vadlamudi, S.; Hameeda, B. Characterization of rhizobia isolated from leguminous plants and their impact on the growth of ICCV 2 variety of chickpea (Cicer arietinum L.). Heliyon 2021, 7, e08321. [Google Scholar] [CrossRef]
- Jiang, C.Y.; Sheng, X.F.; Qian, M.; Wang, Q.Y. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 2008, 72, 157–164. [Google Scholar] [CrossRef]
- Costa, F.S.; Macedo, M.W.F.S.; Araújo, A.C.M.; Rodrigues, C.A.; Kuramae, E.E.; de Barros Alcanfor, S.K.; Pessoa-Filho, M.; Barreto, C.C. Assessing nickel tolerance of bacteria isolated from serpentine soils. Braz. J. Microbiol. 2019, 50, 705–713. [Google Scholar] [CrossRef]
- Jing, Y.; He, Z.; Yang, X. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Zhejiang Univ. Sci. B 2007, 8, 192–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, P.H.; Welch, R.M.; Cary, E.E. Nickel: A micronutrient essential for higher plants. Plant Physiol. 1987, 85, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.S.A.; Ashraf, M. Essential roles and hazardous effects of nickel in plants. Rev. Environ. Contam. Toxicol. 2011, 214, 125–167. [Google Scholar] [PubMed]
- Yusuf, M.; Fariduddin, Q.; Hayat, S.; Ahmad, A. Nickel: An overview of uptake, essentiality and toxicity in plants. Bull. Environ. Contam. Toxicol. 2011, 86, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bhalerao, S.A.; Amit, S.S.; Anukthi, C.P. Toxicity of nickel in plants. Int. J. Pure Appl. Biosci. 2015, 3, 345–355. [Google Scholar]
- Seregin, I.V.; Kozhevnikova, A.D. Physiological role of nickel and its toxic effects on higher plants. Russ. J. Plant Physiol. 2006, 53, 257–277. [Google Scholar] [CrossRef]
- Wang, H.H.; Kang, J.; Zeng, F.H.; Jiang, M.Y. Effect of nickel at high concentrations on growth activities of enzymes of rice seedlings. Acta Agron. Sin. 2001, 27, 953–957. [Google Scholar]
- Prasad, S.M.; Dwivedi, R.; Zeeshan, M. Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 2005, 43, 177–185. [Google Scholar] [CrossRef]
- Pandey, N.; Pathak, G. Nickel alters antioxidative defense and water status in green gram. Ind. J. Plant Physiol. 2006, 11, 113–118. [Google Scholar]
- Gajewska, E.; Skłodowska, M. Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 2007, 20, 27–36. [Google Scholar] [CrossRef]
- Yan, R.; Gao, S.; Yang, W.; Cao, M.; Wang, S.; Chen, F. Nickel toxicity induced antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. cotyledons. Plant Soil Environ. 2008, 54, 294–300. [Google Scholar] [CrossRef]
- Mandon, K.; Pauly, N.; Boscari, A.; Brouquisse, R.; Frendo, P.; Demple, B.; Puppo, A. ROS in the Legume-Rhizobium Symbiosis. In Reactive Oxygen Species in Plant Signaling; Springer: Berlin/Heidelberg, Germany, 2009; pp. 135–147. [Google Scholar]
- Foyer, C.H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 2018, 154, 134–142. [Google Scholar] [CrossRef]
- Khorobrykh, S.; Havurinne, V.; Mattila, H.; Tyystjärvi, E. Oxygen and ROS in photosynthesis. Plants 2020, 9, 91. [Google Scholar] [CrossRef]
- Wituszyńska, W.; Karpiński, S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Rad. Biol. Med. 2018, 122, 4–20. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Walker, P.L. Ecophysiology of Metal Uptake by Tolerant Plants: Heavy Metal Tolerance in Plants. In Evolutionary Aspects; Shaw, A.J., Ed.; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Duman, F.; Ozturk, F. Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.). J. Environ. Sci. 2010, 22, 526–532. [Google Scholar] [CrossRef]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Singh, R.; Arora, N.K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front. Microbiol. 2017, 8, 1706. [Google Scholar] [CrossRef]
- Żołnierz, L. Grass communities occurring in Lower Silesian serpentine-selected aspects of ecology. Zesz. Nauk. UP Wroc. 2007. (In Polish) [Google Scholar]
- Banasiewicz, J.; Granada, C.E.; Lisboa, B.B.; Grzesiuk, M.; Matuśkiewicz, W.; Bałka, M.; Schlindwein, G.; Vargas, L.K.; Passaglia, L.M.P.; Stępkowski, T. Diversity and phylogenetic affinities of Bradyrhizobium isolates from pampa and atlantic forest biomes. Syst. Appl. Microbiol. 2021, 44, 126203. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.Z.; Huang, J.; Gyaneshwar, P.; Zhao, D. Rhizobium sp. IRBG74 alters Arabidopsis root development by affecting auxin signaling. Front. Microbiol. 2018, 8, 2556. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Müller, D.B.; Srinivas, G.; Garrido-Oter, R.; Potthoff, E.; Rott, M.; Dombrowski, N.; Münch, P.C.; Spaepen, S.; Remus-Emsermann, M.; et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 2015, 528, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Mahieu, S.; Frérot, H.; Vidal, C.; Galiana, A.; Heulin-Gotty, K.; Maure, L.; Brunel, B.; Lefèbvre, C.; Escarré, J.; Cleyet-Marel, J.-C. Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant Soil 2011, 342, 405–417. [Google Scholar] [CrossRef]
- Grison, C.M.; Mazel, M.; Sellini, A.; Escande, V.; Biton, J.; Grison, C. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Environ. Sci. Pollut. Res. 2015, 22, 5667–5676. [Google Scholar] [CrossRef] [PubMed]
- Chaintreuil, C.; Rigault, F.; Moulin, L.; Jaffre, T.; Fardoux, J.; Giraud, E.; Dreyfus, B.; Bailly, X. Nickel resistance determinants in Bradyrhizobium strains from nodules of the endemic New Caledonia legume Serianthes calycina. Appl. Environ. Microbiol. 2007, 73, 8018–8022. [Google Scholar] [CrossRef]
- Mengoni, A.; Schat, H.; Vangronsveld, J. Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 2010, 331, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Mergeay, M.; Monchy, S.; Vallaeys, T.; Auquier, V.; Benotmane, A.; Bertin, F.; Taghavi, S.; Dunn, J.; van der Lelie, D.; Wattiez, R. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: Towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 2003, 27, 385–410. [Google Scholar] [CrossRef]
- Anjum, M.A.; Zahir, Z.; Arshad, M.; Ashraf, M. Isolation and screening of rhizobia for auxin biosynthesis and growth promotion of mung bean (Vigna radiata L.) seedlings under axenic conditions. Soil Environ. 2011, 30, 18–26. [Google Scholar]
- Friml, J. Auxin transport-shaping the plant. Curr. Opin. Plant Biol. 2003, 6, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.L.; Ishikawa, H.; Estelle, M.A. Responses of Arabidopsis roots to auxin studied with high temporal resolution: Comparison of wild type and auxin-response mutants. Planta 1994, 194, 215–222. [Google Scholar] [CrossRef]
- Reed, R.C.; Brady, S.R.; Muday, G.K. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol. 1998, 118, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth-promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef]
- Wang, F.; Cui, X.; Sun, Y.; Dong, C.H. Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep. 2013, 32, 1099–1109. [Google Scholar] [CrossRef]
- Li, J.; Ovakim, D.H.; Charles, T.C.; Glick, B.R. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol. 2000, 41, 101–105. [Google Scholar] [CrossRef]
- Oldroyd, G.E.D.; Engstrom, E.M.; Long, S.R. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 2001, 13, 1835–1849. [Google Scholar] [CrossRef]
- Kumari, P.; Meena, M.; Upadhyay, R.S. Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatal. Agric. Biotechnol. 2018, 16, 155–162. [Google Scholar] [CrossRef]
- Kumar, A.; Bahadur, I.; Maurya, B.R.; Raghuwanshi, R.; Meena, V.S.; Singh, D.K.; Dixit, J. Does a plant growth promoting rhizobacteria enhance agricultural sustainability? J. Pure App. Microbiol. 2015, 9, 715–724. [Google Scholar]
- Chi, F.; Shen, S.H.; Cheng, H.P.; Jing, Y.X.; Yanni, Y.G.; Dazzo, F.B. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol. 2005, 71, 7271–7278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazear-Cerezo, S.; Martinez-Montiel, N.; Garcia-Sanchez, J.; Perezy-Terron, R.; Martinez-Contreras, D. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiol. Res. 2018, 208, 85–98. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant 2016, 38, 102. [Google Scholar] [CrossRef]
- Arumugam, R.; Rajasekaran, S.; Nagarajan, S.M. Response of arbuscular mycorrhizal fungi and Rhizobium inoculation on growth and chlorophyll content of Vigna unguiculata (L.) Walp Var. Pusa 151. J. Appl. Sci. Environ. 2010, 14, 113–115. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K.; Tanwar, A.; Aggarwal, A. Interaction of VAM Fungi with Bradyrhizobium japonicum and Trichoderma viride on some physiological parameters of soybean. J. Pure Appl. Microbiol. 2013, 7, 505–514. [Google Scholar]
- Ainsworth, E.A.; Bush, D.R. Carbohydrate export from the leaf: A highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol. 2011, 155, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Pathom-Aree, W.; Lotfi, R.; Balaji, P.; Elshery, N.; Grska, E.B.; Swiatek, M.; Horaczek, T.; Mojski, J.; Kociel, H.; et al. Effect of microbial consortia on photosynthetic efficiency of Arabidopsis thaliana under drought stress. Chiang Mai J. Sci. 2018, 45, 1–10. [Google Scholar]
- Puppo, A.; Pauly, N.; Boscari, A.; Mandon, K.; Brouquisse, R. Hydrogen peroxide and nitric oxide: Key regulators of the Legume-Rhizobium and mycorrhizal symbioses. Antioxid. Redox Signal. 2013, 18, 2202–2219. [Google Scholar] [CrossRef]
- Stearns, J.C.; Shah, S.; Greenberg, B.M.; Dixon, D.G.; Glick, B.R. Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol. Biochem. 2005, 43, 701–708. [Google Scholar] [CrossRef]
- Barnawal, D.; Bharti, N.; Pandey, S.S.; Pandey, A.; Chanotiya, C.S.; Kalra, A. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol. Plant. 2017, 161, 502–514. [Google Scholar] [CrossRef]
- Molas, J. Changes of chloroplasts ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni(II) complexes. Environ. Exp. Bot. 2002, 47, 115–126. [Google Scholar] [CrossRef]
- Wituszyńska, W.; Gałązka, K.; Rusaczonek, A.; Vanderauwera, S.; Van Breusegem, F.; Karpiński, S. Multivariable environmental conditions promote photosynthetic adaptation potential in Arabidopsis thaliana. J. Plant Physiol. 2015, 170, 548–559. [Google Scholar] [CrossRef]
- Hao, F.S.; Wang, X.C.; Chen, J. Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci. 2006, 170, 151–158. [Google Scholar] [CrossRef]
- Mesa-Marín, J.; Pérez-Romero, J.A.; Redondo-Gómez, S.; Pajuelo, E.; Rodríguez-Llorente, I.D.; Mateos-Naranjo, E. Impact of plant growth promoting bacteria on Salicornia ramosissima ecophysiology and heavy metal phytoremediation capacity in estuarine soils. Front. Microbiol. 2020, 11, 553018. [Google Scholar] [CrossRef]
- Shahid, M.; Pourrut, B.; Dumat, C.; Nadeem, M.; Aslam, M.; Pinelli, E. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 2014, 232, 1–44. [Google Scholar] [PubMed]
- Ju, W.; Liu, L.; Fang, L.; Cui, Y.; Duan, C.; Wu, H. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol. Environ. Saf. 2019, 167, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Aqeel, M.; Khalid, N.; Tufail, A.; Ahmad, R.Z.; Akhter, M.S.; Luqman, M.; Javed, M.T.; Irshad, M.K.; Alamri, S.; Hashem, M.; et al. Elucidating the distinct interactive impact of cadmium and nickel on growth, photosynthesis, metal-homeostasis, and yield responses of mung bean (Vigna radiata L.) varieties. Environ. Sci. Pollut. Res. Int. 2021, 28, 27376–27390. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.M. A Manual for the Practical Study of Root Nodule Bacteria; Blackwell Scientific: Oxford, UK, 1970. [Google Scholar]
- Versalovic, J.; Schneider, M.; de Bruijn, F.J.; Lupski, J.R. Genomic fingerprinting of bacteria with repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 1994, 5, 25–40. [Google Scholar]
- Debojyoti, R.; Manibrata, P.; Sudip, K.B. Isolation identification and characterization of bacteria (Rhizobium) from chick pea (Cicer arietinum) and production of biofertilizer. Eur. J. Biotech. Biosci. 2015, 3, 26–29. [Google Scholar]
- Aryantha, I.N.P.; Hidiyah, A.R.M. Colonization and performance of diazotroph endophytic bacteria on palm oil (Elaeis guineensis Jacq L.) leaves. IOP Conf. Ser. Earth Environ. Sci. 2018, 166, 012012. [Google Scholar] [CrossRef]
- Goldstein, A.H. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol. Agric. Hortic. 1995, 12, 185–193. [Google Scholar] [CrossRef]
- Gordon, S.A.; Weber, R.P. Colorimetric estimation of indole acetic acid. Plant Physiol. 1951, 26, 192–195. [Google Scholar] [CrossRef]
- Penrose, D.M.; Glick, B.R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 2003, 118, 10–15. [Google Scholar] [CrossRef]
- Rusaczonek, A.; Czarnocka, W.; Kacprzak, S.; Witoń, D.; Ślesak, I.; Szechyńska-Hebda, M.; Gawroński, P.; Karpiński, S. Role of phytochromes A and B in the regulation of cell death and acclimatory responses to UV stress in Arabidopsis thaliana. J. Exp. Bot. 2015, 66, 6679–6695. [Google Scholar] [CrossRef]
- Mergemann, H.; Sauter, M. Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol. 2000, 124, 609–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using Canoco; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomput. Power Ithaca 2002, 29, 120–130. [Google Scholar]
Strain ID | Name of Bacteria | Best Match Sequence and Accession Number | Similarity (%) |
---|---|---|---|
AS5 | Rhizobium sp. | Rhizobium tibeticum HAMBI 3177 (KF206791.1) | 95.38% |
Rhizobium tibeticum CCBAU 85039T (EU407190.1) | 95.38% | ||
AS8 | Rhizobium sp. | Rhizobium tibeticum HAMBI 3177 (KF206791.1) | 95.38% |
Rhizobium tibeticum CCBAU 85039T (EU407190.1) | 95.38% | ||
AS16 | Rhizobium sp. | Rhizobium sp. RMCC TR2021 (KM881220.1) | 100% |
AS52 | Rhizobium sp. | Rhizobium sp. GG5/GG20/GG37 (MN026364.1/MN026365.1/MN026366.1) | 98.76% |
AS55 | Bradyrhizobium sp. | Bradyrhizobium sp. 7Cha14Z (MT790547.1) | 99.04% |
Isolate Name/Features | AS 5 | AS 8 | AS 16 | AS 52 | AS 55 |
---|---|---|---|---|---|
Growth on Yeast Extract Congo Red Agar medium | positive | positive | positive | positive | positive |
Gram staining | pink | pink | pink | pink | pink |
Shape | rod | rod | rod | rod | rod |
Color | white | white | white | white | white, gummy |
Ammonia production * | ++ | ++ | + | ++ | ++ |
Siderophore production | positive | positive | positive | positive | positive |
Phosphate solubilization (PSI) | 2 ± 0.1 a | 2 ± 0.1 a | 2 ± 0.1 a | 2 ± 0.2 a | 2 ± 0.2 a |
IAA synthesis (μg/mL + 0.2% tryptophan) | 1.8 ± 0.1 a | 1.9 ±0.2 a | 1.1 ± 0.2 b | 2.0 ± 0.1 a | 2.1 ±0.2 a |
ACC deaminase activity (µmol α-ketobutyrate µg−1 protein h−1) | 0.93 ± 0.01 a | 0.90 ± 0.01 a | 0.32 ± 0.01 b | 0.91 ± 0.01 a | 0.92 ± 0.02 a |
Traits/ Bacterial Isolates | Total Thickness (µm) | Number of Palisade Cell Layers | Length of Palisade Parenchyma Cells (µm) | Width of Palisade Parenchyma Cells (µm) | Number of Spongy Cell Layers | Length of Spongy Parenchyma Cells (µm) | Width of Spongy Parenchyma Cells (µm) | Stomata Number in Adaxial Epidermis | Stomata Number in Abaxial Epidermis |
---|---|---|---|---|---|---|---|---|---|
Control | 122.2 ± 5.3 b | 1 | 35.8 ± 5.6 ab | 26.9 ± 1.8 ab | 3 | 24.0 ± 5.4 a | 30.2 ± 3.5 a | 1.0 ± 0.0 a | 1.7 ± 0.5 a |
AS5 | 214.0 ± 3.8 f | 1 | 60.1 ± 4.7 e | 51.4 ± 7.5 e | 3–5 | 41.1 ± 6.1 b | 53.4 ± 5.7 d | 1.6 ± 0.5 ab | 2.7 ± 0.8 ab |
AS8 | 141.2 ± 5.79 bcd | 1 | 40.3 ± 5.8 abc | 41.4 ± 1.8 d | 3–4 | 25.9 ± 1.8 a | 33.1 ± 3.4 ab | 1.5 ± 0.5 ab | 4.0 ± 0.7 abc |
AS16 | 162.6 ± 14.7 e | 1 | 46.2 ± 3.5 c | 40.2 ± 5.8 cd | 3–4 | 27.8 ± 2.0 a | 40.0 ± 6.8 abc | 2.5 ± 0.8 b | 3.3 ± 0.3 abc |
AS52 | 140.5 ± 3.2 bcd | 1 | 44.2 ± 5.3 bc | 30.7 ± 2.1 ab | 3–4 | 27.3 ± 4.4 a | 34.7 ± 5.7 abc | 1.5 ± 0.5 ab | 5.0 ± 0.4 bcd |
AS55 | 130.3 ± 5.1 bc | 1 | 36.7 ± 5.0 ab | 33.5 ± 2.7 bcd | 3–4 | 25.4 ± 1.7 a | 41.8 ± 5.6 a | 1.6 ± 0.5 ab | 5.6 ± 0.4 bcd |
+Ni | 115.6 ± 7.4 a | 1 | 32.8 ± 1.2 a | 28.7 ± 6.4 ab | 3 | 23.0 ± 3.9 a | 44.2 ± 7.1 cd | 1.5 ± 0.5 ab | 4.0 ± 0.5 cde |
AS5 + Ni | 160.6 ± 21.9 ef | 1 | 42.4 ± 5.7 bc | 23.6 ± 2.8 a | 4–5 | 25.0 ± 2.8 a | 36.9 ± 4.5 abc | 2.3 ± 1.0 b | 4.8 ± 0.5 cde |
AS8 + Ni | 146.8 ± 7.6 cde | 1 | 45.3 ± 2.5 bc | 42.1 ± 6.0 de | 3–4 | 26.6 ± 3.2 a | 36.7 ± 3.1 abc | 1.8 ± 0.4 ab | 4.5 ± 0.3 cde |
AS16 + Ni | 148.5 ± 17.6 cde | 1 | 45.1 ± 11.6 bc | 31.0 ± 5.7 ab | 4 | 27.8 ± 2 a | 36.9 ± 6.4 abc | 1.8 ± 0.4 ab | 3.3 ± 0.2 cde |
AS52 + Ni | 147.0 ± 3.4 cde | 1 | 36.8 ± 2.7 bc | 34.4 ± 4.4 bcd | 3–4 | 28.7 ± 3.9 ab | 34.0 ± 3.1 ab | 2.2 ± 0.9 ab | 2.1 ± 0.9 cde |
AS55 + Ni | 142.8 ± 5.7 bcd | 1 | 43.7 ± 1.7 bc | 34.2 ± 5.4 bcd | 3–4 | 26.0 ± 4.3 a | 41.8 ± 5.6 bc | 1.5 ± 0.5 ab | 5.6 ± 0.3 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sujkowska-Rybkowska, M.; Rusaczonek, A.; Kasowska, D.; Gediga, K.; Banasiewicz, J.; Stępkowski, T.; Bernacki, M.J. Potential of Rhizobia Nodulating Anthyllis vulneraria L. from Ultramafic Soil as Plant Growth Promoting Bacteria Alleviating Nickel Stress in Arabidopsis thaliana L. Int. J. Mol. Sci. 2022, 23, 11538. https://doi.org/10.3390/ijms231911538
Sujkowska-Rybkowska M, Rusaczonek A, Kasowska D, Gediga K, Banasiewicz J, Stępkowski T, Bernacki MJ. Potential of Rhizobia Nodulating Anthyllis vulneraria L. from Ultramafic Soil as Plant Growth Promoting Bacteria Alleviating Nickel Stress in Arabidopsis thaliana L. International Journal of Molecular Sciences. 2022; 23(19):11538. https://doi.org/10.3390/ijms231911538
Chicago/Turabian StyleSujkowska-Rybkowska, Marzena, Anna Rusaczonek, Dorota Kasowska, Krzysztof Gediga, Joanna Banasiewicz, Tomasz Stępkowski, and Maciej Jerzy Bernacki. 2022. "Potential of Rhizobia Nodulating Anthyllis vulneraria L. from Ultramafic Soil as Plant Growth Promoting Bacteria Alleviating Nickel Stress in Arabidopsis thaliana L." International Journal of Molecular Sciences 23, no. 19: 11538. https://doi.org/10.3390/ijms231911538
APA StyleSujkowska-Rybkowska, M., Rusaczonek, A., Kasowska, D., Gediga, K., Banasiewicz, J., Stępkowski, T., & Bernacki, M. J. (2022). Potential of Rhizobia Nodulating Anthyllis vulneraria L. from Ultramafic Soil as Plant Growth Promoting Bacteria Alleviating Nickel Stress in Arabidopsis thaliana L. International Journal of Molecular Sciences, 23(19), 11538. https://doi.org/10.3390/ijms231911538